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1© Modular forms - Definition

Complex upper half plane: H =
{
x+ iy ∈ C | x, y ∈ R , y > 0

}
.

Definition

A holomorphic function f ∈ O(H) is called a modular form of weight k ∈ Z if it satisfies

f(τ + 1) = f(τ) ,

f(− 1
τ ) = τkf(τ) ,

for all τ ∈ H and if it has a Fourier expansion of the form

f(τ) =

∞∑
n=0

anq
n . (an ∈ C, q = e2πiτ )

Mk : space of all modular forms of weight k.

The space of cusp forms of weight k is defined by

Sk =
{
f ∈Mk | f =

∞∑
n=1

anq
n
}

= ker(projection to const. term) .
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1© Modular forms - Eisenstein series

For even k ≥ 4 the Eisenstein series are defined by

Gk(τ) =
1

2

∑
m,n∈Z

(m,n)6=(0,0)

1

(mτ + n)k
.

These have a Fourier expansion of the form

Gk(τ) = ζ(k) +
(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn ,

where σk−1(n) =
∑

d|n d
k−1 is the divisor sum.

Proposition

For every even k ≥ 4 we haveGk ∈Mk ,Mk = CGk ⊕ Sk and

M =

∞⊕
k=0

Mk = C[G4,G6] .
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1© Modular forms - Quasi-modular forms

Are derivatives of modular forms again modular forms?... No

Define the Eisenstein series of weight two by

G2(τ) = ζ(2) + (−2πi)2
∞∑
n=1

σ1(n)qn ,

and the space of quasi-modular forms by (see Kimura-sans talk)

M̃ = C[G2,G4,G6] .
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1© Modular forms - Cusp forms

The first non-trivial cusp form is the discriminant function ∆

∆(τ) = q

∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − 1472q4 + . . . ,

= 2400 · 6! ·G4(τ)3 − 420 · 7! ·G6(τ)2 ,

where

Gk(τ) = (2πi)−kGk(τ) = −Bk
2k!

+
1

(k − 1)!

∑
n>0

σk−1(n)qn .

Theorem

For k ≥ 0 the mapMk → Sk+12 given by f 7→ ∆ · f is an isomorphism ofC-vector spaces.
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2© MZV & DSH - Definition

Definition

For k1 ≥ 2, k2, . . . , kr ≥ 1 define the multiple zeta value (MZV)

ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·m

kr
r

∈ R .

By r we denote its depth and k1 + · · ·+ kr will be called its weight.

Z : Q-algebra of MZVs

Zk : Q-vector space of MZVs of weight k.

MZVs can also be written as iterated integrals, e.g.

ζ(2, 3) =

∫ 1

0

dt1
t1

∫ t1

0

dt2
1− t2

∫ t2

0

dt3
t3

∫ t3

0

dt4
t4

∫ t4

0

dt5
1− t5

.
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2© MZV & DSH - Harmonic & shuffle product

There are two different ways to express the product of MZV in terms of MZV.

Harmonic product (coming from the definition as iterated sums)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
∑
m>0

1

mk1

∑
n>0

1

nk2

=
∑

m>n>0

1

mk1nk2
+

∑
n>m>0

1

mk1nk2
+

∑
m=n>0

1

mk1+k2

= ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2) .

Shuffle product (coming from the expression as iterated integrals)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j) .
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2© MZV & DSH - Double shuffle relations

These two product expressions give variousQ-linear relations between MZV.

Example

ζ(2) · ζ(3)
harmonic

= ζ(2, 3) + ζ(3, 2) + ζ(5)
shuffle
= ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

=⇒ 2ζ(3, 2) + 6ζ(4, 1)
double shuffle

= ζ(5) .

But there are more relations between MZV. e.g.:∑
m>n>0

1

m2n
= ζ(2, 1) = ζ(3) =

∑
m>0

1

m3
.

These follow from regularizing the double shuffle relations

 extended double shuffle relations.
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2© MZV & DSH - Relations conjectures

Conjecture

All relations among MZVs are consequences of the extended double shuffle relations.

Conjecture

The spaceZ is graded by weight, i.e.

Z =
⊕
k≥0
Zk .

There are various different families of relations which conjecturally give all relations among MZV.

