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Introduction

This thesis studies a specific connection of multiple zeta values and modular forms given by
multiple Eisenstein series. It is a cumulative thesis consisting of four works, [BK],[BT],[Ba2]
and [BK2], that can be found in the appendices A, B, C and D respectively. This text
is an example-driven overview and summary of the results obtained in these works. It
is intended to be submitted as a survey article in the Proceedings of the 2014 ICMAT
Research Trimester "Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field
Theory". It shall serve as an introduction and motivation for the above mentioned papers1.
Most of the proofs of the main theorems therefore will be omitted.

Multiple zeta values are real numbers that are natural generalizations of the Riemann zeta
values. These are defined for integers s1 ≥ 2 and s2, . . . , sl ≥ 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1
ns1

1 . . . nsll
.

Such real numbers were already studied by Euler in the cases l = 1 and l = 2 in the
18th century. Because of their occurrence in various fields of mathematics and theoretical
physics, the multiple zeta values had a comeback in the mathematical and physical research
community in the late 1990s due to works by several people such as D. Broadhurst, F.
Brown, P. Deligne, H. Furusho, A. Goncharov, M. Hoffman, M. Kaneko, D. Zagier et al..
Denote the Q-vector space of all multiple zeta values of weight k by

MZk :=
〈
ζ(s1, . . . , sl)

∣∣∣ s1 + · · ·+ sl = k and l > 0
〉
Q

and writeMZ for the space of all multiple zeta values. It is of central interest to understand
the Q-linear relations between these numbers. The first one is given by ζ(2, 1) = ζ(3) and
several ways are known to prove this relation ([BB]). Using the representation of multiple

1The versions in the appendix are the most recent ones and may differ from those available in the arxiv.
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Introduction

zeta values as an ordered sum as above, their product can be written as a linear combination
of multiple zeta values of the same weight, i.e. the space MZ has the structure of a Q-
algebra. For example it is

ζ(2) · ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5) , (0.1)

ζ(3) · ζ(2, 1) = ζ(3, 2, 1) + ζ(2, 3, 1) + ζ(2, 1, 3) + ζ(5, 1) + ζ(2, 4) . (0.2)

This way to express the product, which will be studied in Chapter 1 in more detail, is
called the stuffle product (also named harmonic product). Besides this, a representation
of multiple zeta values as iterated integrals yields another way to express the product of
two multiple zeta values, which is called the shuffle product. For the above examples, this
is given by

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) , (0.3)

ζ(3) · ζ(2, 1) = ζ(2, 1, 3) + ζ(2, 2, 2) + 2ζ(2, 3, 1) + 2ζ(3, 1, 2) + 5ζ(3, 2, 1) + 9ζ(4, 1, 1) .
(0.4)

Since (0.1) and (0.3) are two different expressions for the product ζ(2) · ζ(3), we obtain
the linear relation ζ(5) = 2ζ(3, 2) + 6ζ(4, 1). These relations are called the double shuffle
relations. Conjecturally all Q-linear relations between multiple zeta values can be proven
by using an extended version of these types of relations. Often relations between multiple
zeta values are not proven by using double shuffle relations, since there are easier ways to
prove them in some cases. The relation ζ(4) = ζ(2, 1, 1) for example, has an easy proof
using the iterated integral expressions for multiple zeta values. A famous result of Euler
is that every even zeta value ζ(2k) is a rational multiple of π2k. For example, we have

ζ(2)2 = 5
2ζ(4) , ζ(4)2 = 7

6ζ(8) , ζ(6)2 = 715
691ζ(12) . (0.5)

The relations (0.5) can also be proven using the double shuffle relations, but for general k
there is no explicit proof of Eulers relations using only double shuffle relations so far.
Since the double shuffle relations preserve the weight it is conjectured that the spaceMZ
is a direct sum of the MZk, i.e. there are no relations between multiple zeta values of
different weight.
Surprisingly, there are several connections of these numbers to modular forms for the full
modular group SL2(Z). Recall that modular forms are holomorphic functions in the com-
plex upper half-plane fulfilling certain functional equations. One of the most famous con-
nections between multiple zeta values and modular forms is established by the Broadhurst-
Kreimer conjecture.
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Conjecture 1. (Broadhurst-Kreimer conjecture) The generating series of the dimension
dimQ (MZk,l) of weight k multiple zeta values of length l modulo lower lengths can be
written as

∑

k≥0
l≥0

dimQ (MZk,l)XkY l = 1 + E(X)Y
1−O(X)Y + S(X)Y 2 − S(X)Y 4 ,

where
E(X) = X2

1−X2 , O(X) = X3

1−X2 , S(X) = X12

(1−X4)(1−X6) .

The connection to modular forms arises here, since S(X) = ∑
k≥0 dimSk(SL2(Z))Xk is the

generating function of the dimensions of cusp forms for the full modular group. In the
formula of the Broadhurst-Kreimer conjecture, one can see that cusp forms give rise to
relations between double zeta values, i.e. multiple zeta values in the length l = 2 case. For
example in weight 12, the first weight in which non-trivial cusp forms exist, there is the
following famous relation

5197
691 ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) . (0.6)

Even thoug our focus does not lie on the Broadhurst-Kreimer conjecture, the concept
of obtaining relations of multiple zeta values by cusp forms also appears in our context
of multiple Eisenstein series and q-analogues of multiple zeta values. It is known that
every modular form for the full modular group can be written as a polynomial in classical
Eisenstein series. These are for even k > 0 given by

Gk(τ) = 1
2

∑

(m,n)∈Z2

(m,n) 6=(0,0)

1
(mτ + n)k = ζ(k) + (−2πi)k

(k − 1)!

∞∑

n=1
σk−1(n)qn ,

where τ ∈ H is an element in the upper half-plane, q = exp(2πiτ) and σk(n) = ∑
d|n d

k

denotes the classical divisor-sum. In [GKZ] the authors introduced a direct connection of
modular forms to double zeta values. They defined double Eisenstein series Gs1,s2 ∈ C[[q]]
which are a length two generalization of classical Eisenstein series and which are given
by a double sum over ordered lattice points. These functions have a Fourier expansion
given by sums of products of multiple zeta values and certain q-series with the double
zeta value ζ(s1, s2) as their constant term. In [Ba], the author treated the multiple cases
and calculated the Fourier expansion of multiple Eisenstein series Gs1,...,sl ∈ C[[q]]. The
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result of [Ba] was that the Fourier expansion of multiple Eisenstein series is again aMZ-
linear combination of multiple zeta values and the q-series gt1,...,tm ∈ C[[q]] defined by
gt1,...,tm(τ) := (−2πi)t1+···+tm [t1, . . . , tm] with q = e2πiτ and

[t1, . . . , tm] :=
∑

u1>···>um>0
v1,...,vm>0

vt1−1
1 . . . vtm−1

m

(t1 − 1)! . . . (tm − 1)! · q
u1v1+···+umvm .

Theorem 2. ([Ba]) For s1, . . . , sl ≥ 2 the multiple Eisenstein series Gs1,...,sl can be written
as aMZ-linear combination of the above functions gt1,...,tm .

For example:

G3,2,2(τ) =ζ(3, 2, 2) +
(54

5 ζ(2, 3) + 51
5 ζ(3, 2)

)
g2(τ) + 16

3 ζ(2, 2)g3(τ)

+ 3ζ(3)g2,2(τ) + 4ζ(2)g3,2(τ) + g3,2,2(τ) .

The starting point of this thesis was the fact that there are more multiple zeta values
than multiple Eisenstein series, since ζ(s1, . . . , sl) exists for all s1 ≥ 2, s2, . . . , sl ≥ 1 and
the Gs1,...,sl just exists when all sj ≥ 2. The main objective was to answer the following
question

Question 1. What is a "good" definition of a "regularized" multiple Eisenstein series, such
that for each multiple zeta value ζ(s1, . . . , sl) with s1 > 1,s2, . . . , sl ≥ 1 there is a q-series

Greg
s1,...,sl

= ζ(s1, . . . , sl) +
∑

n>0
anq

n ∈ C[[q]]

with this multiple zeta value as the constant term in its Fourier expansion and which equals
the multiple Eisenstein series in the cases s1, . . . , sl ≥ 2?

By "good" we mean that these regularized multiple Eisenstein series should have the same,
or at least as close as possible, algebraic structure similar to multiple zeta values. Our
answer to this question was approached in several steps which will be described in the
following i)-iii). First i) the algebraic structure of the functions g was studied. During this
investigation, it turned out, that these objects, or more precisely the q-series [s1, . . . , sl]
are very interesting objects in their own right. It turned out that in order to understand
their algebraic structure it was necessary to study a more general class of q-series, called
bi-brackets in ii). The results on bi-brackets and brackets then were used, together with a
beautiful connection of the multiple Eisenstein series to the coproduct structure of formal
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iterated integrals, to answer the above question in iii).

i) To answer Question 1, the algebraic structure of the functions g, or more precisely the
algebraic structure of the q-series [s1, . . . , sl], was studied in [BK]. It turned out that
these q-series, whose coefficients are given by weighted sums over partitions of n, are,
independently of their appearance in the Fourier expansion of multiple Eisenstein series,
very interesting objects in their own right. We will denote the Q-vector space spanned by all
these brackets and the constant 1 byMD. Since we also include the rational numbers, the
normalized Eisenstein series G̃k(τ) := (−2πi)−kGk(τ) are contained inMD. For example,
we have

G̃2 = − 1
24 + [2] , G̃4 = 1

1440 + [4] , G̃6 = − 1
60480 + [6] .

The algebraic structure of the spaceMD was studied in [BK] and one of the main results
was the following

Theorem 3. ([BK]) The Q-vector space spanned by all brackets, equipped with the usual
multiplication of formal q-series, is a Q-algebra, containing the algebra of modular forms
with rational coefficients as a subalgebra.

