Formal quasi－modular forms

Henrik Bachmann

名古屋大学

j．w．J．W．van Ittersum，Annika Burmester，Ulf Kühn \＆Nils Matthes

Ghidorah principle

One object with three different point of views

A real picture of ghidorah

Modular Ghidorah

Riemann zeta Ghidorah

Multiple zeta Ghidorah

Overview

Plan of this talk

1 Modular forms

$\stackrel{\&}{\&}$
Double shuffle relations
Multiple Eisenstein series

Formal multiple Eisenstein series
4 \& formal quasi modular forms \& formal multiple zeta values

Realizations

(1) Modular forms - Definition

Complex upper half plane: $\mathbb{H}=\{x+i y \in \mathbb{C} \mid x, y \in \mathbb{R}, y>0\}$.

Definition

A holomorphic function $f \in \mathcal{O}(\mathbb{H})$ is called a modular form of weight $k \in \mathbb{Z}$ if it satisfies

- $f(\tau+1)=f(\tau)$,
- $f\left(-\frac{1}{\tau}\right)=\tau^{k} f(\tau)$,
for all $\tau \in \mathbb{H}$ and if it has a Fourier expansion of the form

$$
f(\tau)=\sum_{n=0}^{\infty} a_{n} q^{n} . \quad\left(a_{n} \in \mathbb{C}, q=e^{2 \pi i \tau}\right)
$$

- \mathcal{M}_{k} : space of all modular forms of weight k.
- The space of cusp forms of weight k is defined by

$$
\mathcal{S}_{k}=\left\{f \in \mathcal{M}_{k} \mid f=\sum_{\mathrm{n}=1}^{\infty} a_{n} q^{n}\right\}=\operatorname{ker} \text { (projection to const. term) }
$$

(1) Modular forms - Eisenstein series

For even $k \geq 4$ the Eisenstein series are defined by

$$
\mathbb{G}_{k}(\tau)=\frac{1}{2} \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m \tau+n)^{k}}
$$

These have a Fourier expansion of the form

$$
\mathbb{G}_{k}(\tau)=\zeta(k)+\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$ is the divisor sum.

Proposition

For every even $k \geq 4$ we have $\mathbb{G}_{k} \in \mathcal{M}_{k}, \mathcal{M}_{k}=\mathbb{C} \mathbb{G}_{k} \oplus \mathcal{S}_{k}$ and

$$
\mathcal{M}=\bigoplus_{k=0}^{\infty} \mathcal{M}_{k}=\mathbb{C}\left[\mathbb{G}_{4}, \mathbb{G}_{6}\right]
$$

(1) Modular forms - Quasi-modular forms

Are derivatives of modular forms again modular forms?... No

Define the Eisenstein series of weight two by

$$
\mathbb{G}_{2}(\tau)=\zeta(2)+(-2 \pi i)^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

and the space of quasi-modular forms by (see Kimura-sans talk)

$$
\widetilde{\mathcal{M}}=\mathbb{C}\left[\mathbb{G}_{2}, \mathbb{G}_{4}, \mathbb{G}_{6}\right] .
$$

(1) Modular forms - Cusp forms

The first non-trivial cusp form is the discriminant function Δ

$$
\begin{aligned}
\Delta(\tau) & =q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=q-24 q^{2}+252 q^{3}-1472 q^{4}+\ldots, \\
& =2400 \cdot 6!\cdot G_{4}(\tau)^{3}-420 \cdot 7!\cdot G_{6}(\tau)^{2},
\end{aligned}
$$

where

$$
G_{k}(\tau)=(2 \pi i)^{-k} \mathbb{G}_{k}(\tau)=-\frac{B_{k}}{2 k!}+\frac{1}{(k-1)!} \sum_{n>0} \sigma_{k-1}(n) q^{n}
$$

Theorem

For $k \geq 0$ the $\operatorname{map} \mathcal{M}_{k} \rightarrow \mathcal{S}_{k+12}$ given by $f \mapsto \Delta \cdot f$ is an isomorphism of \mathbb{C}-vector spaces.

(2) MZV \& DSH - Definition

Definition

For $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1$ define the multiple zeta value (MZV)

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{R}
$$

By r we denote its depth and $k_{1}+\cdots+k_{r}$ will be called its weight.

- $\mathcal{Z}: \mathbb{Q}$-algebra of MZVs
- $\mathcal{Z}_{k}: \mathbb{Q}$-vector space of MZVs of weight k.

MZVs can also be written as iterated integrals, e.g.

$$
\zeta(2,3)=\int_{0}^{1} \frac{d t_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{1-t_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{t_{3}} \int_{0}^{t_{3}} \frac{d t_{4}}{t_{4}} \int_{0}^{t_{4}} \frac{d t_{5}}{1-t_{5}} .
$$

(2) MZV \& DSH - Harmonic \& shuffle product

There are two different ways to express the product of MZV in terms of MZV.
Harmonic product (coming from the definition as iterated sums)
Example in depth two ($k_{1}, k_{2} \geq 2$)

$$
\begin{aligned}
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right) & =\sum_{m>0} \frac{1}{m^{k_{1}}} \sum_{n>0} \frac{1}{n^{k_{2}}} \\
& =\sum_{m>n>0} \frac{1}{m^{k_{1}} n^{k_{2}}}+\sum_{n>m>0} \frac{1}{m^{k_{1}} n^{k_{2}}}+\sum_{m=n>0} \frac{1}{m^{k_{1}+k_{2}}} \\
& =\zeta\left(k_{1}, k_{2}\right)+\zeta\left(k_{2}, k_{1}\right)+\zeta\left(k_{1}+k_{2}\right)
\end{aligned}
$$

Shuffle product (coming from the expression as iterated integrals)

Example in depth two ($k_{1}, k_{2} \geq 2$)

$$
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right)=\sum_{j=2}^{k_{1}+k_{2}-1}\left(\binom{j-1}{k_{1}-1}+\binom{j-1}{k_{2}-1}\right) \zeta\left(j, k_{1}+k_{2}-j\right)
$$

(2) MZV \& DSH - Double shufile relations

These two product expressions give various \mathbb{Q}-linear relations between MZV.

Example

$$
\begin{gathered}
\zeta(2) \cdot \zeta(3) \stackrel{\text { harmonic }}{=} \zeta(2,3)+\zeta(3,2)+\zeta(5) \\
\stackrel{\text { shuffle }}{=} \zeta(2,3)+3 \zeta(3,2)+6 \zeta(4,1) \\
\Longrightarrow 2 \zeta(3,2)+6 \zeta(4,1) \stackrel{\text { double shuffle }}{=} \zeta(5)
\end{gathered}
$$

But there are more relations between MZV. e.g.:

$$
\sum_{m>n>0} \frac{1}{m^{2} n}=\zeta(2,1)=\zeta(3)=\sum_{m>0} \frac{1}{m^{3}}
$$

These follow from regularizing the double shuffle relations
$\rightsquigarrow e x t e n d e d$ double shuffle relations.

(2) MZV \& DSH - Relations conjectures

Conjecture
All relations among MZVs are consequences of the extended double shuffle relations.