There are several "modular phenomena", e.g. Broadhurst-Kreimer conjecture (see bonus slides)

8 / 44



3© Multiple Eisenstein series - An order on lattices

Let τ ∈ H. We define an order� on the lattice Zτ + Z by setting

λ1 � λ2 :⇔ λ1 − λ2 ∈ P

for λ1, λ2 ∈ Zτ + Z and the following set of positive lattice points

P := {mτ + n ∈ Zτ + Z | m > 0 ∨ (m = 0 ∧ n > 0)} = U ∪R .

m

n

In other words: λ1 � λ2 iff λ1 is above or on the right of λ2.
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3© Multiple Eisenstein series - Multiple Eisenstein series

Definition

For integers k1 ≥ 3, k2, . . . , kr ≥ 2, we define the multiple Eisenstein series by

Gk1,...,kr(τ) =
∑

λ1�···�λr�0
λi∈Zτ+Z

1

λk11 · · ·λ
kr
r

.

It is easy to see that these are holomorphic functions in the upper half plane and that they fulfill the harmonic

product, i.e. it is for example

G4(τ) ·G3(τ) = G4,3(τ) +G3,4(τ) +G7(τ) .
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3© Multiple Eisenstein series - Fourier expansion

Definition

For k1, . . . kr ≥ 1 we define the q-series g(k1, . . . , kr) ∈ Q[[q]] by

g(k1, . . . , kr) =
∑

m1>···>mr>0
n1,...,nr>0

nk1−11

(k1 − 1)!
. . .

nkr−1r

(kr − 1)!
qm1n1+···+mrnr .

Theorem (Gangl-Kaneko-Zagier 2006 (r = 2), B. 2012 (r ≥ 2))

The multiple Eisenstein seriesGk1,...,kr(τ) have a Fourier expansion of the form

Gk1,...,kr(τ) = ζ(k1, . . . , kr) +
∑
n>0

anq
n

(
q = e2πiτ

)
and they can be written explicitly as aZ[2πi]-linear combination of q-analogues of multiple zeta values g. In

particular, an ∈ Z[2πi].

11 / 44



3© Multiple Eisenstein series - Fourier expansion

Theorem (Gangl-Kaneko-Zagier 2006 (r = 2), B. 2012 (r ≥ 2))

The multiple Eisenstein seriesGk1,...,kr(τ) have a Fourier expansion of the form

Gk1,...,kr(τ) = ζ(k1, . . . , kr) +
∑
n>0

anq
n

(
q = e2πiτ

)
and they can be written explicitly as aZ[2πi]-linear combination of q-analogues of multiple zeta values g. In

particular, an ∈ Z[2πi].

Examples

Gk(τ) = ζ(k) + (−2πi)kg(k) ,

G3,2(q) = ζ(3, 2) + 3ζ(3)(−2πi)2g(2) + 2ζ(2)(−2πi)3g(3) + (−2πi)5g(3, 2) .
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3© Multiple Eisenstein series - Extended definitions

There are different ways to extend the definition ofGk1,...,kr to k1, . . . , kr ≥ 1

Formal double zeta space realizationGr,s (Gangl-Kaneko-Zagier, 2006)

Gk1
·Gk2

+ (δk1,2 + δk2,2)
G′k1+k2−2

2(k1 + k2 − 2)
= Gk1,k2

+Gk2,k1
+Gk1+k2

=

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
Gj,k1+k2−j , (k1 + k2 ≥ 3) .

Finite double shuffle versionGr,s (Kaneko, 2007).

Shuffle regularized multiple Eisenstein seriesG�k1,...,kr (B.-Tasaka, 2017).

Harmonic regularized multiple Eisenstein seriesG∗k1,...,kr (B., 2019).

Observation

No version of these objects satisfy the double shuffle relations for all indices/weights.

The derivative is always somewhere as an extra term.
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4© Formal MES - Alphabet

Define the alphabetA by

A =

{[
k

d

]
| k ≥ 1, d ≥ 0

}
.

OnQA we define the product � for k1, k2 ≥ 1 and d1, d2 ≥ 0 by[
k1
d1

]
�
[
k2
d2

]
=

[
k1 + k2
d1 + d2

]
.

This gives a commutative non-unitalQ-algebra (QA, �).
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4© Formal MES - Quasi-shuffle product

Definition

Define the quasi-shuffle product ∗ onQ〈A〉 as theQ-bilinear product, which satisfies 1 ∗ w = w ∗ 1 = w for

any wordw ∈ Q〈A〉 and

aw ∗ bv = a(w ∗ bv) + b(aw ∗ v) + (a � b)(w ∗ v)

for any letters a, b ∈ A and wordsw, v ∈ Q〈A〉.