In fact, the product satisfies a quasi-shuffle product and the notion of quasi-shuffle products
will be made precise in Section 2.1. Roughly speaking, this means that the product of two
brackets can be expressed as a linear combination of brackets similar to the stuffle product
(0.1),(0.2) of multiple zeta values. For example we will see that

[2] · [3] = [3, 2] + [2, 3] + [5]− 1
12[3] ,

[3] · [2, 1] = [3, 2, 1] + [2, 3, 1] + [2, 1, 3] + [5, 1] + [2, 4] + 1
12[2, 2]− 1

2[2, 3]− 1
12[3, 1] ,

i.e. up to the lower weight term − 1
12 [3] and 1

12 [2, 2] − 1
2 [2, 3] − 1

12 [3, 1] this looks exactly
like (0.1),(0.2). One might ask if there is also a product structure, which corresponds to
the shuffle product (0.3) of multiple zeta values. It turned out that for the lowest length
case, this has to do with the differential operator d = q d

dq
. In [BK], it was shown that

[2] · [3] = [2, 3] + 3[3, 2] + 6[4, 1]− 3[4] + d[3] , (0.7)

which, again up to the term −3[4] + d[3], looks exactly like the shuffle product (0.3) of
multiple zeta values. In particular it follows that d[3] is again in the space MD and in
general it was shown that
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Theorem 4. ([BK]) The operator d = q d
dq

is a derivation onMD.

ii) Equation (0.7) above was the motivation to study a larger class of q-series, which will be
called bi-brackets. While the quasi-shuffle product of brackets also exists in higher length,
the second expression for the product, corresponding to the shuffle product, does not appear
in higher length if one just allows derivatives as "error terms". The bi-brackets can be seen
as a generalization of the derivative of brackets. For s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0 we define
these bi-brackets by

[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur1
1
r1! . . .

urll
rl!
· vs1−1

1 . . . vsl−1
l

(s1 − 1)! . . . (sl − 1)! · q
u1v1+···+ulvl ∈ Q[[q]] .

In the case r1 = · · · = rl = 0 these are just ordinary brackets. The products of these
seemingly larger class of q-series have two representations similar to the stuffle and shuffle
product of multiple zeta values in arbitrary length. For our example, the analog of the
shuffle product (0.4) for brackets can now be expressed as

[3] · [2, 1] = [2, 1, 3] + [2, 2, 2] + 2[2, 3, 1] + 2[3, 1, 2] + 5[3, 2, 1] + 9[4, 1, 1]

+
[
2, 3
0, 1

]
+ 2

[
3, 2
0, 1

]
+ 3

[
4, 1
1, 0

]
− [2, 3]− 2[3, 2]− 6[4, 1] .

We will see in Section 3.2 that these double shuffle structure can be described, using the
so called partition relation, in a nice combinatorial way. This gives a large family of linear
relations between bi-brackets. In fact numerical calculations show that there are so many
relations, that we have the following surprising conjecture

Conjecture 5. Every bi-bracket can be written in terms of brackets, i.e. MD = BD.

Using the algebraic structure of the space of bi-brackets, we now review the definition
of shuffle brackets [s1, . . . , sl]� and stuffle [s1, . . . , sl]∗ version of the ordinary brackets as
certain linear combination of bi-brackets as introduced in [Ba2]. These objects fulfill the
same shuffle and stuffle products as multiple zeta values respectively. Both constructions
use the theory of quasi-shuffle algebras developed by Hoffman in [H]. We summarize the
results in the following Theorem.

Theorem 6. ([Ba2])

i) The space BD spanned by all bi-brackets
[
s1,...,sl
r1,...,rl

]
forms a Q-algebra containing the

space of (quasi-)modular forms and the spaceMD of brackets as subalgebras. There
are two ways to express the product of two bi-brackets which correspond to the stuffle
and shuffle product of multiple zeta values.
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ii) There are two subalgebras MD� ⊂ BD and MD∗ ⊂ MD spanned by elements
[s1, . . . , sl]� and [s1, . . . , sl]∗ which fulfill the shuffle and stuffle products, respectively,
and which are in the length one case given by the bracket [s1].

For example, similarly to the relation between multiple zeta values above, we have

[2, 3]∗ + [3, 2]∗ + [5] = [2] · [3] = [2, 3]� + 3[3, 2]� + 6[4, 1]� .

iii) A particular reason for studying the [s1, . . . , sl]� is due to their use in the regularization
of multiple Eisenstein series, i.e. they are needed in the answer of the original Question 1.
This was implicitly done in [BT] by proving an explicit connection of the Fourier expansion
of multiple Eisenstein series to the coproduct on formal iterated integrals introduced by
Goncharov in [G]. This connection was already known to the authors of [GKZ] in the
length two case. Without knowing this connection, it was then rediscovered independently
by the authors of [BT] during a research stay of the second author at the DFG Research
training Group 1670 at the University of Hamburg in 2014. The result of this research
stay was the work [BT], in which the authors used the above-mentioned connection to
give a definition of the shuffle regularized multiple Eisenstein series. Later, the present
author combined the result of [BT] and the algebraic structure of bi-brackets to give a
more explicit definition of shuffle regularized multiple Eisenstein series using bi-brackets in
[Ba2].
Formal iterated integrals are symbols I(a0; a1, . . . , an; an+1) with aj ∈ {0, 1} that satisfy
identities like real iterated integrals. We will write I(3, 2) for I(1; 00101; 0) and we will
see that the elements of the form I(s1, . . . , sl), obtained in the same way as I(3, 2), form
a basis of the space of formal iterated integrals in which we are interested. The space of
these integrals has a Hopf algebra structure with the multiplication given by the shuffle
product and the coproduct ∆ given by an explicit formula, which we will review in Section
4.1. For example it is

∆(I(3, 2)) = 1⊗ I(3, 2) + 3I(2)⊗ I(3) + 2I(3)⊗ I(2) + I(3, 2)⊗ 1 .

Compare this with the Fourier expansion of the double Eisenstein series G3,2

G3,2(τ) = ζ(3, 2) + 3g2(τ)ζ(3) + 2g3(τ)ζ(2) + g3,2(τ) .
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Since ∆(I(s1, . . . , sl)) exists for all s1, . . . , sl ≥ 1, this comparison suggested a definition
of shuffle regularized multiple Eisenstein series G�s1,...,sl

by sending the first component of
the coproduct of I(s1, . . . , sl) to a (−2πi)-multiple of the shuffle bracket and the second
component to shuffle regularized multiple zeta values. In [BT], it was proven that this
construction returns the original multiple Eisenstein series in the cases s1, . . . , sl ≥ 2.
Together with the results on the shuffle brackets in [Ba2], we obtain the following

Theorem 7. ([BT],[Ba2]) For all s1, . . . , sl ≥ 1 there exist shuffle regularized multiple
Eisenstein series G�s1,...,sl

∈ C[[q]] with the following properties:

i) They are holomorphic functions on the upper half-plane (by setting q = exp(2πiτ)),
having a Fourier expansion with the shuffle regularized multiple zeta values as the
constant term.

ii) They fulfill the shuffle product.

iii) They can be written as a linear combination of multiple zeta values, powers of (−2πi)
and shuffle brackets [. . . ]� ∈ BD.

iv) For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G�s1,...,sl
(τ) = Gs1,...,sl(τ)

and therefore they fulfill the stuffle product in these cases.

We now study the Q-algebra spanned by the G� and its relation to multiple zeta values.
Theorem 7 iv) gives a subset of the double shuffle relations between the G�, since the
stuffle product is just fulfilled for the case s1, . . . , sl ≥ 2. A natural question is, if they
also fulfill the stuffle product when some indices sj are equal to 1. For some cases this was
proven in [Ba2]. For example, it was shown, that

G�2 ·G�2,1 = G�2,1,2 + 2G�2,2,1 +G�2,3 +G�4,1 . (0.8)

The method to prove this was to introduce stuffle regularized multiple Eisenstein series
G∗s1,...,sl

, which fulfill the stuffle product by construction and which equal the classical
multiple Eisenstein series in the s1, . . . , sl ≥ 2 cases. Since both G∗ and G� can be written
in terms of multiple zeta values and bi-brackets, it was possible to compare these two
regularization. It was shown that all G� appearing in (0.8) equal the G∗ ones, from which
this equation followed. In contrast to the shuffle regularized multiple Eisenstein series

8



the stuffle regularized ones could not be defined for all s1, . . . , sl ≥ 1. Still, we have the
following results:

Theorem 8. ([Ba2]) For all s1, . . . , sl ≥ 1 and M ≥ 1 there exists G∗,Ms1,...,sl
∈ C[[q]] with

the following properties

i) They are holomorphic functions on the upper half-plane (by setting q = exp(2πiτ))
having a Fourier expansion with the stuffle regularized multiple zeta values as the
constant term.

ii) They fulfill the stuffle product.

iii) In the case where the limit G∗s1,...,sl
:= limM→∞G∗,Ms1,...,sl

exists, the functions G∗s1,...,sl

are a linear combination of multiple zeta values, powers of (−2πi) and bi-brackets.

iv) For s1, . . . , sl ≥ 2 the G∗s1,...,sl
exist and equal the classical multiple Eisenstein series

Gs1,...,sl(τ) = G∗s1,...,sl
(τ) .

It is still an open question which of the extended double shuffle relations of multiple zeta
values also hold for the G�, or equivalently, under what circumstances the product of two
G� can be expressed using the stuffle product formula. Clearly there are some double
shuffle relations which cannot hold for multiple Eisenstein series. For example not all of
the Euler relations (0.5) are fulfilled, since G2

2 is not a multiple of G4 as G2 is not modular
and G2

6 is not a multiple of G12 as there are cusp forms in weight 12. In Section 4.3, we will
explain this failure in terms of the double shuffle relations which are satisfied by multiple
Eisenstein series.

From the discussion above, we believe that Question 1 got a satisfying answer given by the
regularized multiple Eisenstein series G� and G∗. In order to go back from multiple Eisen-
stein series to multiple zeta values, one can consider the projection to the constant term.
But there is another direct connection of brackets, and therefore also of the subalgebra of
modular forms, to multiple zeta values. The brackets can be seen as a q-analogue of multi-
ple zeta values. A q-analogue of multiple zeta values is said to be a q-series which gives back
multiple zeta values in the case q → 1. Define for k ∈ N the map Zk : Q[[q]] → R ∪ {∞}
by

Zk(f) = lim
q→1

(1− q)kf(q) .
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Proposition 9. ([BK, Prop. 6.4]) For s1 ≥ 2 and s2, . . . , sl ≥ 1 the map Zk sends a
bracket to the corresponding multiple zeta value, i.e.