Conjecture

The space \mathcal{Z} is graded by weight, i.e.

$$
\mathcal{Z}=\bigoplus_{k \geq 0} \mathcal{Z}_{k}
$$

- There are various different families of relations which conjecturally give all relations among MZV.
- There are several "modular phenomena", e.g. Broadhurst-Kreimer conjecture (see bonus slides)

(3) Multiple Eisenstein series - An order on lattices

Let $\tau \in \mathbb{H}$. We define an order \succ on the lattice $\mathbb{Z} \tau+\mathbb{Z}$ by setting

$$
\lambda_{1} \succ \lambda_{2}: \Leftrightarrow \lambda_{1}-\lambda_{2} \in P
$$

for $\lambda_{1}, \lambda_{2} \in \mathbb{Z} \tau+\mathbb{Z}$ and the following set of positive lattice points

$$
P:=\{m \tau+n \in \mathbb{Z} \tau+\mathbb{Z} \mid m>0 \vee(m=0 \wedge n>0)\}=U \cup R
$$

In other words: $\lambda_{1} \succ \lambda_{2}$ iff λ_{1} is above or on the right of λ_{2}.

(3) Multiple Eisenstein series - Multiple Eisenstein series

Definition

For integers $k_{1} \geq 3, k_{2}, \ldots, k_{r} \geq 2$, we define the multiple Eisenstein series by

$$
\mathbb{G}_{k_{1}, \ldots, k_{r}}(\tau)=\sum_{\substack{\lambda_{1} \succ \cdots \succ \lambda_{r} \succ 0 \\ \lambda_{i} \in \mathbb{Z} \tau+\mathbb{Z}}} \frac{1}{\lambda_{1}^{k_{1}} \cdots \lambda_{r}^{k_{r}}}
$$

It is easy to see that these are holomorphic functions in the upper half plane and that they fulfill the harmonic product, i.e. it is for example

$$
\mathbb{G}_{4}(\tau) \cdot \mathbb{G}_{3}(\tau)=\mathbb{G}_{4,3}(\tau)+\mathbb{G}_{3,4}(\tau)+\mathbb{G}_{7}(\tau)
$$

(3) Multiple Eisenstein series - Fourier expansion

Definition

For $k_{1}, \ldots k_{r} \geq 1$ we define the q-series $g\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Q}[[q]]$ by

$$
g\left(k_{1}, \ldots, k_{r}\right)=\sum_{\substack{m_{1}>\cdots>m_{r}>0 \\ n_{1}, \ldots, n_{r}>0}} \frac{n_{1}^{k_{1}-1}}{\left(k_{1}-1\right)!} \cdots \frac{n_{r}^{k_{r}-1}}{\left(k_{r}-1\right)!} q^{m_{1} n_{1}+\cdots+m_{r} n_{r}}
$$

Theorem (Gangl-Kaneko-Zagier $2006(r=2)$, B. $2012(r \geq 2)$)
The multiple Eisenstein series $\mathbb{G}_{k_{1}, \ldots, k_{r}}(\tau)$ have a Fourier expansion of the form

$$
\mathbb{G}_{k_{1}, \ldots, k_{r}}(\tau)=\zeta\left(k_{1}, \ldots, k_{r}\right)+\sum_{n>0} a_{n} q^{n} \quad\left(q=e^{2 \pi i \tau}\right)
$$

and they can be written explicitly as a $\mathcal{Z}[2 \pi i]$-linear combination of q-analogues of multiple zeta values g. In particular, $a_{n} \in \mathcal{Z}[2 \pi i]$.

(3) Multiple Eisenstein series - Fourier expansion

Theorem (Gangl-Kaneko-Zagier 2006 ($r=2$), B. 2012 ($r \geq 2$))
The multiple Eisenstein series $\mathbb{G}_{k_{1}, \ldots, k_{r}}(\tau)$ have a Fourier expansion of the form

$$
\mathbb{G}_{k_{1}, \ldots, k_{r}}(\tau)=\zeta\left(k_{1}, \ldots, k_{r}\right)+\sum_{n>0} a_{n} q^{n} \quad\left(q=e^{2 \pi i \tau}\right)
$$

and they can be written explicitly as a $\mathcal{Z}[2 \pi i]$-linear combination of q-analogues of multiple zeta values g. In particular, $a_{n} \in \mathcal{Z}[2 \pi i]$.

Examples

$$
\begin{aligned}
\mathbb{G}_{k}(\tau) & =\zeta(k)+(-2 \pi i)^{k} g(k) \\
\mathbb{G}_{3,2}(q) & =\zeta(3,2)+3 \zeta(3)(-2 \pi i)^{2} g(2)+2 \zeta(2)(-2 \pi i)^{3} g(3)+(-2 \pi i)^{5} g(3,2)
\end{aligned}
$$

(3) Multiple Eisenstein series - Extended definitions

There are different ways to extend the definition of $\mathbb{G}_{k_{1}, \ldots, k_{r}}$ to $k_{1}, \ldots, k_{r} \geq 1$

- Formal double zeta space realization $\mathbb{G}_{r, s}$ (Gangl-Kaneko-Zagier, 2006)

$$
\begin{aligned}
\mathbb{G}_{k_{1}} & \cdot \mathbb{G}_{k_{2}}+\left(\delta_{k_{1}, 2}+\delta_{k_{2}, 2}\right) \frac{\mathbb{G}_{k_{1}+k_{2}-2}^{\prime}}{2\left(k_{1}+k_{2}-2\right)}=\mathbb{G}_{k_{1}, k_{2}}+\mathbb{G}_{k_{2}, k_{1}}+\mathbb{G}_{k_{1}+k_{2}} \\
& =\sum_{j=2}^{k_{1}+k_{2}-1}\left(\binom{j-1}{k_{1}-1}+\binom{j-1}{k_{2}-1}\right) \mathbb{G}_{j, k_{1}+k_{2}-j}, \quad\left(k_{1}+k_{2} \geq 3\right) .
\end{aligned}
$$

- Finite double shuffle version $\mathbb{G}_{r, s}$ (Kaneko, 2007).
- Shuffle regularized multiple Eisenstein series $\mathbb{G}_{k_{1}, \ldots, k_{r}}^{\amalg}$ (B.-Tasaka, 2017).
- Harmonic regularized multiple Eisenstein series $\mathbb{G}_{k_{1}, \ldots, k_{r}}^{*}$ (B., 2019).

Observation

- No version of these objects satisfy the double shuffle relations for all indices/weights.
- The derivative is always somewhere as an extra term.

Multiple Eisenstein series 部

(4) Formal MES - Alphabet

Define the alphabet A by

$$
A=\left\{\left.\left[\begin{array}{l}
k \\
d
\end{array}\right] \right\rvert\, k \geq 1, d \geq 0\right\}
$$

On $\mathbb{Q} A$ we define the product \diamond for $k_{1}, k_{2} \geq 1$ and $d_{1}, d_{2} \geq 0$ by

$$
\left[\begin{array}{l}
k_{1} \\
d_{1}
\end{array}\right] \diamond\left[\begin{array}{l}
k_{2} \\
d_{2}
\end{array}\right]=\left[\begin{array}{l}
k_{1}+k_{2} \\
d_{1}+d_{2}
\end{array}\right]
$$

This gives a commutative non-unital \mathbb{Q}-algebra $(\mathbb{Q} A, \diamond)$.

(4) Formal MES - Quasi-shuffile product

Definition

Define the quasi-shuffle product $*$ on $\mathbb{Q}\langle A\rangle$ as the \mathbb{Q}-bilinear product, which satisfies $1 * w=w * 1=w$ for any word $w \in \mathbb{Q}\langle A\rangle$ and

$$
a w * b v=a(w * b v)+b(a w * v)+(a \diamond b)(w * v)
$$

for any letters $a, b \in A$ and words $w, v \in \mathbb{Q}\langle A\rangle$.