Proposition

(Q〈A〉, ∗) is a commutativeQ-algebra.
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4© Formal MES - Quasi-shuffle product

For k1, . . . , kr ≥ 1, d1, . . . , dr ≥ 0 we use the following notation to write words inQ〈A〉:[
k1, . . . , kr
d1, . . . , dr

]
:=

[
k1
d1

]
. . .

[
kr
dr

]
.

weight: k1 + · · ·+ kr

depths: r

In smallest depths the quasi-shuffle product is given by[
k1
d1

]
∗
[
k2
d2

]
=

[
k1, k2
d1, d2

]
+

[
k2, k1
d2, d1

]
+

[
k1 + k2
d1 + d2

]
,[

k1
d1

]
∗
[
k2, k3
d2, d3

]
=

[
k1, k2, k3
d1, d2, d3

]
+

[
k2, k1, k3
d2, d1, d3

]
+

[
k2, k3, k1
d2, d3, d1

]
+

[
k1 + k2, k3
d1 + d2, d3

]
+

[
k1, k2 + k3
d1, d2 + d3

]
.
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4© Formal MES - Generating series of words

We define in depth r ≥ 1 by the following formal power series inQ〈A〉[[X1, Y1, . . . , Xr, Yr]]

A

(
X1, . . . , Xr

Y1, . . . , Yr

)
:=

∑
k1,...,kr≥1
d1,...,dr≥0

[
k1, . . . , kr
d1, . . . , dr

]
Xk1−1

1 . . . Xkr−1
r

Y d1
1

d1!
. . .

Y dr
r

dr!
.

With this the quasi-shuffle product in smallest depths reads

A

(
X1

Y1

)
∗ A
(
X2

Y2

)
= A

(
X1, X2

Y1, Y2

)
+ A

(
X2, X1

Y2, Y1

)
+

A
(

X1

Y1+Y2

)
− A
(

X2

Y1+Y2

)
X1 −X2

.
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4© Formal MES - Conjugation of Young diagrams

The conjugation of a Young diagram withX1Y1 + · · ·+XrYr boxes and r stairs:

X1

X2

Xr−1

Xr

Y1

Y2

Yr−1

Yr

conjugate

Y1 + · · ·+ Yr

Y1 + · · · + Yr−1

Y1 + Y2

Y1

Xr

Xr−1 −Xr

X2 −X3

X1 −X2

(
X1, . . . , Xr

Y1, . . . , Yr

)
7−→

(
Y1 + · · ·+ Yr, . . . , Y1 + Y2, Y1
Xr, Xr−1 −Xr, . . . , X1 −X2

)
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4© Formal MES - Swap = Conjugation of the variables in the gen. series

Definition

We define the swap as the linear map σ : Q〈A〉 → Q〈A〉 by σ(1) = 1 and for r ≥ 1 on the generators of

Q〈A〉 by

σ

(
A

(
X1, . . . , Xr

Y1, . . . , Yr

))
:= A

(
Y1 + · · ·+ Yr, . . . , Y1 + Y2, Y1
Xr, Xr−1 −Xr, . . . , X1 −X2

)
,

where σ is applied coefficient-wise on the left, i.e. σ(
[
k1,...,kr
d1,...,dr

]
) is defined as the coefficient of

Xk1−1
1 . . . Xkr−1

r
Y

d1
1
d1!

. . . Y
dr
r
dr!

on the right-hand side.

σ

([
k

d

])
=

d!

(k − 1)!

[
d+ 1

k − 1

]
, (k ≥ 1, d ≥ 0) .
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4© Formal MES - Definition

Define S as the ideal in (Q〈A〉, ∗) generated by all σ(w)− w forw ∈ Q〈A〉, i.e.

S = 〈σ(w)− w | w ∈ Q〈A〉〉Q ∗Q〈A〉 .

Definition

The algebra of formal multiple Eisenstein series is defined by

Gf = Q〈A〉�S

and we denote the class of a word
[
k1,...,kr
d1,...,dr

]
by G

(
k1,...,kr
d1,...,dr

)
.
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4© Formal MES - Generating series

We obtain a commutativeQ-algebra (Gf, ∗), where each element is swap invariant. We write

G

(
X1, . . . , Xr

Y1, . . . , Yr

)
:=

∑
k1,...,kr≥1
d1,...,dr≥0

G

(
k1, . . . , kr
d1, . . . , dr

)
Xk1−1

1 . . . Xkr−1
r

Y d1
1

d1!
. . .