Zk ([s1, . . . , sl]) =



ζ(s1, . . . , sl) , s1 + · · ·+ sl = k,

0 , s1 + · · ·+ sl < k .

Since every relation of multiple zeta values in a given weight k is, by Proposition 9, in the
kernel of the map Zk, this kernel was studied in [BK] with the following result

Theorem 10. ([BK, Thm. 1.13])

i) For any f ∈MD which can be written as a linear combination of brackets with weight
≤ k − 2, we have d f ∈ kerZk.

ii) Any cusp form for SL2(Z) of weight k is in the kernel of Zk.

We give an example for Theorem 10 ii): Using the theory of brackets (Corollary 2.13) we
can prove for the cusp form ∆ = q

∏
n>0 (1− qn)24 ∈ S12(SL2(Z)) the representation

− 1
26 · 5 · 691∆ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1
1408[2]− 83

14400[4] + 187
6048[6]− 7

120[8]− 5197
691 [12] . (0.9)

Letting Z12 act on both sides of (0.9) one obtains a new proof for the relation (0.6), i.e.,
5197
691 ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) .

Another reason for studying the enlargement of the brackets given by the bi-brackets is
the following: In weight 4 one has the relation of multiple zeta values ζ(4) = ζ(2, 1, 1), i.e.
it is [4] − [2, 1, 1] ∈ kerZ4. But this element can’t be written as a linear combination of
cusp forms, lower weight brackets or derivatives. But one can show, by using the double
shuffle relations of bi-brackets, that

[4]− [2, 1, 1] = 1
2 (d[1] + d[2])− 1

3[2]− [3] +
[
2, 1
1, 0

]
(0.10)

and
[

2,1
1,0

]
∈ kerZ4. The description of the kernel of the map Zk was in fact our first motiva-

tion to study the bi-brackets. Equation (0.10) is also an example for the above mentioned
Conjecture 5, since it shows that the bi-bracket

[
2,1
1,0

]
can be written in terms of brackets

and therefore is an element inMD.
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Outlook and related work

In the following paragraphs a.)-g.) we would like to mention some related works and give
an outlook to open questions.

a.) There are still a lot of open questions concerning multiple Eisenstein series as well as
the space of (bi-)brackets. After the above mentioned works [BK],[Ba2] and [BT], we now
have a good definition of regularized multiple Eisenstein series given by the G�. For the
structure of the space spanned by these series there are still several open questions, for
example

i) What exactly is the failure of the stuffle product for the G� and when does it hold?

ii) For which indices s1, . . . , sl ∈ N do we have G�s1,...,sr(τ) = G∗s1,...,sr(τ)? Is there an ex-
plicit connection between these two regularizations similar to the regularized multiple
zeta values given by the map ρ in [IKZ]?

iii) What is the dimension of the space of (shuffle) regularised multiple Eisenstein series?
Is there an explicit basis similar to the Hoffman basis of multiple zeta values (which
is given by all multiple zeta values ζ(s1, . . . , sl) with sj ∈ {2, 3})?

iv) Which linear combinations of multiple Eisenstein series are modular forms for SL2(Z)?
Is there an explicit way to describe the failure of modularity?

v) Is the space of multiple Eisenstein series closed under the derivative d = q d
dq

?

vi) What is the kernel of the projection to the constant term? Does it consist of more
than derivatives and cusp forms?

vii) Is there a general theory behind the connection of the Fourier expansion of multiple
Eisenstein series and the Goncharov coproduct? Can we equip the space of multiple
Eisenstein series with a coproduct structure in a useful way?

Especially the last question seems to be interesting since the connection to the coproduct
of formal iterated integrals is quite mysterious and it seems that there might be a geometric
interpretation for this connection.

11
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b.) Several q-analogues of multiple zeta values were studied in recent years (see for exam-
ple [Zh],[Ta],[MMEF],[OOZ]). These q-analogues often have a product structure similar to
the stuffle product of multiple zeta values. In order to obtain something which corresponds
to the shuffle product one usually needs to modify the space and add extra elements. In
contrast, the bi-brackets have a nice algebraic structure, since they have analogues for
both products in a very natural way which therefore gives a lot of linear relations similar
to the double shuffle relations. Numerical experiments suggest that every bi-bracket can
be written as a linear combination of brackets and therefore (conjecturally) every relation
of bi-brackets gives rise to relations between multiple zeta values by applying the map Zk.

c.) In the case of multiple zeta values, one way to give upper bounds for the dimension
is to study the double shuffle space ([IKZ], [IO]). Similarly, one can study the partition
shuffle space

PS(k − l, l) =
{
f ∈ Q[X1, .., Xl, Y1, .., Yl]

∣∣∣ deg f = k − l, f
∣∣∣
P
− f = f

∣∣∣
Shj

= 0 ∀j
}
,

for bi-brackets, where |P is the involution given by the partition relation (see Section 3.1,
(3.1)) and |Shj is given by the sum of all shuffles of type j similar to the one in [IO]. Count-
ing the number of these polynomials, it is possible to give upper bounds for the dimensions
of the space of bi-brackets. This approach therefore enabled us to prove the conjecture
MD = BD up to weight 7 in a current work in progress ([BK3]). Therefore, considering the
space PS(k−l, l) in more detail might be crucial to understand the structure of bi-brackets.

d.) In this work we were interested in modular forms for the full modular group and
consequently studied the level 1 case. In [KT], the authors studied double Eisenstein series
and double zeta values of level 2. They also derive the Fourier expansion of these series
which involves calculations similar to the level 1 case. One result is that they derive the
dimension of the space of double Eisenstein series and give also an upper bound for the
dimension of double zeta values of level 2, which involves the dimension of the spaces of
cusp forms of level 2. Beside the work on level 2 double Eisenstein series there is also work
by H. Yuan and J.Zhao in [YZ] on level N double Eisenstein series. Later on, the same
authors also considered a level N version of the brackets in [YZ2].

e.) At the end of [KT], the authors give a proof for an upper bound of the dimension
of double zeta values in even weight. We would like to recall this result, since the results

12



presented in the present work might be able to use these ideas for higher lengths. Consider
the space spanned by all normalized double Eisenstein series (−2πi)−r−sGr,s(τ) in even
weight k = r + s. Denote by πi the projection of this space to the imaginary part. Using
the Fourier expansion of double Eisenstein series, the authors can write down the matrix
representation of πi explicitly. Together with well-known results on period polynomials
they obtain

dimQ〈ζ(r, k − r) | 2 ≤ r ≤ k − 1〉Q ≤
k

2 − 1− dimSk .

Due to the Broadhurst-Kreimer conjecture 1, it is conjectured that this is actually an
equality. The key fact here is, that it is possible to write down an explicit basis of the
imaginary part and the matrix representation of πi. In order to also obtain upper bounds
for the dimensions of multiple zeta values in higher lengths, one might try to use the exact
same method as in the length two case. The imaginary part of the (again normalized by
the factor (−2πi)−k) multiple Eisenstein series is more complicated, since it involves the
functions g in different length, where it is known that they are not linearly independent
anymore. But the algebraic structure of the g, or more precisely of the brackets [..], are
subject of the current work. It is quite possible that the results on the brackets enable one
to study the projection of the imaginary part of multiple Eisenstein series to obtain upper
bounds for the Broadhurst-Kreimer conjecture.

f.) The multiple Eisenstein series and the bi-brackets themselves also have connections to
counting problems in enumerative geometry:

i) In [AR] and [R], the author studies q-series Ak(a) ∈ Q[[q]] which arises from counting
certain types of hyperelliptic curves. One of the results is, that the Ak(q) are contained
in the ring of quasi-modular forms. The connection to the brackets is given by the fact
that Ak(q) = [2, . . . , 2︸ ︷︷ ︸

k

]. The results of [AR] can also be obtained by using an explicit

calculation of the Fourier expansion of G2,...,2 which will be done in an upcoming work
[Ba3].

ii) In [O] and [QY], the authors connect certain q-analogues of multiple zeta values to
Hilbert schemes of points on surfaces. These q-analogues are just particular linear
combinations of brackets as explained in [BK2] and Section 5.2.

iii) The coefficients of bi-brackets also occur naturally when counting flat surfaces [Zo],
i.e. certain covers of the torus.

13
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g.) There also exists different "multiple"-versions of classical Eisenstein series. One of
them is treated in [BTs], where the authors discuss the series defined by

G2p1,...,2pr(τ) =
∑

m∈Z

∑

n1∈Z
(m,n1)6=(0,0)

· · ·
∑

nr∈Z
(m,nr)6=(0,0)

r∏

j=1

1
(m+ njτ)2pj

for r ≥ 2 and p1, . . . , pr ≥ 1 and prove (Theorem 2) that

τ 2(p1+···+pr)G2p1,...,2pr(τ) ∈ Q
[
τ 2, π2, G2(τ), G4(τ), G6(τ)

]
.

The methods used to prove this statement are similar to the methods used in the calculation
of the Fourier expansion of multiple Eisenstein series. But besides this, there does not seem
to be a direct connection to the multiple Eisenstein series presented here.

Acknowledgment
First of all I would like to thank my supervisor Ulf Kühn for his continuous, encouraging
and patient support during the last years. Besides this I also want to thank several people
for supporting me during my PhD project by whether giving me suggestion and ideas,
letting me give talks on conferences and seminars, proof reading papers or having general
discussions on this topic with me. A big "thank you" goes therefore to Olivier Bouillot,
Kathrin Bringmann, David Broadhurst, Kurusch Ebrahimi-Fard, Herbert Gangl, José I.
Burgos Gil, Masanobu Kaneko, Dominique Manchon, Nils Matthes, Martin Möller, Koji
Tasaka, Don Zagier, Jianqiang Zhao and Wadim Zudilin.