Proposition

$(\mathbb{Q}\langle A\rangle, *)$ is a commutative \mathbb{Q}-algebra.

(4) Formal MES - Quasi-shufile product

- For $k_{1}, \ldots, k_{r} \geq 1, d_{1}, \ldots, d_{r} \geq 0$ we use the following notation to write words in $\mathbb{Q}\langle A\rangle$:

$$
\left[\begin{array}{c}
k_{1}, \ldots, k_{r} \\
d_{1}, \ldots, d_{r}
\end{array}\right]:=\left[\begin{array}{l}
k_{1} \\
d_{1}
\end{array}\right] \ldots\left[\begin{array}{l}
k_{r} \\
d_{r}
\end{array}\right] .
$$

- weight: $k_{1}+\cdots+k_{r}$
- depths: r

In smallest depths the quasi-shuffle product is given by

$$
\begin{aligned}
{\left[\begin{array}{l}
k_{1} \\
d_{1}
\end{array}\right] *\left[\begin{array}{l}
k_{2} \\
d_{2}
\end{array}\right] } & =\left[\begin{array}{l}
k_{1}, k_{2} \\
d_{1}, d_{2}
\end{array}\right]+\left[\begin{array}{l}
k_{2}, k_{1} \\
d_{2}, d_{1}
\end{array}\right]+\left[\begin{array}{l}
k_{1}+k_{2} \\
d_{1}+d_{2}
\end{array}\right], \\
{\left[\begin{array}{l}
k_{1} \\
d_{1}
\end{array}\right] *\left[\begin{array}{l}
k_{2}, k_{3} \\
d_{2}, d_{3}
\end{array}\right] } & =\left[\begin{array}{l}
k_{1}, k_{2}, k_{3} \\
d_{1}, d_{2}, d_{3}
\end{array}\right]+\left[\begin{array}{l}
k_{2}, k_{1}, k_{3} \\
d_{2}, d_{1}, d_{3}
\end{array}\right]+\left[\begin{array}{l}
k_{2}, k_{3}, k_{1} \\
d_{2}, d_{3}, d_{1}
\end{array}\right]+\left[\begin{array}{l}
k_{1}+k_{2}, k_{3} \\
d_{1}+d_{2}, d_{3}
\end{array}\right]+\left[\begin{array}{l}
k_{1}, k_{2}+k_{3} \\
d_{1}, d_{2}+d_{3}
\end{array}\right] .
\end{aligned}
$$

(4) Formal MES - Generating series of words

We define in depth $r \geq 1$ by the following formal power series in $\mathbb{Q}\langle A\rangle\left[\left[X_{1}, Y_{1}, \ldots, X_{r}, Y_{r}\right]\right]$

$$
\mathfrak{A}\binom{X_{1}, \ldots, X_{r}}{Y_{1}, \ldots, Y_{r}}:=\sum_{\substack{k_{1}, \ldots, k_{r} \geq 1 \\
d_{1}, \ldots, d_{r} \geq 0}}\left[\begin{array}{c}
k_{1}, \ldots, k_{r} \\
d_{1}, \ldots, d_{r}
\end{array}\right] X_{1}^{k_{1}-1} \ldots X_{r}^{k_{r}-1} \frac{Y_{1}^{d_{1}}}{d_{1}!} \ldots \frac{Y_{r}^{d_{r}}}{d_{r}!} .
$$

With this the quasi-shuffle product in smallest depths reads

$$
\mathfrak{A}\binom{X_{1}}{Y_{1}} * \mathfrak{A}\binom{X_{2}}{Y_{2}}=\mathfrak{A}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}+\mathfrak{A}\binom{X_{2}, X_{1}}{Y_{2}, Y_{1}}+\frac{\mathfrak{A}\binom{X_{1}}{Y_{1}+Y_{2}}-\mathfrak{A}\binom{X_{2}}{Y_{1}+Y_{2}}}{X_{1}-X_{2}} .
$$

(4) Formal MES - Conjugation of Young diagrams

The conjugation of a Young diagram with $X_{1} Y_{1}+\cdots+X_{r} Y_{r}$ boxes and r stairs:

(4) Formal MES - Swap = Conjugation of the variables in the gen. series

Definition

We define the swap as the linear map $\sigma: \mathbb{Q}\langle A\rangle \rightarrow \mathbb{Q}\langle A\rangle$ by $\sigma(1)=1$ and for $r \geq 1$ on the generators of $\mathbb{Q}\langle A\rangle$ by

$$
\sigma\left(\mathfrak{A}\binom{X_{1}, \ldots, X_{r}}{Y_{1}, \ldots, Y_{r}}\right):=\mathfrak{A}\binom{Y_{1}+\cdots+Y_{r}, \ldots, Y_{1}+Y_{2}, Y_{1}}{X_{r}, X_{r-1}-X_{r}, \ldots, X_{1}-X_{2}}
$$

where σ is applied coefficient-wise on the left, i.e. $\sigma\left(\left[\begin{array}{c}k_{1}, \ldots, k_{r} \\ d_{1}, \ldots, d_{r}\end{array}\right]\right)$ is defined as the coefficient of $X_{1}^{k_{1}-1} \ldots X_{r}^{k_{r}-1} \frac{Y_{1}^{d_{1}}}{d_{1}!} \ldots \frac{Y_{r}^{d_{r}}}{d_{r}!}$ on the right-hand side.

$$
\sigma\left(\left[\begin{array}{l}
k \\
d
\end{array}\right]\right)=\frac{d!}{(k-1)!}\left[\begin{array}{l}
d+1 \\
k-1
\end{array}\right], \quad(k \geq 1, d \geq 0)
$$

(4) Formal MES - Definition

Define S as the ideal in $(\mathbb{Q}\langle A\rangle, *)$ generated by all $\sigma(w)-w$ for $w \in \mathbb{Q}\langle A\rangle$, i.e.

$$
S=\langle\sigma(w)-w \mid w \in \mathbb{Q}\langle A\rangle\rangle_{\mathbb{Q}} * \mathbb{Q}\langle A\rangle
$$

Definition

The algebra of formal multiple Eisenstein series is defined by

$$
\mathcal{G}^{\mathfrak{f}}=\mathbb{Q}\langle A\rangle / S
$$

and we denote the class of a word $\left[\begin{array}{l}k_{1}, \ldots, k_{r} \\ d_{1}, \ldots, d_{r}\end{array}\right]$ by $\mathrm{G}\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}$.