Y dr
r

dr!
.

Since the formal multiple Eisenstein series are swap invariant and their product is given by ∗ we have in particular

G

(
X1

Y1

)
= G

(
Y1
X1

)
,

G

(
X1, X2

Y1, Y2

)
= G

(
Y1 + Y1, Y1
X2, X1 −X2

)
,

G

(
X1

Y1

)
∗G
(
X2

Y2

)
= G

(
X1, X2

Y1, Y2

)
+ G

(
X2, X1

Y2, Y1

)
+

G
(

X1

Y1+Y2

)
−G

(
X2

Y1+Y2

)
X1 −X2

.

All relations we will present in this talk are consequences of the three relations above.
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4© Formal MES - The derivation ∂

Let ∂ : (QA, �)→ (QA, �) be the derivation defined for k ≥ 1, d ≥ 0 by

∂

([
k

d

])
= k

[
k + 1

d+ 1

]
.

This gives a derivation onQ〈A〉 (with respect to the concatenation product), defined by

∂

([
k1, . . . , kr
d1, . . . , dr

])
=

r∑
j=1

kj

[
k1, . . . , kj + 1, . . . , kr
d1, . . . , dj + 1, . . . , dr

]
.
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4© Formal MES - The derivation ∂

Lemma

∂ is a derivation on (Q〈A〉, ∗).

The derivation ∂ commutes with the swap, i.e. ∂σ = σ∂.

Theorem

∂ is a derivation on (Gf, ∗).

∂

(
G

(
k1, . . . , kr
d1, . . . , dr

))
=

r∑
j=1

kj G

(
k1, . . . , kj + 1, . . . , kr
d1, . . . , dj + 1, . . . , dr

)
.
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4© Formal MES -sl2-action

Conjecture

There exist a unique derivation d on (Q〈A〉, ∗) such that

d commutes with σ.

The triple (∂,W, d) satisfies the commutation relations of an sl2-triple, i.e.

[W,∂] = 2∂, [W, d] = −2d, [d, ∂] = W ,

whereW is the weight operator, multiplying a word
[
k1,...,kr
d1,...,dr

]
by its weight

k1 + . . .+ kr + d1 + . . .+ dr .

This would imply an sl2-action on Gf. In depth one this derivation seems to be given by

dG

(
k

d

)
= dG

(
k − 1

d− 1

)
− 1

2
δk+d,2 ,

which correspond to the classical derivation for quasi-modular forms (the derivative with respect toG2).
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4© Formal MES - Double shuffle relations

OnQ〈A〉 we can define another product� byw� v = σ(σ(w) ∗ σ(v)) forw, v ∈ Q〈A〉. For any

f, g ∈ Gf we have f � g − f ∗ g = 0.

Proposition

For k1, k2 ≥ 1, d1, d2 ≥ 0 we have

G

(
k1
d1

)
G

(
k2
d2

)
= G

(
k1, k2
d1, d2

)
+ G

(
k2, k1
d2, d1

)
+ G

(
k1 + k2
d1 + d2

)
=

∑
l1+l2=k1+k2
e1+e2=d1+d2

((
l1 − 1

k1 − 1

)(
d1
e1

)
(−1)d1−e1 +

(
l1 − 1

k2 − 1

)(
d2
e1

)
(−1)d2−e1

)
G

(
l1, l2
e1, e2

)

+
d1!d2!

(d1 + d2 + 1)!

(
k1 + k2 − 2

k1 − 1

)
G

(
k1 + k2 − 1

d1 + d2 + 1

)
,

where we sum over all l1, l2 ≥ 1 and e1, e2 ≥ 0 in the second expression

The special case d1 = d2 = 0 is similar to the double shuffle relations of MZV.
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4© Formal MES -G(k1, . . . , kr)

Most of the relations we will obtain are among G, where the bottom entries are zero. For shorter notation we will

denote these for k1, . . . , kr ≥ 1 by

G(k1, . . . , kr) := G

(
k1, . . . , kr
0, . . . , 0

)
.

Instead of ∗ we will just write products of G (i.e. this will not denote the concatenation of words)

Example

G(2) G(3) = G(2, 3) + G(3, 2) + G(5)

= G(2, 3) + 3 G(3, 2) + 6 G(4, 1) + 3 G

(
4

1

)
.