14



Chapter 1

Multiple Eisenstein series

In this chapter we are going to introduce multiple zeta values and present the multiple
Eisenstein series and their Fourier expansion. Especially the construction of the Fourier
expansion of multiple Eisenstein series in Section 1.2 was rewritten for this survey. It will
be a shortened version of the construction given in [Ba] using results by Bouillot obtained
in [Bo]. This chapter is not part of the works [BK], [BK2], [BT] and [BK2]. Before we
discuss multiple Eisenstein series, we give a short review of multiple zeta values and their
algebraic structure given by the stuffle and shuffle product. In order to describe these two
products we will use quasi-shuffle algebras, introduced by Hofmann in [H], which will also
be needed later when we deal with the generating series of multiple divisor-sums (brackets)
and their generalizations given by the bi-brackets.

1.1 Multiple zeta values and quasi-shuffle algebras
Multiple zeta values are natural generalizations of the Riemann zeta values that are defined1

for integers s1 > 1 and si ≥ 1 for i > 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1
ns1

1 . . . nsll
.

We denote the Q-vector space of all multiple zeta values of weight k by

MZk :=
〈
ζ(s1, . . . , sl)

∣∣∣ s1 + · · ·+ sl = k and l > 0
〉
Q
.

1Some authors use the opposite convention 0 < n1 < · · · < nl in the definition of multiple zeta values.
This is in particular the case for the work [BT], where this opposite convention is used for multiple zeta
values and multiple Eisenstein series.
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Chapter 1. Multiple Eisenstein series

It is well known that the product of two multiple zeta values can be written as a linear
combination of multiple zeta values of the same weight by using the stuffle or shuffle
relations (See for example [IKZ], [Zu2]). Thus they generate a Q-algebraMZ. There are
several connections of these numbers to modular forms for the full modular group. In the
smallest length the stuffle product reads

ζ(s1) · ζ(s2) =
∑

n1>0

1
ns1

1

∑

n2>0

1
ns2

2

=
∑

n1>n2>0

1
ns1

1 n
s2
2

+
∑

n2>n1>0

1
ns1

1 n
s2
2

+
∑

n1=n2>0

1
ns1+s2

1

= ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2) .

For length 1 times length 2 the same argument gives

ζ(s1) · ζ(s2, s3) = ζ(s1, s2, s3) + ζ(s2, s1, s3) + ζ(s2, s3, s1)

+ ζ(s1 + s2, s3) + ζ(s2, s1 + s3) .

The second expression for the product, the shuffle product, comes from the iterated integral
expression of multiple zeta values. For example it is

ζ(2, 3) =
∫

1>t1>···>t5>0

dt1
t1
· dt2

1− t2︸ ︷︷ ︸
2

· dt3
t3
· dt4
t4
· dt5

1− t5︸ ︷︷ ︸
3

.

Multiplying two of these integrals one obtains again a linear combination of multiple zeta
values as for example

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

More generally the smallest length case is given by

ζ(s1) · ζ(s2) =
∑

a+b=s1+s2
a>1

((
a− 1
s1 − 1

)
+
(
a− 1
s2 − 1

))
ζ(a, b) . (1.1)

To describe these two product structures precisely we will use the language of quasi-shuffle
algebras as introduced in [H].

Definition 1.2. Let A (the alphabet) be a countable set of letters, QA the Q-vector
space generated by these letters and Q〈A〉 the noncommutative polynomial algebra over Q
generated by words with letters in A. For a commutative and associative product � on QA,
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1.1. Multiple zeta values and quasi-shuffle algebras

a, b ∈ A and w, v ∈ Q〈A〉 we define on Q〈A〉 recursively a product by 1� w = w � 1 = w

and
aw � bv := a(w � bv) + b(aw � v) + (a � b)(w � v) . (1.2)

By a result of Hoffman ([H, Thm. 2.1]) (Q〈A〉,�) is a commutative Q-algebra which is
called a quasi-shuffle algebra.

To describe the stuffle and the shuffle product for multiple zeta values we need to deal with
two different alphabets Axy and Az. The first alphabet is given by Axy := {x, y} and we
set H = Q〈Axy〉 and H1 = 1 ·Q+ Hy, with 1 being the empty word. It is easy to see that
H1 is generated by the elements zj = xj−1y with j ∈ N, i.e. H1 = Q〈Az〉 with the second
alphabet Az := {z1, z2, . . . }. Additionally, we define H0 = 1Q+ xHy.

i) On H1 we have the following quasi-shuffle product with respect to the alphabet Az,
called the stuffle product. We denote it by ∗ and define it as the quasi-shuffle product
with zj � zi = zj+i. For a, b ∈ N and w, v ∈ H1 we therefore have:

zaw ∗ zbv = za(w ∗ zbv) + zb(zaw ∗ v) + za+b(w ∗ v) .

By (H1, ∗) we denote the corresponding Q-algebra.

ii) On the alphabet Axy we define the shuffle product as the quasi-shuffle product with
� ≡ 0, and by (H1,�) we denote the corresponding Q-algebra.

It is easy to check that H0 is closed under both products ∗ and � and therefore we have
also the two algebras (H0, ∗) and (H0,�).
By the definition of multiple zeta values as an ordered sum and by the iterated integral
expression one obtains algebra homomorphisms Z : (H0, ∗) → MZ and Z : (H0,�) →
MZ by sending w = zs1 . . . zsl to ζ(w) = ζ(s1, . . . , sl), since the words in H0 correspond
exactly to the indices for which the multiple zeta values are defined. It is a well known
fact, that these algebra homomorphisms can be extended to H1:

Proposition 1.1. ([IKZ, Prop. 1]) There exist algebra homomorphisms

Z∗ : (H1, ∗) −→MZ and Z� : (H1,�) −→MZ ,

which are uniquely determined by Z∗(w) = Z�(w) = ζ(w) for w ∈ H0 and by their images
on the word z1, which we set 0 here, i.e. Z∗(z1) = Z�(z1) = 0.
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Chapter 1. Multiple Eisenstein series

1.3 Multiple Eisenstein series and the calculation of
their Fourier expansion

The Riemann zeta values appear as the constant term in the Fourier expansion of classical
Eisenstein series. These series are defined by

Gk(τ) = 1
2

∑

(m,n)∈Z2

(m,n)6=(0,0)

1
(mτ + n)k . (1.3)

where k > 2 is the called the weight. Splitting the summation into the parts m = 0 and
m ∈ Z\0 we obtain for even k

Gk(τ) = 1
2
∑

n6=0

1
nk

+
∞∑

m=1

(∑

n∈Z

1
(mτ + n)k

)
.

To calculate the Fourier expansion of the sum on the right, one uses the well known
Lipschitz summation formula

∑

d∈Z

1
(τ + d)k = (−2πi)k

(k − 1)!

∞∑

m=1
mk−1qm , (1.4)

which is valid for k > 1. With (1.4) we obtain

Gk(τ) = ζ(k) + (−2πi)k
(k − 1)!

∞∑

m=1

∞∑

n=1
nk−1qmn = ζ(k) + (−2πi)k

(k − 1)!

∞∑

n=1
σk−1(n)qn , (1.5)

where σk(n) = ∑
d|n d

k denote the divisor-sum. Formula (1.5) also makes sense for odd
k but does not give a modular form, since there are no non trivial modular forms of odd
weight. The sum in (1.3) vanishes for odd k, therefore instead of summing over the whole
lattice, we restrict the summation to the positive lattice points, with positivity coming
from an order on the lattice Zτ + Z. This in turn will also enable us to give an multiple
version of the Eisenstein series in an obvious way.
Let Λτ = Zτ + Z be a lattice with τ ∈ H := {x+ iy ∈ C | y > 0}. We define an order �
on Λτ by setting

λ1 � λ2 :⇔ λ1 − λ2 ∈ P

for λ1, λ2 ∈ Λτ and the following set P , which we call the set of positive lattice points

P := {lτ +m ∈ Λτ | l > 0 ∨ (l = 0 ∧m > 0)} = U ∪R
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1.3. Multiple Eisenstein series and the calculation of their Fourier expansion

l

mR

U

Definition 1.4. For s1 ≥ 3, s2, . . . , sl ≥ 2 we define themultiple Eisenstein series of weight
k = s1 + · · ·+ sl and length l by

Gs1,...,sl(τ) :=
∑

λ1�···�λl�0
λi∈Λτ

1
λs1

1 . . . λsll
.

It is easy to see that these are holomorphic functions in the upper half-plane and that they
fulfill the stuffle product, i.e. for example

G3(τ) ·G4(τ) = G4,3(τ) +G3,4(τ) +G7(τ) .

By definition it is Gs1,...,sl(τ + 1) = Gs1,...,sl(τ), i.e. there exists a Fourier expansion of
Gs1,...,sl in q = e2πiτ . To write down the Fourier expansion of multiple Eisenstein series we
need to introduce the following q-series which will be studied in detail in Section 2.1. For
s1, . . . , sl ≥ 1 we define

[s1, . . . , sl] :=
∑

u1>···>ul>0
v1,...,vl>0

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)! · q
u1v1+···+ulvl ∈ Q[[q]] .

and write gs1,...,sl(τ) := (−2πi)s1,...,sl [s1, . . . , sl], which is an holomorphic function in the
upper half-plane by setting q = e2πiτ .

Theorem 1.2. ([Ba], Fourier expansion) For s1 ≥ 3, s2, . . . , sl ≥ 2 the Gs1,...,sl(τ) can be
written as aMZ-linear combination of the functions g. More precisely there are rational
numbers λr,j ∈ Q, for r = (r1, . . . , rl) and 1 ≤ j ≤ l− 1, such that (with k = s1 + · · ·+ sl)

Gs1,...,sl(τ) = ζ(s1, . . . , sl) +
∑

1≤j≤l−1
r1+···+rl=k

λr,j · ζ(r1, . . . , rj) · grj+1,...,rl(τ) + gs1,...,sl(τ) .
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Even though the proof of this statement is the main result of [Ba] we will give a shortened
version of it in the following.
The condition s1 ≥ 3 is necessary for the absolute convergence of the sum. Nevertheless
we can also allow the case s1 = 2 by using the Eisenstein summation as it was done in
[BT] Definition 2.1. This corresponds to the usual way of defining the quasi-modular form
G2 in length one. Since the construction of the Fourier expansion described below uses
exactly this Eisenstein summation the Theorem 1.4 is also valid for s1 ≥ 2.
For example the triple Eisenstein series G3,2,2 can be written as

G3,2,2(τ) =ζ(3, 2, 2) +
(54

5 ζ(2, 3) + 51
5 ζ(3, 2)

)
g2(τ) + 16

3 ζ(2, 2)g3(τ)

+ 3ζ(3)g2,2(τ) + 4ζ(2)g3,2(τ) + g3,2,2(τ) .