(4) Formal MES - Generating series

We obtain a commutative \mathbb{Q}-algebra $\left(\mathcal{G}^{\mathfrak{f}}, *\right)$, where each element is swap invariant. We write

$$
\mathfrak{G}\binom{X_{1}, \ldots, X_{r}}{Y_{1}, \ldots, Y_{r}}:=\sum_{\substack{k_{1}, \ldots, k_{r} \geq 1 \\ d_{1}, \ldots, d_{r} \geq 0}} \mathrm{G}\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}} X_{1}^{k_{1}-1} \ldots X_{r}^{k_{r}-1} \frac{Y_{1}^{d_{1}}}{d_{1}!} \ldots \frac{Y_{r}^{d_{r}}}{d_{r}!} .
$$

Since the formal multiple Eisenstein series are swap invariant and their product is given by $*$ we have in particular

$$
\begin{aligned}
\mathfrak{G}\binom{X_{1}}{Y_{1}} & =\mathfrak{G}\binom{Y_{1}}{X_{1}}, \\
\mathfrak{G}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}} & =\mathfrak{G}\binom{Y_{1}+Y_{1}, Y_{1}}{X_{2}, X_{1}-X_{2}}, \\
\mathfrak{G}\binom{X_{1}}{Y_{1}} * \mathfrak{G}\binom{X_{2}}{Y_{2}} & =\mathfrak{G}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}+\mathfrak{G}\binom{X_{2}, X_{1}}{Y_{2}, Y_{1}}+\frac{\mathfrak{G}\binom{X_{1}}{Y_{1}+Y_{2}}-\mathfrak{G}\binom{X_{2}}{Y_{1}+Y_{2}}}{X_{1}-X_{2}} .
\end{aligned}
$$

All relations we will present in this talk are consequences of the three relations above.

(4) Formal MES - The derivation ∂

Let $\partial:(\mathbb{Q} A, \diamond) \rightarrow(\mathbb{Q} A, \diamond)$ be the derivation defined for $k \geq 1, d \geq 0$ by

$$
\partial\left(\left[\begin{array}{l}
k \\
d
\end{array}\right]\right)=k\left[\begin{array}{l}
k+1 \\
d+1
\end{array}\right]
$$

This gives a derivation on $\mathbb{Q}\langle A\rangle$ (with respect to the concatenation product), defined by

$$
\partial\left(\left[\begin{array}{l}
k_{1}, \ldots, k_{r} \\
d_{1}, \ldots, d_{r}
\end{array}\right]\right)=\sum_{j=1}^{r} k_{j}\left[\begin{array}{l}
k_{1}, \ldots, k_{j}+1, \ldots, k_{r} \\
d_{1}, \ldots, d_{j}+1, \ldots, d_{r}
\end{array}\right] .
$$

(4) Formal MES - The derivation ∂

Lemma

- ∂ is a derivation on $(\mathbb{Q}\langle A\rangle, *)$.
- The derivation ∂ commutes with the swap, i.e. $\partial \sigma=\sigma \partial$.

Theorem

∂ is a derivation on $\left(\mathcal{G}^{\mathfrak{f}}, *\right)$.

$$
\partial\left(\mathrm{G}\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}\right)=\sum_{j=1}^{r} k_{j} \mathrm{G}\binom{k_{1}, \ldots, k_{j}+1, \ldots, k_{r}}{d_{1}, \ldots, d_{j}+1, \ldots, d_{r}} .
$$

(4) Formal MES - $\mathfrak{s l}_{2}$-action

Conjecture

There exist a unique derivation \mathfrak{d} on $(\mathbb{Q}\langle A\rangle, *)$ such that

- \mathfrak{d} commutes with σ.
- The triple $(\partial, W, \mathfrak{d})$ satisfies the commutation relations of an $\mathfrak{s l}_{2}$-triple, i.e.

$$
[W, \partial]=2 \partial, \quad[W, \mathfrak{d}]=-2 \mathfrak{d}, \quad[\mathfrak{d}, \partial]=W
$$

where W is the weight operator, multiplying a word $\left[\begin{array}{l}k_{1}, \ldots, k_{r} \\ d_{1}, \ldots, d_{r}\end{array}\right]$ by its weight $k_{1}+\ldots+k_{r}+d_{1}+\ldots+d_{r}$.

This would imply an $\mathfrak{s l}_{2}$-action on $\mathcal{G}^{\mathfrak{f}}$. In depth one this derivation seems to be given by

$$
\mathfrak{d} \mathrm{G}\binom{k}{d}=d \mathrm{G}\binom{k-1}{d-1}-\frac{1}{2} \delta_{k+d, 2}
$$

which correspond to the classical derivation for quasi-modular forms (the derivative with respect to G_{2}).

(4) Formal MES - Double shuffile relations

On $\mathbb{Q}\langle A\rangle$ we can define another product w by $w \mathrm{w} v=\sigma(\sigma(w) * \sigma(v))$ for $w, v \in \mathbb{Q}\langle A\rangle$. For any $f, g \in \mathcal{G}^{\mathfrak{f}}$ we have $f \amalg g-f * g=0$.

Proposition

For $k_{1}, k_{2} \geq 1, d_{1}, d_{2} \geq 0$ we have

$$
\begin{aligned}
& \mathrm{G}\binom{k_{1}}{d_{1}} \mathrm{G}\binom{k_{2}}{d_{2}}=\mathrm{G}\binom{k_{1}, k_{2}}{d_{1}, d_{2}}+\mathrm{G}\binom{k_{2}, k_{1}}{d_{2}, d_{1}}+\mathrm{G}\binom{k_{1}+k_{2}}{d_{1}+d_{2}} \\
&= \sum_{\substack{l_{1}+l_{2}=k_{1}+k_{2} \\
e_{1}+e_{2}=d_{1}+d_{2}}}\left(\binom{l_{1}-1}{k_{1}-1}\binom{d_{1}}{e_{1}}(-1)^{d_{1}-e_{1}}+\binom{l_{1}-1}{k_{2}-1}\binom{d_{2}}{e_{1}}(-1)^{d_{2}-e_{1}}\right) \mathrm{G}\binom{l_{1}, l_{2}}{e_{1}, e_{2}} \\
&+\frac{d_{1}!d_{2}!}{\left(d_{1}+d_{2}+1\right)!}\binom{k_{1}+k_{2}-2}{k_{1}-1} \mathrm{G}\binom{k_{1}+k_{2}-1}{d_{1}+d_{2}+1},
\end{aligned}
$$

where we sum over all $l_{1}, l_{2} \geq 1$ and $e_{1}, e_{2} \geq 0$ in the second expression
The special case $d_{1}=d_{2}=0$ is similar to the double shuffle relations of MZV.

(4) Formal MES - $\mathrm{G}\left(k_{1}, \ldots, k_{r}\right)$

Most of the relations we will obtain are among G, where the bottom entries are zero. For shorter notation we will denote these for $k_{1}, \ldots, k_{r} \geq 1$ by

$$
\mathrm{G}\left(k_{1}, \ldots, k_{r}\right):=\mathrm{G}\binom{k_{1}, \ldots, k_{r}}{0, \ldots, 0} .
$$

Instead of $*$ we will just write products of G (i.e. this will not denote the concatenation of words)

Example

$$
\begin{aligned}
\mathrm{G}(2) \mathrm{G}(3) & =\mathrm{G}(2,3)+\mathrm{G}(3,2)+\mathrm{G}(5) \\
& =\mathrm{G}(2,3)+3 \mathrm{G}(3,2)+6 \mathrm{G}(4,1)+3 \mathrm{G}\binom{4}{1} .
\end{aligned}
$$

Compare this to the previous example of multiple zeta values. Also notice: $3 \mathrm{G}\binom{4}{1}=\partial \mathrm{G}(3)$.