Compare this to the previous example of multiple zeta values. Also notice: 3 G
(
4
1

)
= ∂G(3).
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4© Formal MES - Consequences of the double shuffle relations

Theorem (B.-van Ittersum 2021+)

For all k1, k2 ≥ 1 with k = k1 + k2 ≥ 4 even we have

1

2

((
k1 + k2
k2

)
− (−1)k1

)
G(k) =

k−2∑
j=2
jeven

((
k − j − 1

k1 − 1

)
+

(
k − j − 1

k2 − 1

)
− δj,k1

)
G(j) G(k − j)

+
1

2

((
k − 3

k1 − 1

)
+

(
k − 3

k2 − 1

)
+ δk1,1 + δk2,1

)
G

(
k − 1

1

)
.

Proof sketch:

Define an action of the group ring Z[Gl2(Z)] on the generating series in depth two.

Above equality follows by describing the double shuffle relations in terms of this action together with some

identities in Z[Gl2(Z)].

(See bonus slides for details)
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4© Formal MES - Recursive formulas for formal Eisenstein series

Corollary

For even k ≥ 4 we have

k + 1

2
G(k) = G

(
k − 1

1

)
+

∑
k1+k2=k
k1,k2≥2 even

G(k1) G(k2) .

For all even k ≥ 6 we have

(k + 1)(k − 1)(k − 6)

12
G(k) =

∑
k1+k2=k
k1,k2≥4 even

(k1 − 1)(k2 − 1) G(k1) G(k2) .

Example

G(8) =
6

7
G(4)2, G(10) =

10

11
G(4) G(6), G(12) =

84

143
G(4) G(8) +

50

143
G(6)2 .
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4© Formal MES - An analogue of Eulers relation

Notice that for k ≥ 3 we have 1
k−2 G

(
k−1
1

)
= ∂G(k − 2) = G′(k − 2).

Corollary

Form ≥ 1 we have G(2m) ∈ Q[G(2),G′(2),G′′(2)] = Q[G(2),G(4),G(6)] and

G(2m) = − B2m

2(2m)!
(−24 G(2))m + terms with G′(2) and G′′(2) .

Form ≥ 2 we have G(2m) ∈ Q[G(4),G(6)].

Compare the first part with the formula by Euler for Riemann zeta values: ζ(2m) = − B2m
2(2m)!(−24ζ(2))m.

Example

G(4) =
2

5
G(2)2 +

1

5
G′(2) ,

G(6) =
8

35
G(2)3 +

6

35
G(2) G′(2) +

1

70
G′′(2) .

29 / 44



4© Formal MES - The subspace Ĝf

Ĝf = Q+ 〈G(k1, . . . , kr) | r ≥ 1, k1, . . . , kr ≥ 1〉Q ⊂ Gf .

By the definition of the quasi-shuffle product, it is easy to see that (Ĝf, ∗) is a subalgebra of (Gf, ∗).

Applying ∂ to the generators of Ĝf gives

∂ (G(k1, . . . , kr)) =
r∑
j=1

kj G

(
k1, . . . , kj + 1, . . . , kr

0, . . . , 1, . . . , 0

)
.

Proposition (B.-van Ittersum 2021+)

Ĝf is closed under ∂.

Conjecture

We have Ĝf = Gf.
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4© Formal MZV - Motivation

Question

What are the "constant terms" of formal multiple Eisenstein series?

To define formal cusp forms, we want to determine the projection onto the constant term of formal multiple

Eisenstein series.

This leads to the question of which relations are additionally satisfied for MZV compared to MES.

This will give a definition of formal multiple zeta values.

The following construction is motivated/inspired by a conjectural construction of combinatorial multiple

Eisenstein series together with their behavior as q → 1.
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4© Formal MZV - The ideal N and P

We define the following two subsets of the alphabetA

A0 =

{[
k

0

]
| k ≥ 1

}
, A1 =

{[
1

d

]
| d ≥ 0

}
.

With this we define the following ideal in (Q〈A〉, ∗) generated by the setA∗\(A1)∗(A0)
∗

N =
(
A∗\(A1)∗(A0)

∗)
Q〈A〉 ,

The elements inA∗\(A1)∗(A0)
∗ are exactly those elements which are not of the form[

1, . . . , 1, k1, . . . , kr
d1, . . . , ds, 0, . . . , 0

]
.