To derive the Fourier expansion we introduce the following functions, that can be seen
as a multiple version of the term ∑

n∈Z
1

(x+n)k appearing in the calculation of the Fourier
expansion of classical Eisenstein series.

Definition 1.5. For s1, . . . , sl ≥ 2 we define the multitangent function of length l by

Ψs1,...,sl(x) =
∑

n1>···>nl
ni∈Z

1
(x+ n1)s1 . . . (x+ nl)sl

.

In the case l = 1 we also refer to these as monotangent function.

These functions were introduced and studied in detail in [Bo]. One of the main results
there, which is crucial for the calculation of the Fourier expansion presented here, is the
following theorem which reduces the multitangent functions into monotangent functions.

Theorem 1.3. ([Bo, Thm. 3], Reduction of multitangent into monotangent functions)
For s1, . . . , sl ≥ 2 and k = s1 + · · · + sl the multitangent function can be written as a
MZ-linear combination of monotangent functions, more precisely there are ck,h ∈MZk−h
such that

Ψs1,...,sl(x) =
k∑

h=2
ck−hΨh(x) .

Proof. An explicit formula for the coefficients ck is given in Theorem 3 in [Bo]. The proof
uses partial fraction and a non trivial relation between multiple zeta values to argue that
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the sum starts at h = 2. For example in length two it is

Ψ3,2(x) =
∑

m1>m2

1
(x+m1)3(x+m2)2

=
∑

m1>m2

(
1

(m1 −m2)2(x+m1)3 + 2
(m1 −m2)3(x+m1)2 + 3

(m1 −m2)4(x+m1)

)

+
∑

m1>m2

(
1

(m1 −m2)3(x+m2)2 −
3

(m1 −m2)4(x+m2)

)

= 3ζ(3)Ψ2(x) + ζ(2)Ψ3(x) .

(1.6)

The connection between the functions g and the monotangent functions is given by the
following

Proposition 1.4. For s1, . . . , sr ≥ 2 the functions g can be written as an ordered sum of
monotangent functions

gs1,...,sl(τ) =
∑

m1>···>ml>0
Ψs1(m1τ) . . .Ψsr(mrτ) .

Proof. This follows directly by the Lipschitz formula (1.4) and the definition of the func-
tions g.

Preparation for the Proof of Theorem 1.4: We will now recall the construction of
the Fourier expansion of multiple Eisenstein series introduced in [Ba], in order to prove
Theorem 1.4. To calculate the Fourier expansion we rewrite the multiple Eisenstein series
as

Gs1,...,sl(τ) =
∑

λ1�···�λl�0

1
λs1

1 . . . λsll

=
∑

(λ1,...,λl)∈P l

1
(λ1 + · · ·+ λl)s1(λ2 + · · ·+ λl)s2 . . . (λl)sl

.

We decompose the set of tuples of positive lattice points P l into the 2l distinct subsets
A1 × · · · × Al ⊂ P l with Ai ∈ {R,U} and write

GA1...Al
s1,...,sl(τ) :=

∑

(λ1,...,λl)∈A1×···×Al

1
(λ1 + · · ·+ λl)s1(λ2 + · · ·+ λl)s2 . . . (λl)sl

this gives the decomposition

Gs1,...,sl =
∑

A1,...,Al∈{R,U}
GA1...Al
s1,...,sl

.
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In the following we identify the A1 . . . Al with words in the alphabet {R,U}. In length
l = 1 we have Gk(τ) = GR

k (τ) +GU
k (τ) and

GR
k (τ) =

∑

m1=0
n1>0

1
(0τ + n1)k = ζ(k) ,

GU
k (τ) =

∑

m1>0
n1∈Z

1
(m1τ + n1)k =

∑

m1>0
Ψk(m1τ) ,

where Ψk is the monotangent function given by

Ψk(x) =
∑

n∈Z

1
(x+ n)k .

To calculate the Fourier expansion of GU
k one uses the Lipschitz formula (1.4). In general

the GU l

s1,...,sl
can be written as

GU l

s1,...,sl
(τ) =

∑

m1>···>ml>0
n1,...,nl∈Z

1
(m1τ + n1)s1 . . . (mlτ + nl)sl

=
∑

m1>···>ml>0
Ψs1(m1τ) . . .Ψsl(mlτ)

= (−2πi)s1+···+sl

(s1 − 1)! . . . (sl − 1)!
∑

m1>···>ml>0
d1,...,dl>0

ds1−1
1 . . . dsl−1

l qm1d1+···+mldl

= gs1,...,sl(τ) .

The other special case GRl

s1,...,sl
can also be written down explicitly:

GRl

s1,...,sl
(τ) =

∑

m1=···=ml=0
n1>···>nl>0

1
(0τ + n1)s1 . . . (0τ + nl)sl

= ζ(s1, . . . , sl) .

In length 2 we have Gs1,s2 = GRR
s1,s2 +GUR

s1,s2 +GRU
s1,s2 +GUU

s1,s2 and

GUR
s1,s2 =

∑

m1>0,m2=0
n1∈Z,n2>0

1
(m1τ + n1)s1(0τ + n2)s1

=
∑

m1>0
Ψs1(m1τ)

∑

n2>0

1
ns2

2
= gs1(τ)ζ(s2) ,

GRU
s1,s2(τ) =

∑

m1=0,m2>0
n1>n2
ni∈Z

1
(m1τ + n1)s1(m1τ + n2)s2

=
∑

m>0
Ψs1,s2(mτ).
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In the case GUR we saw that we could write it as GU multiplied with a zeta value. In
general, having a word w of length l ending in the letter R, i.e. there is a word w′ ending
in U with w = w′Rr and 1 ≤ r ≤ l we can write

Gw
s1,...,sl

(τ) = Gw′
s1,...,sl−r(τ) · ζ(sl−r+1, . . . , sl) .

Example: GRUURR
3,4,5,6,7 = GRUU

3,4,5 · ζ(6, 7)
Hence one can concentrate on the words ending in U when calculating the Fourier expansion
of a multiple Eisenstein series. Let w be a word ending in U then there are integers
r1, . . . , rj ≥ 0 with w = Rr1URr2U . . . RrjU . With this one can write

Gws1,...,sl(τ) =
∑

m1>···>mj>0
Ψs1,...,sr1+1(m1τ) ·Ψsr1+2,...(m2τ) . . .Ψsl−rj ,...,sl

(mjτ) .

Example: w = RURRU

GRURRU
s1,...,sl

=
∑

m1>m2>0
Ψs1,s2(m1τ)Ψs3,s4,s5(m2τ)

m

n
λ5 λ4 λ3

λ2

λ1

A summand of GRURRU
s1,...,sl

.

Proof of Theorem 1.4: For s1, . . . , sl ≥ 2 the Fourier expansion of the multiple Eisenstein
series Gs1,...,sl can be computed in the following way
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i) Split up the summation into 2l distinct parts Gw
s1,...,sl

where w are a words in {R,U}.

ii) For w being a word ending in R one can write Gw
s1,...,sl

as Gw′
s1,... · ζ(. . . , sl) with a word

w′ ending in U .

iii) For w being a word ending in U one can write Gw
s1,...,sl

as

Gw
s1,...,sl

(τ) =
∑

m1>···>mj>0
Ψs1,...(m1τ) . . .Ψ...,sl(mlτ) .

iv) Using the Theorem 1.6 we can write the multitangent functions in iii) as aMZ-linear
combination of monotangents. We therefore just haveMZ-linear combinations with
sums of the form

∑

m1>···>mj>0
Ψk1(m1τ) . . .Ψkj(mjτ) = gk1,...,kl(τ) = (−2πi)k1+···+kl [k1, . . . , kl] .

An explicit formula for the Fourier expansion of the multiple Eisenstein series for arbitrary
length can be found in [BT] Proposition 2.4. (with a reversed order of indices). Here we
just give the Fourier expansion for the length 2 and 3. For this we define for n1, n2, k > 0
the numbers Ck

n1,n2 by

Ck
n1,n2 = (−1)n2

(
k − 1
n2 − 1

)
+ (−1)k−n1

(
k − 1
n1 − 1

)
.

Proposition 1.5. i) ([GKZ, Formula (52)], [Ba], [BT]) For s1, s2 ≥ 2 the Fourier ex-
pansion of the double Eisenstein series is given by

Gs1,s2(τ) = ζ(s1, s2) + ζ(s2)g1(τ) +
∑

k1+k2=s1+s2
k2,k2≥2

Ck2
s1,s2ζ(k2)gk1(τ) + gs1,s2(τ) .

ii) ([Ba], [BT]) For s1, s2, s3 ≥ 2 and k = s1 + s2 + s3 the Fourier expansion of the triple
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1.3. Multiple Eisenstein series and the calculation of their Fourier expansion

Eisenstein series can be written as

Gs1,s2,s3(τ) = ζ(s1, s2, s3) + ζ(s2, s3)gs1(τ) + ζ(s3)gs1,s2(τ) + gs1,s2,s3(τ)

+ ζ(s3)
∑

k1+k2=s1+s2

Ck1
s1,s2ζ(k1)gk2(τ)

+
∑

k1+k2=s1+s2

Ck2
s1,s2ζ(k2)gk1,s3(τ) +

∑

k1+k2=s2+s3

Ck2
s2,s3ζ(k2)gs1,k1(τ)

+
∑

k1+k2+k3=k
(−1)s2+s3

(
k2 − 1
s2 − 1

)(
k3 − 1
s3 − 1

)
ζ(k3, k2)gk1(τ)

+
∑

k1+k2+k3=k
(−1)s1+s2+k2+k3

(
k2 − 1
k3 − 1

)(
k3 − 1
s2 − 1

)
ζ(k3, k2)gk1(τ)

+ (−1)s1+s3
∑

k1+k2+k3=k
(−1)k2

(
k2 − 1
s1 − 1

)(
k3 − 1
s3 − 1

)
ζ(k3)ζ(k2)gk1(τ) ,

where in the sums we sum over all ki ≥ 2.