(4) Formal MES - Consequences of the double shuffle relations

Theorem (B.-van Ittersum 2021+)

For all $k_{1}, k_{2} \geq 1$ with $k=k_{1}+k_{2} \geq 4$ even we have

$$
\begin{aligned}
\frac{1}{2}\left(\binom{k_{1}+k_{2}}{k_{2}}-(-1)^{k_{1}}\right) \mathrm{G}(k)= & \sum_{\substack{j=2 \\
j \text { even }}}^{k-2}\left(\binom{k-j-1}{k_{1}-1}+\binom{k-j-1}{k_{2}-1}-\delta_{j, k_{1}}\right) \mathrm{G}(j) \mathrm{G}(k-j) \\
& +\frac{1}{2}\left(\binom{k-3}{k_{1}-1}+\binom{k-3}{k_{2}-1}+\delta_{k_{1}, 1}+\delta_{k_{2}, 1}\right) \mathrm{G}\binom{k-1}{1}
\end{aligned}
$$

Proof sketch:

- Define an action of the group ring $\mathbb{Z}\left[\mathrm{Gl}_{2}(\mathbb{Z})\right]$ on the generating series in depth two.
- Above equality follows by describing the double shuffle relations in terms of this action together with some identities in $\mathbb{Z}\left[\mathrm{Gl}_{2}(\mathbb{Z})\right]$.
(See bonus slides for details)

(4) Formal MES-Recursive formulas for formal Eisenstein series

Corollary

- For even $k \geq 4$ we have

$$
\frac{k+1}{2} \mathrm{G}(k)=\mathrm{G}\binom{k-1}{1}+\sum_{\substack{k_{1}+k_{2}=k \\ k_{1}, k_{2} \geq 2 \text { even }}} \mathrm{G}\left(k_{1}\right) \mathrm{G}\left(k_{2}\right) .
$$

- For all even $k \geq 6$ we have

$$
\frac{(k+1)(k-1)(k-6)}{12} \mathrm{G}(k)=\sum_{\substack{k_{1}+k_{2}=k \\ k_{1}, k_{2} \geq 4 \text { even }}}\left(k_{1}-1\right)\left(k_{2}-1\right) \mathrm{G}\left(k_{1}\right) \mathrm{G}\left(k_{2}\right) .
$$

Example

$$
\mathrm{G}(8)=\frac{6}{7} \mathrm{G}(4)^{2}, \quad \mathrm{G}(10)=\frac{10}{11} \mathrm{G}(4) \mathrm{G}(6), \quad \mathrm{G}(12)=\frac{84}{143} \mathrm{G}(4) \mathrm{G}(8)+\frac{50}{143} \mathrm{G}(6)^{2} .
$$

(4) Formal MES - An analogue of Eulers relation

Notice that for $k \geq 3$ we have $\frac{1}{k-2} \mathrm{G}\binom{k-1}{1}=\partial \mathrm{G}(k-2)=\mathrm{G}^{\prime}(k-2)$.

Corollary

- For $m \geq 1$ we have $\mathrm{G}(2 m) \in \mathbb{Q}\left[\mathrm{G}(2), \mathrm{G}^{\prime}(2), \mathrm{G}^{\prime \prime}(2)\right]=\mathbb{Q}[\mathrm{G}(2), \mathrm{G}(4), \mathrm{G}(6)]$ and

$$
\mathrm{G}(2 m)=-\frac{B_{2 m}}{2(2 m)!}(-24 \mathrm{G}(2))^{m}+\text { terms with } \mathrm{G}^{\prime}(2) \text { and } \mathrm{G}^{\prime \prime}(2) .
$$

- For $m \geq 2$ we have $\mathrm{G}(2 m) \in \mathbb{Q}[\mathrm{G}(4), \mathrm{G}(6)]$.

Compare the first part with the formula by Euler for Riemann zeta values: $\zeta(2 m)=-\frac{B_{2 m}}{2(2 m)!}(-24 \zeta(2))^{m}$.

Example

$$
\begin{aligned}
& \mathrm{G}(4)=\frac{2}{5} \mathrm{G}(2)^{2}+\frac{1}{5} \mathrm{G}^{\prime}(2), \\
& \mathrm{G}(6)=\frac{8}{35} \mathrm{G}(2)^{3}+\frac{6}{35} \mathrm{G}(2) \mathrm{G}^{\prime}(2)+\frac{1}{70} \mathrm{G}^{\prime \prime}(2)
\end{aligned}
$$

(4) Formal MES - The subspace $\widehat{\mathcal{G}}^{\dagger}$

$$
\widehat{\mathcal{G}}^{\dagger}=\mathbb{Q}+\left\langle\mathrm{G}\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 1, k_{1}, \ldots, k_{r} \geq 1\right\rangle_{\mathbb{Q}} \subset \mathcal{G}^{\dagger} .
$$

By the definition of the quasi-shuffle product, it is easy to see that $\left(\widehat{\mathcal{G}}^{\dagger}, *\right)$ is a subalgebra of $\left(\mathcal{G}^{\mathfrak{f}}, *\right)$. Applying ∂ to the generators of $\widehat{\mathcal{G}}^{\dagger}$ gives

$$
\partial\left(\mathrm{G}\left(k_{1}, \ldots, k_{r}\right)\right)=\sum_{j=1}^{r} k_{j} \mathrm{G}\binom{k_{1}, \ldots, k_{j}+1, \ldots, k_{r}}{0, \ldots, 1, \ldots, 0}
$$

Proposition (B.-van Ittersum 2021+)

$\widehat{\mathcal{G}}^{\mathrm{f}}$ is closed under ∂.

Conjecture

We have $\widehat{\mathcal{G}}^{\mathfrak{f}}=\mathcal{G}^{\mathrm{f}}$.

(4) Formal MZV - Motivation

Question

What are the "constant terms" of formal multiple Eisenstein series?

- To define formal cusp forms, we want to determine the projection onto the constant term of formal multiple Eisenstein series.
- This leads to the question of which relations are additionally satisfied for MZV compared to MES.
- This will give a definition of formal multiple zeta values.
- The following construction is motivated/inspired by a conjectural construction of combinatorial multiple Eisenstein series together with their behavior as $q \rightarrow 1$.

(4) Formal MZV - The ideal N and P

We define the following two subsets of the alphabet A

$$
A_{0}=\left\{\left.\left[\begin{array}{l}
k \\
0
\end{array}\right] \right\rvert\, k \geq 1\right\}, \quad A^{1}=\left\{\left.\left[\begin{array}{l}
1 \\
d
\end{array}\right] \right\rvert\, d \geq 0\right\}
$$

With this we define the following ideal in $(\mathbb{Q}\langle A\rangle, *)$ generated by the set $A^{*} \backslash\left(A^{1}\right)^{*}\left(A_{0}\right)^{*}$

$$
N=\left(A^{*} \backslash\left(A^{1}\right)^{*}\left(A_{0}\right)^{*}\right)_{\mathbb{Q}\langle A\rangle}
$$

The elements in $A^{*} \backslash\left(A^{1}\right)^{*}\left(A_{0}\right)^{*}$ are exactly those elements which are not of the form

$$
\left[\begin{array}{l}
1, \ldots, 1, k_{1}, \ldots, k_{r} \\
d_{1}, \ldots, d_{s}, 0, \ldots, 0
\end{array}\right] .
$$

In addition to the ideal N, we define the following ideal:

$$
P=\left\langle\left.\left[\begin{array}{l}
1, \ldots, 1, k_{1}, \ldots, k_{r} \\
d_{1}, \ldots, d_{s}, 0, \ldots, 0
\end{array}\right]-\left[\begin{array}{c}
1, \ldots, 1 \\
d_{1}, \ldots, d_{s}
\end{array}\right] *\left[\begin{array}{c}
k_{1}, \ldots, k_{r} \\
0, \ldots, 0
\end{array}\right] \right\rvert\, d_{s} \geq 1, k_{1} \geq 2\right\rangle_{\mathbb{Q}} * \mathbb{Q}\langle A\rangle
$$

(4) Formal MZV - Definition

Definition

The algebra of formal multiple zeta values is defined by

$$
\mathcal{Z}^{\mathfrak{f}}=\mathcal{G}^{\mathfrak{f}} /(N+P) .
$$

We denote the canonical projection by

$$
\pi: \mathcal{G}^{\mathfrak{f}} \longrightarrow \mathcal{Z}^{\dagger} .
$$

This map can be seen as the formal version of the "projection onto the constant term".