In addition to the idealN , we define the following ideal:

P =

〈[
1, . . . , 1, k1, . . . , kr
d1, . . . , ds, 0, . . . , 0

]
−
[

1, . . . , 1

d1, . . . , ds

]
∗
[
k1, . . . , kr
0, . . . , 0

]∣∣ds ≥ 1, k1 ≥ 2

〉
Q
∗Q〈A〉.
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4© Formal MZV - Definition

Definition

The algebra of formal multiple zeta values is defined by

Z f = G
f
�(N + P ) .

We denote the canonical projection by

π : Gf −→ Z f .

This map can be seen as the formal version of the "projection onto the constant term".

Claim: The idealsN and P capture the additional relations satisfied by multiple zeta values, which are not

satisfied by multiple Eisenstein series.
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4© Formal MZV - Definition

Proposition (B.-van Ittersum 2021+)

The map π|Ĝf : Ĝf → Z f is surjective.

Definition

For k1, . . . , kr ≥ 1 we define the formal multiple zeta value ζ f(k1, . . . , kr) by

ζ f(k1, . . . , kr) = π(G(k1, . . . , kr)) .

Proposition

We have ∂Gf ⊂ ker(π).
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4© Formal MZV - Some relations

Corollary

(Double shuffle relations in depth two) For k1, k2 ≥ 1 we have

ζ f(k1)ζ
f(k2) = ζ f(k1, k2) + ζ f(k2, k1) + ζ f(k1 + k2)

=
∑

l1+l2=k1+k2

((
l1 − 1

k1 − 1

)
+

(
l1 − 1

k2 − 1

))
ζ f(l1, l2) + δk1+k2,2ζ

f(2) .

In particular we obtain the relation ζ f(3) = ζ f(2, 1) by taking k1 = 1, k2 = 2.

(Euler relation) Form ≥ 1 we have

ζ f(2m) = − B2m

2(2m)!

(
−24ζ f(2)

)m
.
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4© Formal MZV - Extended double shuffle relations

Theorem (B.-Kühn-Matthes 2021+)

The formal multiple zeta values satisfy the extended double shuffle relations.

Our formal multiple zeta values should be isomorphic (after switching to the shuffle regularization) to the

classical definition of formal multiple zeta values (Racinet).

There is a 1:1 correspondence between objects satisfying the extended double shuffle relations and the

objects satisfying the relations inZ f.
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4© Formal (quasi) modular forms - Definition

In contrast to the analytic case, we start by defining formal quasi-modular forms before formal modular forms.

Definition

We define the algebra of formal quasi-modular forms M̃f as the smallest subalgebra of Gf which satisfies the

following two conditions

G(2) ∈ M̃f.

M̃f is closed under ∂.
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4© Formal (quasi) modular forms - Basic facts

Proposition　(Seen for the classical case in Kawasetsu-sans talk)

We have M̃f = Q[G(2),G(4),G(6)] = Q[G(2),G′(2),G′′(2)].

The Ramanujan differential equations are satisfied:

G′(2) = 5 G(4)− 2 G(2)2 ,

G′(4) = 8 G(6)− 14 G(2) G(4) ,

G′(6) =
120

7
G(4)2 − 12 G(2) G(6) .

The Chazy equation is satisfied　

G′′′(2) + 24 G(2) G′′(2)− 36 G′(2)2 = 0 .

k + 1

2
G(k) = G

(
k − 1

1

)
+

∑
k1+k2=k

k1,k2≥2 even

G(k1) G(k2) .
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4© Formal (quasi) modular forms - formal modular forms & cusp forms

Definition

The algebra of formal modular formsMf is defined as the subalgebra of Gf generated by all G(k) with

k ≥ 4 even. (Alternative definition:Mf = ker d|M̃f )

We define the algebra of formal cusp forms by S f = kerπ|Mf .

The first example of a non-zero formal cusp form appears in weight 12 and we write

∆f = 2400 · 6! ·G(4)3 − 420 · 7! ·G(6)2 .

Proposition

We haveMf = Q[G(4),G(6)] andMf
k = QG(k)⊕ S fk .

We have ∆f ∈ S f12 and ∂∆f = −24 G(2)∆f.

1

432
∆f = 48 G(2)2 G′(2)2 + 32 G′(2)3 − 32 G(2)3 G′′(2)− 24 G(2) G′(2) G′′(2)−G′′(2)2 .
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4© Formal (quasi) modular forms - Work in progress/Outlook

Besides the mentioned basic facts we are also working on the following:

Connection to the formal double zeta space of Gangl, Kaneko & Zagier. (see bonus slides)

Rankin-Cohen brackets (see Kimura-sans talk) as a consequence of the sl2-action on M̃f.