We finish this section with a closer look at the stuffle product of two Eisenstein series. Since
the product of multiple Eisenstein series can be written in terms of the stuffle product it
is G2 ·G3 = G2,3 +G3,2 +G5. On the other hand we have

G2 ·G3 = (ζ(2) + g2) (ζ(3) + g3) = ζ(2)ζ(3) + ζ(3)g2 + ζ(2)g3 + g2 · g3 .

and by Proposition 1.8 it is

G2,3 = ζ(2, 3)− 2ζ(3)g2 + ζ(2)g3 + g2,3 ,

G3,2 = ζ(3, 2) + 3ζ(3)g2 + ζ(2)g3 + g3,2 .

In conclusion, we obtain a relation for the product of the g’s namely g2 · g3 = g3,2 + g2,3 +
g5 + 2ζ(2)g3 and dividing out (−2πi)5 we get

[2] · [3] = [3, 2] + [2, 3] + [5]− 1
12[3] .

We conclude that a product of the q-series [s1, . . . , sl] ∈ Q[[q]] has an expression similar to
the stuffle product and that conversely, a product structure on these q-series could be used,
together with the Fourier expansion, to explain the stuffle product for multiple Eisenstein
series.
One might now ask, if the multiple Eisenstein series also "fulfill" the shuffle product. As
we saw above the shuffle product of ζ(2) and ζ(3) reads

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) (1.7)
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Chapter 1. Multiple Eisenstein series

and since there is no definition of G4,1 this question does not make sense when replacing
ζ by G in (1.7). We will see that the understanding of the product structure of the brack-
ets, explained in the next two chapters, together with the Fourier expansion of multiple
Eisenstein series will help to answer this question. This will be done by introducing shuffle
regularized multiple Eisenstein series G� in Section 4.2. There we will see that we can
replace the ζ in (1.7) by G� and that the G� are given by the original G, for the cases in
which they are defined.
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Chapter 2

Multiple divisor-sums and their
generating functions

The classical divisor-sums σr(n) = ∑
d|n d

r have a long history in number theory. They are
well-known examples for multiplicative functions and appear in the Fourier expansion of
Eisenstein series. This chapter is devoted to a larger class of functions, that can be seen as
a multiple version of the divisor-sums and are therefore called multiple divisor-sums. For
natural numbers r1, . . . , rl ≥ 0 they are defined by

σr1,...,rl(n) =
∑

u1v1+···+ulvl=n
u1>···>ul>0

vr1
1 . . . vrll . (2.1)

Even though the definition of these arithmetic functions is not complicated and somehow
canonical, the author could not find any results on these functions before he started study-
ing them in his master thesis [Ba]. As mentioned in the introduction, the motivation to
study them was due to their appearance in the Fourier expansion of multiple Eisenstein
series, but as it turned out later in [BK], they are very nice and interesting objects in their
own right. Similar to multiple zeta values they fulfill a lot of relations. For example it is

1
2σ2(n) = σ1,0(n)− 1

2σ1(n) + nσ0(n) . (2.2)

Having objects of this type it is natural to consider their generating functions, which we
denote by

[s1, . . . , sl] := 1
(s1 − 1)! . . . (sl − 1)!

∑

n>0
σs1−1,...,sl−1(n)qn
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Chapter 2. Multiple divisor-sums and their generating functions

and which are, just for the sake of short notations, called brackets. The factorial factors
and the "shift" of −1 are natural if one thinks about the Fourier expansion of Eisenstein
series. With this notation the relation (2.2) reads as

[3] = [2, 1]− 1
2[2] + q

d

dq
[1] , (2.3)

which can be seen as a counterpart of the relation ζ(3) = ζ(2, 1) between multiple zeta
values1.

In this chapter, we want to focus on the algebraic structure of the space spanned by all
brackets, which we will denote byMD. This algebraic structure was studied in [BK]. We
will see that the spaceMD has the structure of a Q-algebra and that the product of two
brackets can be expressed in terms of brackets in a way that looks similar to the stuffle
product of multiple zeta values. The operator d = q d

dq
which appears in (2.3) plays an

important role in the theory of (quasi-)modular forms. We will see that the spaceMD is
closed under this operator and that this gives a second way of expressing the product of
two brackets in length one similarly to the shuffle product of multiple zeta values. This
second product expression in higher length will be discussed in Chapter 3.

2.1 Brackets

Definition 2.2. For any integers s1, . . . , sl > 0 we define the generating function for the
multiple divisor sum σs1−1,...,sl−1 by the formal power series

[s1, . . . , sl] := 1
(s1 − 1)! . . . (sl − 1)!

∑

n>0
σs1−1,...,sl−1(n)qn

=
∑

u1>···>ul>0
v1,...,vl>0

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)! · q
u1v1+···+ulvl ∈ Q[[q]] .

In the first chapter, we saw that these series, by setting q = exp(2πiτ), appear in the
Fourier expansion of the multiple Eisenstein series but in this section we just view them
as formal power series. We refer to these generating functions of multiple divisor sums as
brackets and define the vector spaceMD to be the Q vector space generated by 1 ∈ Q[[q]]

1Further, one can prove the relation ζ(3) = ζ(2, 1) between multiple zeta values by multiplying both
sides in (2.3) with (1− q)3 and then take the limit q → 1. We will discuss this in Chapter 5
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2.1. Brackets

and all brackets [s1, . . . , sl]. It is important to notice that we also include the constants in
the spaceMD.

Example 2.1. We give a few examples:

[2] = q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + 15q8 + . . . ,

[4, 2] = 1
6
(
q3 + 3q4 + 15q5 + 27q6 + 78q7 + 135q8 + . . .

)
,

[4, 4, 4] = 1
216

(
q6 + 9q7 + 45q8 + 190q9 + 642q10 + 1899q11 + . . .

)
,

[3, 1, 3, 1] = 1
4
(
q10 + 2q11 + 8q12 + 16q13 + 43q14 + 70q15 + . . .

)
,

[1, 2, 3, 4, 5] = 1
288

(
q15 + 17q16 + 107q17 + 512q18 + 1985q19 + . . .

)
.

Notice that the first non vanishing coefficient of qn in [s1, . . . , sl] appears at
n = l(l+1)

2 , because it belongs to the "smallest" possible partition

l · 1 + (l − 1) · 1 + · · ·+ 1 · 1 = n ,

i.e. uj = j and vj = 1 for 1 ≤ j ≤ l. The number k = s1 + · · · + sl is called the weight of
[s1, . . . , sl] and l denotes the length.

We want to show that the brackets are closed under multiplication by proving that their
product structure is an example for a quasi-shuffle product. To do this we first introduce
some notations and quote some results which are needed for this.
Recall that for s, z ∈ C, |z| < 1 the polylogarithm Lis(z) of weight s is given by Lis(z) =
∑
n>0

zn

ns
. For s ∈ N the Li−s(z) are rational functions in z with a pole in z = 1. More

precisely for |z| < 1 they can be written as

Li−s(z) =
∑

n>0
nszn = zPs(z)

(1− z)s+1

where Ps(z) is the s-th Eulerian polynomial. Such a polynomial is given by

Ps(X) =
s−1∑

n=0
As,nX

n ,

where the Eulerian numbers As,n are defined by

As,n =
n∑

i=0
(−1)i

(
s+ 1
i

)
(n+ 1− i)s .
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Chapter 2. Multiple divisor-sums and their generating functions

For our purpose we write
L̃i1−s(z) := Li1−s(z)

(s− 1)! .

Lemma 2.2. ([BK, Lemma 2.5]) For s1, . . . , sl ∈ N we have

[s1, . . . , sl] =
∑

n1>···>nl>0
L̃i1−s1 (qn1) . . . L̃i1−sl (qnl)

= 1
(s1 − 1)! . . . (sl − 1)!

∑

n1>···>nl>0

l∏

j=1

qnjPsj−1 (qnj)
(1− qnj)sj .

Remark 2.3. i) The second expression in terms of Eulerian Polynomials will be im-
portant for the interpretation of these series as q-analogues of multiple zeta values in
Chapter 5.

ii) This representation is also used for a fast implementation of these q-series in Pari GP.
By doing so, the authors in [BK] were able to give various results on the dimensions of
the (weight and length filtered) spaces ofMD. These results can be found in Section
5 of [BK].

The product of [s1] and [s2] can thus be written as

[s1] · [s2] =
∑

n1>n2>0
L̃i1−s1 (qn1) L̃i1−s2 (qn2) +

∑

n2>n1>0
· · ·+

∑

n1=n2>0
L̃i1−s1 (qn1) L̃i1−s2 (qn1)

= [s1, s2] + [s2, s1] +
∑

n>0
L̃i1−s1 (qn) L̃i1−s2 (qn) .

In order to prove that this product is an element ofMD the product L̃i1−s1 (qn) L̃i1−s2 (qn)
must be a rational linear combination of L̃i1−j (qn) with 1 ≤ j ≤ s1 + s2. We therefore
need the following

Lemma 2.4. For a, b ∈ N we have

L̃i1−a(z) · L̃i1−b(z) =
a∑

j=1
λja,bL̃i1−j(z) +

b∑

j=1
λjb,aL̃i1−j(z) + L̃i1−(a+b)(z) ,

where the coefficient λja,b ∈ Q for 1 ≤ j ≤ a is given by

λja,b = (−1)b−1
(
a+ b− j − 1

a− j

)
Ba+b−j

(a+ b− j)! ,

with Bk being the k-th Bernoulli number1

1For convenience we recall that the Bernoulli numbers Bk are defined by X
eX −1 =:

∑
k≥0

Bk

k! X
k.
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2.1. Brackets

Proof. We prove this by using the generating function

L(X) :=
∑

k>0
L̃i1−k(z)Xk−1 =

∑

k>0

∑

n>0

nk−1zn

(k − 1)!X
k−1 =

∑

n>0
enXzn = eXz

1− eXz .