Claim: The ideals N and P capture the additional relations satisfied by multiple zeta values, which are not satisfied by multiple Eisenstein series.

(4) Formal MZV - Definition

Proposition (B.-van Ittersum 2021+)
The map $\pi_{\mid \widehat{\mathcal{G}}^{\mathfrak{f}}}: \widehat{\mathcal{G}}^{\mathrm{f}} \rightarrow \mathcal{Z}^{\mathfrak{f}}$ is surjective.

Definition

For $k_{1}, \ldots, k_{r} \geq 1$ we define the formal multiple zeta value $\zeta^{\mathfrak{f}}\left(k_{1}, \ldots, k_{r}\right)$ by

$$
\zeta^{\mathfrak{f}}\left(k_{1}, \ldots, k_{r}\right)=\pi\left(\mathrm{G}\left(k_{1}, \ldots, k_{r}\right)\right) .
$$

Proposition

We have $\partial \mathcal{G}^{\mathfrak{f}} \subset \operatorname{ker}(\pi)$.

Corollary

- (Double shuffle relations in depth two) For $k_{1}, k_{2} \geq 1$ we have

$$
\begin{aligned}
\zeta^{\mathfrak{f}}\left(k_{1}\right) \zeta^{\mathfrak{f}}\left(k_{2}\right) & =\zeta^{\mathfrak{f}}\left(k_{1}, k_{2}\right)+\zeta^{\mathfrak{f}}\left(k_{2}, k_{1}\right)+\zeta^{\mathfrak{f}}\left(k_{1}+k_{2}\right) \\
& =\sum_{l_{1}+l_{2}=k_{1}+k_{2}}\left(\binom{l_{1}-1}{k_{1}-1}+\binom{l_{1}-1}{k_{2}-1}\right) \zeta^{\mathfrak{f}}\left(l_{1}, l_{2}\right)+\delta_{k_{1}+k_{2}, 2} \zeta^{\mathfrak{f}}(2) .
\end{aligned}
$$

In particular we obtain the relation $\zeta^{\mathfrak{f}}(3)=\zeta^{\mathfrak{f}}(2,1)$ by taking $k_{1}=1, k_{2}=2$.

- (Euler relation) For $m \geq 1$ we have

$$
\zeta^{\mathfrak{f}}(2 m)=-\frac{B_{2 m}}{2(2 m)!}\left(-24 \zeta^{\mathfrak{f}}(2)\right)^{m}
$$

(4) Formal MZV - Extended double shuffle relations

Theorem (B.-Kühn-Matthes 2021+)

The formal multiple zeta values satisfy the extended double shuffle relations.

- Our formal multiple zeta values should be isomorphic (after switching to the shuffle regularization) to the classical definition of formal multiple zeta values (Racinet).
- There is a $1: 1$ correspondence between objects satisfying the extended double shuffle relations and the objects satisfying the relations in $\mathcal{Z}^{\mathfrak{f}}$.

In contrast to the analytic case, we start by defining formal quasi-modular forms before formal modular forms.

Definition

We define the algebra of formal quasi-modular forms $\widetilde{\mathcal{M}}^{\mathfrak{f}}$ as the smallest subalgebra of $\mathcal{G}^{\mathfrak{f}}$ which satisfies the following two conditions

- $\mathrm{G}(2) \in \widetilde{\mathcal{M}}^{\dagger}$.
- $\widetilde{\mathcal{M}}^{\mathfrak{f}}$ is closed under ∂.

(4) Formal (quasi) modular forms - Basic facts

Proposition (Seen for the classical case in Kawasetsu-sans talk)

- We have $\widetilde{\mathcal{M}}^{\mathfrak{j}}=\mathbb{Q}[\mathrm{G}(2), \mathrm{G}(4), \mathrm{G}(6)]=\mathbb{Q}\left[\mathrm{G}(2), \mathrm{G}^{\prime}(2), \mathrm{G}^{\prime \prime}(2)\right]$.
- The Ramanujan differential equations are satisfied:

$$
\begin{aligned}
\mathrm{G}^{\prime}(2) & =5 \mathrm{G}(4)-2 \mathrm{G}(2)^{2} \\
\mathrm{G}^{\prime}(4) & =8 \mathrm{G}(6)-14 \mathrm{G}(2) \mathrm{G}(4) \\
\mathrm{G}^{\prime}(6) & =\frac{120}{7} \mathrm{G}(4)^{2}-12 \mathrm{G}(2) \mathrm{G}(6)
\end{aligned}
$$

- The Chazy equation is satisfied

$$
\mathrm{G}^{\prime \prime \prime}(2)+24 \mathrm{G}(2) \mathrm{G}^{\prime \prime}(2)-36 \mathrm{G}^{\prime}(2)^{2}=0 .
$$

$$
\frac{k+1}{2} \mathrm{G}(k)=\mathrm{G}\binom{k-1}{1}+\sum_{\substack{k_{1}+k_{2}=k \\ k_{1}, k_{2}>2 \text { even }}} \mathrm{G}\left(k_{1}\right) \mathrm{G}\left(k_{2}\right) .
$$

(4) Formal (quasi) modular forms - formal modular forms \& cusp forms

Definition

- The algebra of formal modular forms $\mathcal{M}^{\mathfrak{f}}$ is defined as the subalgebra of $\mathcal{G}^{\mathfrak{f}}$ generated by all $\mathrm{G}(k)$ with $k \geq 4$ even. (Alternative definition: $\mathcal{M}^{\mathfrak{f}}=\operatorname{ker} \mathfrak{d}_{\mid \widetilde{\mathcal{M}}^{\mathfrak{f}}}$)
- We define the algebra of formal cusp forms by $\mathcal{S}^{\mathfrak{f}}=\operatorname{ker} \pi_{\mid \mathcal{M}^{\mathfrak{f}}}$.

The first example of a non-zero formal cusp form appears in weight 12 and we write

$$
\Delta^{\mathfrak{f}}=2400 \cdot 6!\cdot \mathrm{G}(4)^{3}-420 \cdot 7!\cdot \mathrm{G}(6)^{2}
$$

Proposition

- We have $\mathcal{M}^{\mathfrak{f}}=\mathbb{Q}[\mathrm{G}(4), \mathrm{G}(6)]$ and $\mathcal{M}_{k}^{\mathfrak{f}}=\mathbb{Q} \mathrm{G}(k) \oplus \mathcal{S}_{k}^{\mathfrak{f}}$.
- We have $\Delta^{\mathfrak{f}} \in \mathcal{S}_{12}^{\mathfrak{f}}$ and $\partial \Delta^{\mathfrak{f}}=-24 \mathrm{G}(2) \Delta^{\mathfrak{f}}$.

$$
\frac{1}{432} \Delta^{\mathrm{f}}=48 \mathrm{G}(2)^{2} \mathrm{G}^{\prime}(2)^{2}+32 \mathrm{G}^{\prime}(2)^{3}-32 \mathrm{G}(2)^{3} \mathrm{G}^{\prime \prime}(2)-24 \mathrm{G}(2) \mathrm{G}^{\prime}(2) \mathrm{G}^{\prime \prime}(2)-\mathrm{G}^{\prime \prime}(2)^{2}
$$

Besides the mentioned basic facts we are also working on the following:

- Connection to the formal double zeta space of Gangl, Kaneko \& Zagier. (see bonus slides)
- Rankin-Cohen brackets (see Kimura-sans talk) as a consequence of the $\mathfrak{S l}_{2}$-action on $\widetilde{\mathcal{M}}^{\mathfrak{f}}$.
- A formal version of "vanishing order at $i \infty$ " by considering the kernels of

$$
\pi_{a}: \mathcal{G}^{\mathfrak{f}} \longrightarrow \mathcal{G}^{\mathfrak{f}} /(N+P)^{a}, \quad(a \geq 1)
$$

- Miller basis, Dimension formulas.