A formal version of "vanishing order at i∞" by considering the kernels of

πa : Gf −→ G
f
�(N + P )a , (a ≥ 1)

Miller basis, Dimension formulas.

Not clear: How to formalize other important structures, such as Hecke operators ?
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5© Realizations - Definition

Definition

LetA be a (differential)Q-algebra. A realization of Gf inA is an (differential) algebra homomorphism

ϕ : Gf −→ A .

A = R: Multiple zeta values (derivation = zero map).

A = Q: Rational solution to extended double shuffle.

A = Q[[q]]: Combinatorial multiple Eisenstein series (derivation = q ddq ).

A = O(H): ("Analytical") multiple Eisenstein series (derivation = (2πi) d
dτ ).
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5© Realizations - Multiple zeta values I

Theorem (B.-Kühn-Matthes 2021+)

For any fieldA of characteristic zero, there exist a realization of Gf inA, which factors through π.

This follows from the fact that we know that for any fieldA of characteristic zero, there exists a solution to

the extended double shuffle relations.

ForA = R these are given, for example, by (harmonic regularized) multiple zeta values.

ForA = Q, there is no explicit construction known so far for depth≥ 4.
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5© Realizations - Multiple zeta values II

Definition

For k1, . . . kr ≥ 1, d1, . . . , dr ≥ 0 define the q-series

g

(
k1, . . . , kr
d1, . . . , dr

)
=

∑
m1>···>mr>0
n1,...,nr>0

md1
1 n

k1−1
1

(k1 − 1)!
. . .

mdr
r n

kr−1
r

(kr − 1)!
qm1n1+···+mrnr .

Theorem (B.-van Ittersum 2021+)

The following gives a realization of Gf inR

ϕ : G

(
k1, . . . , kr
d1, . . . , dr

)
7−→

∗
lim
q→1

(1− q)k1+···+kr+d1+···+drg
(
k1, . . . , kr
d1, . . . , dr

)
,

where lim∗q→1 is a "(harmonic) regularized limit". This realization factors through π and we have

ϕ(G(k1, . . . , kr)) = ζ∗(k1, . . . , kr) .
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5© Realizations - Combinatorial MES

G

(
X1

Y1

)
= G

(
Y1
X1

)
, G

(
X1, X2

Y1, Y2

)
= G

(
Y1 + Y1, Y1
X2, X1 −X2

)
,

G

(
X1

Y1

)
G

(
X2

Y2

)
= G

(
X1, X2

Y1, Y2

)
+ G

(
X2, X1

Y2, Y1

)
+

G
(

X1

Y1+Y2

)
−G

(
X2

Y1+Y2

)
X1 −X2

.

Theorem (B.-Kühn-Matthes 2021+, B.-Burmester 2021+)

There exist power series G
(
Y1
X1

)
,G
(
X1,X2

Y1,Y2

)
∈ Q[[q]][[X1, X2, Y1, Y2]] which satisfy the above equations and

where the coefficients of G
(
Y1
X1

)
are given by (derivatives of) Eisenstein series. (See bonus slides)

This gives combinatorial proofs of the classical identities for quasi-modular forms.

There exists a construction for depth≥ 3, which conjecturally gives a realization of Gf. See the talkslides

of Annika Burmesters talk "Combinatorial multiple Eisenstein series" at the JENTE Seminar

(https://sites.google.com/view/jente-seminar/home).
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6© Bonus - Broadhurst-Kreimer conjecture

grDr Zk : MZV of weight k and depth r modulo lower depths MZV.

Conjecture (Broadhurst-Kreimer, 1997)

The generating series of the dimensions of the weight- and depth-graded parts of multiple zeta values is given by∑
k,r≥0

dimQ
(
grDr Zk

)
XkY r =

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4
,

where

E(X) =
X2

1−X2
, O(X) =

X3

1−X2
, S(X) =

X12

(1−X4)(1−X6)
=
∑
k≥0

dimSkXk.

Observe that

1 + E(X)Y

1− O(X)Y + S(X)Y 2 − S(X)Y 4

= 1 + (E(X) + O(X))Y +
((

E(X) + O(X)
)
O(X)− S(X)

)
Y 2 + · · · .
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6© Bonus - Formal double zeta space

In 2006 Gangl, Kaneko and Zagier introduced for k ≥ 1 the formal double zeta space in weight k as

Dk =
〈
Zk, Zk1,k2 , Pk1,k2 | k1 + k2 = k, k1, k2 ≥ 1

〉
Q
/

(1)

where they divide out the following relations for k1, k2 ≥ 1

Pk1,k2 = Zk1,k2 + Zk2,k1 + Zk1+k2

=
∑

l1+l2=k1+k2

((
l1 − 1

k1 − 1

)
+

(
l1 − 1

k2 − 1

))
Zl1,l2 .