With this one can see by direct calculation that

L(X) · L(Y ) = 1
eX−Y − 1L(X) + 1

eY−X − 1L(Y ) .

By the definition of the Bernoulli numbers

X

eX − 1 =
∑

n≥0

Bn

n! X
n

this can be written as

L(X) · L(Y ) =
∑

n>0

Bn

n! (X − Y )n−1L(X) +
∑

n>0

Bn

n! (Y −X)n−1L(Y ) + L(X)− L(Y )
X − Y .

The statement then follows by calculating the coefficient of Xa−1Y b−1 in this equation.

Now we are able to interpret the product structure of brackets as an example for a quasi-
shuffle product. We equip H1 with a third product, beside the stuffle product ∗ and the
shuffle product �. This product will be denoted �, since it can be seen as a "bracket
version" of the stuffle product ∗. For a, b ∈ N and w, v ∈ H1 we define recursively the
product

zaw � zbv = za(w � zbv) + zb(zaw � v) + za+b(w � v) +
a∑

j=1
λja,bzj(w � v) +

b∑

j=1
λjb,azj(w � v) ,

where the coefficients λja,b ∈ Q are the same as in Lemma 2.5. We equip MD with the
usual multiplication of formal q-series and obtain the following:

Theorem 2.5. ([BK, Prop 2.10]) For the linear map [ . ] : (H1,�) −→ (MD, ·) defined on
the generators w = zs1 . . . zsl by [w] := [s1, . . . , sl] we have

[w � v] = [w] · [v]

and thereforeMD is a Q-algebra and [ . ] an algebra homomorphism.
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Chapter 2. Multiple divisor-sums and their generating functions

Example 2.6. The first products of brackets are given by

[1] · [1] = 2[1, 1] + [2]− [1] ,

[1] · [2] = [1, 2] + [2, 1] + [3]− 1
2[2] ,

[1] · [2, 1] = [1, 2, 1] + 2[2, 1, 1]− 3
2[2, 1] + [2, 2] + [3, 1] ,

[2] · [3] = [3, 2] + [2, 3] + [5]− 1
12[3] ,

[3] · [2, 1] = [3, 2, 1] + [2, 3, 1] + [2, 1, 3] + [5, 1] + [2, 4] + 1
12[2, 2]− 1

2[2, 3]− 1
12[3, 1] .

We end this section by some notations which are needed for the rest of this thesis.

Definition 2.3. OnMD we have the increasing filtration FilW• given by the weight and
the increasing filtration FilL• given by the length. For a subset A ⊂MD we write

FilWk (A) :=
〈
[s1, . . . , sl] ∈ A

∣∣∣ s1 + · · ·+ sl ≤ k
〉
Q
,

FilLl (A) :=
〈
[s1, . . . , sr] ∈ A

∣∣∣ r ≤ l
〉
Q
.

If we consider the length and weight filtration at the same time, we use the short notation
FilW,L

k,l := FilWk FilLl .

Remark 2.7. As it can be seen by Theorem 2.6, the multiplication of two brackets respects
these filtrations, i.e.

FilW,L
k1,l1(MD) · FilW,L

k2,l2(MD) ⊂ FilW,L
k1+k2,l1+l2(MD).

2.4 Derivatives and Subalgebras
In this section we want to give an overview of interesting subalgebras of the space MD
and discuss the differential structure with respect to the differential d = q d

dq
. One of the

main results in [BK] is the following

Theorem 2.8. ([BK, Thm. 1.7]) The operator d = q d
dq

is a derivation onMD, it maps
FilW,L

k,l (MD) to FilW,L
k+2,l+1(MD).

The proof of Theorem 2.10 uses generating functions of the brackets. It gives explicit
formulas for the derivatives d[s1, . . . , sl] for all l which we omit here, since they are com-
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2.4. Derivatives and Subalgebras

plicated. For example we have

d[2, 1, 1] = −1
6[2, 1, 1] + 1

2[2, 1, 2]− [2, 1, 2, 1] + [2, 1, 3] + 3
2[2, 2, 1]

− 2 [2, 2, 1, 1] + [2, 3, 1] + 6[3, 1, 1]− 8[3, 1, 1, 1] + [4, 1, 1].

In the following we give a list of subalgebras and review the results on whether they are
also closed under d or not.

i) (quasi-)modular forms: Next to the connection to modular forms due to their ap-
pearance in the Fourier expansion of multiple Eisenstein series, the brackets have a direct
connection to quasi-modular forms for SL2(Z) with rational coefficients. In the case l = 1
we get the divisor sums σk−1(n) = ∑

d|n d
k−1 and

[k] = 1
(k − 1)!

∑

n>0
σk−1(n)qn .

These simple brackets appear in the Fourier expansion of classical Eisenstein series with
rational coefficients G̃k(τ) := (−2πi)−kGk(τ) since we also included the rational numbers
inMD. For example we have

G̃2 = − 1
24 + [2] , G̃4 = 1

1440 + [4] , G̃6 = − 1
60480 + [6] .

Denote by MQ(SL2(Z)) = Q[G4, G6] and M̃Q(SL2(Z)) = Q[G2, G4, G6] the algebras of
modular forms and quasi-modular forms with rational coefficients.
It is a well-known fact that the space M̃Q(SL2(Z)) is closed under the operator d = q d

dq
.

ii) Admissible brackets: We define the set of all admissible brackets qMZ as the span
of all brackets [s1, . . . , sl] with s1 > 1 and 1. This space is a subalgebra ofMD ([BK, Thm.
2.13]) and every bracket can be written as a polynomial in the bracket [1] with coefficients
in qMZ:

Theorem 2.9. ([BK, Thm. 2.14, Prop. 3.14])

i) We haveMD = qMZ[ [1] ].

ii) The algebraMD is a polynomial ring over qMZ with indeterminate [1], i.e. MD is
isomorphic to qMZ[ T ] by sending [1] to T .

iii) The space qMZ is closed under d.
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Chapter 2. Multiple divisor-sums and their generating functions

The elements in qMZ are the ones, where the corresponding multiple zeta values exist. It
will be reviewed in more detail in Chapter 5, when we consider the brackets as q-analogues
of multiple zeta values.

iii) Even brackets and brackets with no 1’s: Denote byMDeven the space spanned by
1 and all [s1, . . . , sl] with sj even for all 0 ≤ j ≤ l and byMD] the space spanned by 1 and
all [s1, . . . , sl] with sj > 1. Both spacesMDeven andMD] are subalgebras ofMD ([BK,
Prop. 2.15]). It is expected, that the spaceMDeven is not closed under d, since numerical
calculation suggest, that for example d[4, 2] /∈MDeven. Whether the spaceMD] is closed
under this operator is an open and interesting question. In [BK2] it is shown, that this is
actually equivalent to one part of Conjecture 1 in [O] given by Okounkov.
To summarize, we have the following inclusion of Q-algebras

MQ(SL2(Z)) M̃Q(SL2(Z)) MDev MD# qMZ MD
d

d

d?

d?
d d

The dashed arrows indicate the conjectured behavior of the map d, whereas the other ar-
rows are all known to be correct.

Though in length l = 1 we derive not just one but several expressions for d[s] given by the
following Proposition.

Proposition 2.10. ([BK, Prop 3.3]) For s1, s2 with s1 + s2 > 2 and s = s1 + s2 − 2 we
have the following expression for d[s]:

(
s

s1 − 1

)
d[s]
s

= [s1] · [s2] +
(

s

s1 − 1

)
[s+ 1]−

∑

a+b=s+2

((
a− 1
s1 − 1

)
+
(
a− 1
s2 − 1

))
[a, b] .

If you compare this formula with the shuffle product of multiple zeta values (1.1) in the
length one times length one case you notice that Proposition 2.12 basically states that the
brackets fulfill the shuffle product up to the term

(
s

s1−1

)
d[s]
s
−
(

s
s1−1

)
[s+ 1].

We end this chapter by using these formulas to prove the following identity

Proposition 2.11. The unique normalized cusp form ∆ in weight 12 can be written as

− 1
26 · 5 · 691∆ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1
1408[2]− 83

14400[4] + 187
6048[6]− 7

120[8]− 5197
691 [12] .
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Proof. With the Eisenstein series G̃6 and G̃12 given by

G̃6 = (−2πi)−6ζ(6) + [6] = − 1
60480 + [6] ,

G̃12 = (−2πi)−12ζ(12) + [12] = 691
2615348736000 + [12] ,

the cusp form ∆ can be written as ∆ = −3316800G2
6 + 3432000G12. Using quasi-shuffle

product of brackets one can derive

∆ = 3455
198 [2]− 691

6 [4] + 6910
21 [6] + 115200[12]− 6633600[6, 6] .

and therefore

− 1
26 · 5 · 691∆ = 30[6, 6]− 1

12672[2] + 1
1920[4]− 1

672[6]− 360
691[12] . (2.4)

Using Proposition 2.12 for (s1, s2) = (4, 8), (5, 7), (6, 6) we get the following three expres-
sions for d[10]

d[10] =− 1
3[5, 7]− 5

6[6, 6]− 5
3[7, 5]− 35

12[8, 4]− 16
3 [9, 3]− 10[10, 2]− 20[11, 1]

− 1
4790016[2] + 1

403200[4]− 1
36288[6] + 1

8640[8] + 10[11] + 1
12[12] ,

d[10] =− 5
21[6, 6]− 5

7[7, 5]− 2[8, 4]− 14
3 [9, 3]− 10[10, 2]− 20[11, 1]

+ 1
4790016[2]− 1

604800[4] + 1
127008[6] + 10[11] + 1

21[12] ,

d[10] =− 10
21[7, 5]− 5

3[8, 4]− 40
9 [9, 3]− 10[10, 2]− 20[11, 1]

− 1
4790016[2] + 1

725760[4]− 1
381024[6] + 10[11] + 5

126[12] .