Not clear: How to formalize other important structures, such as Hecke operators?

(5) Realizations - Definition

Definition

Let A be a (differential) \mathbb{Q}-algebra. A realization of $\mathcal{G}^{\mathfrak{f}}$ in A is an (differential) algebra homomorphism

$$
\varphi: \mathcal{G}^{\mathfrak{f}} \longrightarrow A
$$

- $A=\mathbb{R}$: Multiple zeta values (derivation = zero map).
- $A=\mathbb{Q}$: Rational solution to extended double shuffle.
- $A=\mathbb{Q}[[q]]$: Combinatorial multiple Eisenstein series (derivation $=q \frac{d}{d q}$).
- $A=\mathcal{O}(\mathbb{H})$: ("Analytical") multiple Eisenstein series (derivation $\left.=(2 \pi i) \frac{d}{d \tau}\right)$.

(5) Realizations - Multiple zeta values I

Theorem (B.-Kühn-Matthes 2021+)

For any field A of characteristic zero, there exist a realization of $\mathcal{G}^{\mathfrak{f}}$ in A, which factors through π.

- This follows from the fact that we know that for any field A of characteristic zero, there exists a solution to the extended double shuffle relations.
- For $A=\mathbb{R}$ these are given, for example, by (harmonic regularized) multiple zeta values.
- For $A=\mathbb{Q}$, there is no explicit construction known so far for depth ≥ 4.

(5) Realizations - Multiple zeta values II

Definition

For $k_{1}, \ldots k_{r} \geq 1, d_{1}, \ldots, d_{r} \geq 0$ define the q-series

$$
g\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}=\sum_{\substack{m_{1}>\cdots>m_{r}>0 \\ n_{1}, \ldots, n_{r}>0}} \frac{m_{1}^{d_{1}} n_{1}^{k_{1}-1}}{\left(k_{1}-1\right)!} \cdots \frac{m_{r}^{d_{r}} n_{r}^{k_{r}-1}}{\left(k_{r}-1\right)!} q^{m_{1} n_{1}+\cdots+m_{r} n_{r}}
$$

Theorem (B.-van Ittersum 2021+)

The following gives a realization of $\mathcal{G}^{\boldsymbol{f}}$ in \mathbb{R}

$$
\varphi: \mathrm{G}\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}} \longmapsto \lim _{q \rightarrow 1}^{*}(1-q)^{k_{1}+\cdots+k_{r}+d_{1}+\cdots+d_{r}} g\binom{k_{1}, \ldots, k_{r}}{d_{1}, \ldots, d_{r}}
$$

where $\lim _{q \rightarrow 1}^{*}$ is a "(harmonic) regularized limit". This realization factors through π and we have

$$
\varphi\left(\mathrm{G}\left(k_{1}, \ldots, k_{r}\right)\right)=\zeta^{*}\left(k_{1}, \ldots, k_{r}\right) .
$$

(5) Realizations-Combinatorial MES

$$
\begin{aligned}
\mathfrak{G}\binom{X_{1}}{Y_{1}} & =\mathfrak{G}\binom{Y_{1}}{X_{1}}, \quad \mathfrak{G}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}=\mathfrak{G}\binom{Y_{1}+Y_{1}, Y_{1}}{X_{2}, X_{1}-X_{2}}, \\
\mathfrak{G}\binom{X_{1}}{Y_{1}} \mathfrak{G}\binom{X_{2}}{Y_{2}} & =\mathfrak{G}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}+\mathfrak{G}\binom{X_{2}, X_{1}}{Y_{2}, Y_{1}}+\frac{\mathfrak{G}\binom{X_{1}}{Y_{1}+Y_{2}}-\mathfrak{G}\left(\begin{array}{l}
X_{1}+Y_{2}
\end{array}\right)}{X_{1}-X_{2}} .
\end{aligned}
$$

Theorem (B.-Kühn-Matthes 2021+, B.-Burmester 2021+)

There exist power series $\mathfrak{G}\binom{Y_{1}}{X_{1}}, \mathfrak{G}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}} \in \mathbb{Q}[[q]]\left[\left[X_{1}, X_{2}, Y_{1}, Y_{2}\right]\right]$ which satisfy the above equations and where the coefficients of $\mathfrak{G}\binom{Y_{1}}{X_{1}}$ are given by (derivatives of) Eisenstein series. (See bonus slides)

- This gives combinatorial proofs of the classical identities for quasi-modular forms.
- There exists a construction for depth ≥ 3, which conjecturally gives a realization of $\mathcal{G}^{\mathfrak{f}}$. See the talkslides of Annika Burmesters talk "Combinatorial multiple Eisenstein series" at the JENTE Seminar (https://sites.google.com/view/jente-seminar/home).

(6) Bonus-Broadhurst-Kreimer conjecture

$\operatorname{gr}_{r}^{\mathrm{D}} \mathcal{Z}_{k}$: MZV of weight k and depth r modulo lower depths MZV.
Conjecture (Broadhurst-Kreimer, 1997)
The generating series of the dimensions of the weight- and depth-graded parts of multiple zeta values is given by

$$
\sum_{k, r \geq 0} \operatorname{dim}_{\mathbb{Q}}\left(\operatorname{gr}_{r}^{\mathrm{D}} \mathcal{Z}_{k}\right) X^{k} Y^{r}=\frac{1+\mathrm{E}(X) Y}{1-\mathrm{O}(X) Y+\mathrm{S}(X) Y^{2}-\mathrm{S}(X) Y^{4}}
$$

where

$$
\mathrm{E}(X)=\frac{X^{2}}{1-X^{2}}, \quad \mathrm{O}(X)=\frac{X^{3}}{1-X^{2}}, \quad \mathrm{~S}(X)=\frac{X^{12}}{\left(1-X^{4}\right)\left(1-X^{6}\right)}=\sum_{k \geq 0} \operatorname{dim} \mathcal{S}_{k} X^{k}
$$

Observe that

$$
\begin{aligned}
& \frac{1+\mathrm{E}(X) Y}{1-\mathrm{O}(X) Y+\mathrm{S}(X) Y^{2}-\mathrm{S}(X) Y^{4}} \\
& =1+(\mathrm{E}(X)+\mathrm{O}(X)) Y+((\mathrm{E}(X)+\mathrm{O}(X)) \mathrm{O}(X)-\mathrm{S}(X)) Y^{2}+\cdots .
\end{aligned}
$$