(1)
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6© Bonus - Formal double zeta space

Proposition

For all k ≥ 1 the following gives aQ-linear mapDk → Gf

Zk 7−→ G(k)− δk,2 G(2) ,

Zk1,k2 7−→ G(k1, k2) +
1

2

(
δk2,1 G

(
k1
1

)
− δk1,1 G

(
k2
1

)
+ δk1,2 G

(
k2 + 1

1

))
,

Pk1,k2 7−→ G(k1) G(k2) +
1

2

(
δk1,2 G

(
k2 + 1

1

)
+ δk2,2 G

(
k1 + 1

1

))
.
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6© Bonus - Action of Gl2(Z) - 1

The double shuffle relations for formal multiple Eisenstein series in lowest depth are

P

(
X1, X2

Y1, Y2

)
= G

(
X1, X2

Y1, Y2

)
+ G

(
X2, X1

Y2, Y1

)
+

G
(

X1

Y1+Y2

)
−G

(
X2

Y1+Y2

)
X1 −X2

= G

(
X1 +X2, X2

Y1, Y2 − Y1

)
+ G

(
X1 +X2, X1

Y2, Y1 − Y2

)
+

G
(
X1+X2

Y1

)
−G

(
X1+X2

Y2

)
Y1 − Y2

(2)

with P
(
X1,X2

Y1,Y2

)
= G

(
X1

Y1

)
G
(
X2

Y2

)
. Define the action of the group ring Z[Gl2(Z)] on the formal Laurent series

L = Q〈A〉((X1, X2, Y1, Y2)) for γ =

(
a b
c d

)
∈ Gl2(Z) andR ∈ L by

R|γ

(
X1, X2

Y1, Y2

)
= R

(
aX1 + bX2, cX1 + dX2

det(γ)(dY1 − cY2), det(γ)(−bY1 + aY2)

)
and then extend it linearly to all elements in Z[Gl2(Z)].
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6© Bonus - Action of Gl2(Z) - 2

Now define the following elements in Gl2(Z)

σ =

(
−1 0
0 −1

)
, ε =

(
0 1
1 0

)
, δ =

(
−1 0
0 1

)
,

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
, U =

(
1 −1
1 0

)
.

The equation (2) then becomesP = G |(1 + ε) +R∗ = G| T (1 + ε) +R� with

R∗
(
X1, X2

Y1, Y2

)
=

G
(

X1

Y1+Y2

)
−G

(
X2

Y1+Y2

)
X1 −X2

, R�
(
X1, X2

Y1, Y2

)
=

G
(
X1+X2

Y1

)
−G

(
X1+X2

Y2

)
Y1 − Y2

.

Lemma

ForA = εUε we have

G | (1− σ) = P |(1− δ)(1 +A− SA2)− (R∗ −R� | (T−1ε)) |(1 +A+A2) .

Considering the coefficients in above Lemma gives the Theorem on products of G.
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6© Bonus - Combinatorial MES explicit

Theorem (B.-Kühn-Matthes 2020+, B.-Burmester 2020+)

The following series are swap invariant and their coefficients satisfy the quasi-shuffle product

G

(
X1

Y1

)
= β

(
X1

Y1

)
+ g

(
X1

Y1

)
,

G

(
X1, X2

Y1, Y2

)
= β

(
X1, X2

Y1, Y2

)
− β

(
X1 −X2

Y2

)
g

(
X1

Y1 + Y2

)
− 1

2
g

(
X1

Y1 + Y2

)
+ β

(
X2

Y2

)
g

(
X1

Y1

)
+ β

(
X1 −X2

Y1

)
g

(
X2

Y1 + Y2

)
+ g

(
X1, X2

Y1, Y2

)
.

Here β is a rational realization ofZ f, such that the depth one objects are exactly the constant terms of the

Eisenstein seriesGk and

g

(
X1, . . . , Xr

Y1, . . . , Yr

)
=

∑
m1>···>mr>0
n1,...,nr>0

r∏
j=1

eXjnj+Yjmjqmjnj .
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