(6) Bonus - Formal double zeta space

In 2006 Gangl, Kaneko and Zagier introduced for $k \geq 1$ the formal double zeta space in weight k as

$$
\mathcal{D}_{k}=\left\langle Z_{k}, Z_{k_{1}, k_{2}}, P_{k_{1}, k_{2}} \mid k_{1}+k_{2}=k, k_{1}, k_{2} \geq 1\right\rangle_{\mathbb{Q}} /(1)
$$

where they divide out the following relations for $k_{1}, k_{2} \geq 1$

$$
\begin{align*}
P_{k_{1}, k_{2}} & =Z_{k_{1}, k_{2}}+Z_{k_{2}, k_{1}}+Z_{k_{1}+k_{2}} \\
& =\sum_{l_{1}+l_{2}=k_{1}+k_{2}}\left(\binom{l_{1}-1}{k_{1}-1}+\binom{l_{1}-1}{k_{2}-1}\right) Z_{l_{1}, l_{2}} \tag{1}
\end{align*}
$$

(6) Bonus - Formal double zeta space

Proposition

For all $k \geq 1$ the following gives a \mathbb{Q}-linear map $\mathcal{D}_{k} \rightarrow \mathcal{G}^{\mathfrak{f}}$

$$
\begin{aligned}
Z_{k} & \longmapsto \mathrm{G}(k)-\delta_{k, 2} \mathrm{G}(2), \\
Z_{k_{1}, k_{2}} & \longmapsto \mathrm{G}\left(k_{1}, k_{2}\right)+\frac{1}{2}\left(\delta_{k_{2}, 1} \mathrm{G}\binom{k_{1}}{1}-\delta_{k_{1}, 1} \mathrm{G}\binom{k_{2}}{1}+\delta_{k_{1}, 2} \mathrm{G}\binom{k_{2}+1}{1}\right), \\
P_{k_{1}, k_{2}} & \longmapsto \mathrm{G}\left(k_{1}\right) \mathrm{G}\left(k_{2}\right)+\frac{1}{2}\left(\delta_{k_{1}, 2} \mathrm{G}\binom{k_{2}+1}{1}+\delta_{k_{2}, 2} \mathrm{G}\binom{k_{1}+1}{1}\right) .
\end{aligned}
$$

(6) Bonus - Action of $\mathrm{Gl}_{2}(\mathbb{Z})$ - 1

The double shuffle relations for formal multiple Eisenstein series in lowest depth are

$$
\begin{align*}
P\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}} & =\mathfrak{G}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}+\mathfrak{G}\binom{X_{2}, X_{1}}{Y_{2}, Y_{1}}+\frac{\mathfrak{G}\binom{X_{1}}{Y_{1}+Y_{2}}-\mathfrak{G}\binom{X_{2}}{Y_{1}+Y_{2}}}{X_{1}-X_{2}} \\
& =\mathfrak{G}\binom{X_{1}+X_{2}, X_{2}}{Y_{1}, Y_{2}-Y_{1}}+\mathfrak{G}\binom{X_{1}+X_{2}, X_{1}}{Y_{2}, Y_{1}-Y_{2}}+\frac{\mathfrak{G}\binom{X_{1}+X_{2}}{Y_{1}}-\mathfrak{G}\binom{X_{1}+X_{2}}{Y_{2}}}{Y_{1}-Y_{2}} \tag{2}
\end{align*}
$$

with $P\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}=\mathfrak{G}\binom{X_{1}}{Y_{1}} \mathfrak{G}\binom{X_{2}}{Y_{2}}$. Define the action of the group ring $\mathbb{Z}\left[\mathrm{Gl}_{2}(\mathbb{Z})\right]$ on the formal Laurent series $\mathcal{L}=\mathbb{Q}\langle A\rangle\left(\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right)\right)$ for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{Gl}_{2}(\mathbb{Z})$ and $R \in \mathcal{L}$ by

$$
R_{\mid \gamma}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}=R\binom{a X_{1}+b X_{2}, c X_{1}+d X_{2}}{\operatorname{det}(\gamma)\left(d Y_{1}-c Y_{2}\right), \operatorname{det}(\gamma)\left(-b Y_{1}+a Y_{2}\right)}
$$

and then extend it linearly to all elements in $\mathbb{Z}\left[\mathrm{Gl}_{2}(\mathbb{Z})\right]$.

(6) Bonus - Action of $\mathrm{Gl}_{2}(\mathbb{Z})-2$

Now define the following elements in $\mathrm{Gl}_{2}(\mathbb{Z})$

$$
\begin{aligned}
& \sigma=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad \epsilon=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \delta=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \\
& T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad U=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

The equation (2) then becomes $P=\mathfrak{G}\left|(1+\epsilon)+R^{*}=\mathfrak{G}\right| T(1+\epsilon)+R^{\amalg}$ with

$$
R^{*}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}=\frac{\mathfrak{G}\binom{X_{1}}{Y_{1}+Y_{2}}-\mathfrak{G}\binom{X_{2}}{Y_{1}+Y_{2}}}{X_{1}-X_{2}}, \quad R^{\amalg}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}=\frac{\mathfrak{G}\binom{X_{1}+X_{2}}{Y_{1}}-\mathfrak{G}\binom{X_{1}+X_{2}}{Y_{2}}}{Y_{1}-Y_{2}} .
$$

Lemma

For $A=\epsilon U \epsilon$ we have

$$
\mathfrak{G}|(1-\sigma)=P|(1-\delta)\left(1+A-S A^{2}\right)-\left(R^{*}-R^{\amalg} \mid\left(T^{-1} \epsilon\right)\right) \mid\left(1+A+A^{2}\right) .
$$

Considering the coefficients in above Lemma gives the Theorem on products of G.

(6) Bonus-Combinatorial MES explicit

Theorem (B.-Kühn-Matthes 2020+, B.-Burmester 2020+)

The following series are swap invariant and their coefficients satisfy the quasi-shuffle product

$$
\begin{aligned}
\mathfrak{G}\binom{X_{1}}{Y_{1}} & =\beta\binom{X_{1}}{Y_{1}}+\mathfrak{g}\binom{X_{1}}{Y_{1}} \\
\mathfrak{G}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}} & =\beta\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}}-\beta\binom{X_{1}-X_{2}}{Y_{2}} \mathfrak{g}\binom{X_{1}}{Y_{1}+Y_{2}}-\frac{1}{2} \mathfrak{g}\binom{X_{1}}{Y_{1}+Y_{2}} \\
& +\beta\binom{X_{2}}{Y_{2}} \mathfrak{g}\binom{X_{1}}{Y_{1}}+\beta\binom{X_{1}-X_{2}}{Y_{1}} \mathfrak{g}\binom{X_{2}}{Y_{1}+Y_{2}}+\mathfrak{g}\binom{X_{1}, X_{2}}{Y_{1}, Y_{2}} .
\end{aligned}
$$

Here β is a rational realization of $\mathcal{Z}^{\mathfrak{f}}$, such that the depth one objects are exactly the constant terms of the Eisenstein series G_{k} and

$$
\mathfrak{g}\binom{X_{1}, \ldots, X_{r}}{Y_{1}, \ldots, Y_{r}}=\sum_{\substack{m_{1}>\cdots>m_{r}>0 \\ n_{1}, \ldots, n_{r}>0}} \prod_{j=1}^{r} e^{X_{j} n_{j}+Y_{j} m_{j}} q^{m_{j} n_{j}}
$$