Summing them up as 0 = −504 d[10] + 1890 d[10]− 1386 d[10] we get

0 =168[5, 7]− 30[6, 6] + 150[7, 5] + 28[9, 3]

+ 5
6336[2]− 181

28800[4] + 7
216[6]− 7

120[8]− 7[12]
(2.5)

Combining (2.5) and (2.4), in order to eliminate the occurrence of [6, 6], we obtain the
desired identity.
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Chapter 3

Bi-brackets and a second product
expression for brackets

In the previous chapter we have seen that the spaceMD of brackets has the structure of
a Q-algebra and that there is an explicit formula to express the product of two brackets
as a linear combination of brackets similarly to the stuffle product of multiple zeta values.
In this chapter we want to present a larger class of q-series, called bi-brackets. The quasi-
shuffle product of brackets extend to this larger class and therefore the space of bi-brackets
is also a Q-algebra. The beautiful feature of bi-brackets is, that there is a relation, which
we call partition relation, which enables one to express the product of two bi-brackets in
a second different way. These two product expressions then give a large class of linear
relations, similar to the double shuffle relations of multiple zeta values. A variation of
the bi-brackets were also studied in [Zu]. Later, the bi-brackets will be used to define
regularized multiple Eisenstein series in Chapter 4. All results in this chapter were studied
and introduced in [Ba2].

3.1 Bi-brackets and their generating series

As motivated in the introduction of this section we want to study the following q-series:

Definition 3.2. For r1, . . . , rl ≥ 0, s1, . . . , sl > 0 and we define the following q-series
[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur1
1
r1! . . .

urll
rl!
· vs1−1

1 . . . vsl−1
l

(s1 − 1)! . . . (sl − 1)! · q
u1v1+···+ulvl ∈ Q[[q]]
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Chapter 3. Bi-brackets and a second product expression for brackets

which we call bi-brackets of weight r1 + · · ·+ rk + s1 + · · ·+ sl, upper weight s1 + · · ·+ sl,
lower weight r1 + · · · + rl and length l. By BD we denote the Q-vector space spanned by
all bi-brackets and 1.

The factorial factors in the definition of bi-brackets will become natural when considering
generating functions of bi-brackets and the connection to multiple zeta values.
For r1 = · · · = rl = 0 the bi-brackets are just the brackets

[
s1, . . . , sl
0, . . . , 0

]
= [s1, . . . , sl]

as defined in Chapter 2. Similarly to the Definition 2.8 of the filtration for the space BD
we write for a subset A ∈ BD

FilWk (A) :=
〈[s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣∣ 0 ≤ l ≤ k , s1 + · · ·+ sl ≤ k
〉
Q

FilDk (A) :=
〈[s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣∣ 0 ≤ l ≤ k , r1 + · · ·+ rl ≤ k
〉
Q

FilLl (A) :=
〈[s1, . . . , st
r1, . . . , rt

]
∈ A

∣∣∣ t ≤ l
〉
Q
.

and again if we consider the length and weight filtration at the same time we use the short
notation FilW,L

k,l := FilWk FilLl and similar for the other filtrations.

Proposition 3.1. ([Ba2, Prop 4.2]) Let d := q d
dq
, then we have

d
[
s1, . . . , sl
r1, . . . , rl

]
=

l∑

j=1

(
sj(rj + 1)

[
s1 , . . . , sj−1 , sj + 1 , sj+1, . . . , sl
r1 , . . . , rj−1 , rj + 1 , rj+1 , . . . , rl

])

and therefore d
(
FilW,D,L

k,d,l (BD)
)
⊂ FilW,D,L

k+1,d+1,l(BD).

Proof. This is an easy consequence of the definition of bi-brackets and the fact that
d∑n>0 anq

n = ∑
n>0 nanq

n.

Proposition 3.2 suggests that the bi-brackets can be somehow viewed as partial derivatives
of the brackets with total differential d.

In the following we now want to discuss the algebra structure of the space BD. For this we
extend the quasi-shuffle product � of H1 to a larger space of words. Since we have double
indices we replace the alphabet Az = {z1, z2, . . . } by Abi

z := {zs,r | s ≥ 1 , r ≥ 0}.
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3.1. Bi-brackets and their generating series

We consider on QAbi
z the commutative and associative product

zs1,r1 � zs2,r2 =
(
r1 + r2

r1

)
s1∑

j=1
λjs1,s2zj,r1+r2 +

(
r1 + r2

r1

)
s2∑

j=1
λjs2,s1zj,r1+r2

+
(
r1 + r2

r1

)
zs1+s2,r1+r2

and on Q〈Abi
z 〉 the commutative and associative quasi-shuffle product

zs1,r1w � zs2,r2v = zs1,r1(w � zs2,r2v) + zs2,r2(zs1,r1w � v) + (zs1,r1 � zs2,r2)(w � v) ,

where the the numbers λja,b ∈ Q for 1 ≤ j ≤ a are the same as before, i.e.

λja,b = (−1)b−1
(
a+ b− j − 1

a− j

)
Ba+b−j

(a+ b− j)! .

Theorem 3.2. ([Ba2, Thm. 3.6]) The map
[
.
]

: (Q〈Abi
z 〉,�)→ (BD, ·) given by

w = zs1,r1 . . . zsl,rl 7−→ [w] =
[
s1, . . . , sl
r1, . . . , rl

]

fulfills [w � v] = [w] · [v] and therefore BD is a Q-algebra.

Definition 3.3. For the generating function of the bi-brackets we write
∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣ :=
∑

s1,...,sl>0
r1,...,rl>0

[
s1 , . . . , sl

r1 − 1 , . . . , rl − 1

]
Xs1−1

1 . . . Xsl−1
l · Y r1−1

1 . . . Y rl−1
l .

These are elements in the ring BDgen = lim−→j
BD[[X1, . . . , Xj, Y1, . . . , Yj]] of all generating

series of bi-brackets.

To derive relations between bi-brackets we will prove functional equations for their gen-
erating functions. The key fact for this is that there are two different ways of expressing
these given by the following Theorem.

Theorem 3.3. ([Ba2, Thm. 2.3]) For n ∈ N set

En(X) := enX and Ln(X) := eXqn

1− eXqn ∈ Q[[q,X]] .
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Chapter 3. Bi-brackets and a second product expression for brackets

Then for all l ≥ 1 we have the following two different expressions for the generating
functions:

∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣ =
∑

u1>···>ul>0

l∏

j=1
Euj(Yj)Luj(Xj)

=
∑

u1>···>ul>0

l∏

j=1
Euj(Xl+1−j −Xl+2−j)Luj(Y1 + · · ·+ Yl−j+1)

(with Xl+1 := 0). In particular the partition relations1 holds:
∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣
P=
∣∣∣∣∣
Y1 + · · ·+ Yl, . . . , Y1 + Y2, Y1

Xl, Xl−1 −Xl, . . . , X1 −X2

∣∣∣∣∣ . (3.1)

Remark 3.4. A nice combinatorial explanation for the partition relation (3.1) is the
following: By a partition of a natural number n with l parts we denote a representation
of n as a sum of l distinct natural numbers, i.e. 15 = 4 + 4 + 3 + 2 + 1 + 1 is a partition
of 15 with the 4 parts given by 4, 3, 2, 1. We identify such a partition with a tuple (u, v) ∈
Nl × Nl where the uj’s are the l distinct numbers in the partition and the vj’s count
their appearance in the sum. The above partition of 15 is therefore given by the tuple
(u, v) = ((4, 3, 2, 1), (2, 1, 1, 2)). By Pl(n) we denote all partitions of n with l parts and
hence we set

Pl(n) :=
{

(u, v) ∈ Nl ×Nl | n = u1v1 + · · ·+ ulvl and u1 > · · · > ul > 0
}

On the set Pl(n) one has an involution given by the conjugation ρ of partitions which can
be obtained by reflecting the corresponding Young diagram across the main diagonal.

((4, 3, 2, 1), (2, 1, 1, 2)) = ρ
−−−−−−−→ = ((6, 4, 3, 2), (1, 1, 1, 1))

Figure 3.1: The conjugation of the partition 15 = 4 + 4 + 3 + 2 + 1 + 1 is given by
ρ(((4, 3, 2, 1), (2, 1, 1, 2))) = ((6, 4, 3, 2), (1, 1, 1, 1)) which can be seen by reflection the cor-
responding Young diagram at the main diagonal.

1The bi-brackets and their generating series also give examples of what is called a bimould by Ecalle in
[E]. In his language the partition relation (3.1) states that the bimould of generating series of bi-brackets
is swap invariant.
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3.1. Bi-brackets and their generating series

On the set Pl(n) the conjugation ρ is explicitly given by ρ((u, v)) = (u′, v′) where u′j =
v1 + · · ·+ vl−j+1 and v′j = ul−j+1 − ul−j+2 with ul+1 := 0, i.e.

ρ :
(
u1, . . . , ul
v1, . . . , vl

)
7−→

(
v1 + · · ·+ vl, . . . , v1 + v2, v1

ul, ul−1 − ul, . . . , u1 − u2

)
. (3.2)

By the definition of the bi-brackets its clear that with the above notation they can be
written as

[
s1, . . . , sl
r1, . . . , rl

]
:= 1
r1!(s1 − 1)! . . . rl!(sl − 1)!

∑

n>0


 ∑

(u,v)∈Pl(n)
ur1

1 v
s1−1
1 . . . urll v

sl−1
l


 qn .

The coefficients are given by a sum over all elements in Pl(n) and therefore it is invariant
under the action of ρ. As an example, consider [2, 2] and apply ρ to the sum. Then we
obtain

[2, 2] =
∑

n>0


 ∑

(u,v)∈P2(n)
v1 · v2


 qn =

∑

n>0


 ∑

ρ((u,v))=(u′,v′)∈P2(n)
u′2 · (u′1 − u′2)


 qn

=
∑

n>0


 ∑

(u′,v′)∈P2(n)
u′2 · u′1


 qn −

∑

n>0


 ∑

(u′,v′)∈P2(n)
u′22


 qn =

[
1, 1
1, 1

]
− 2

[
1, 1
0, 2

]
.

(3.3)

This is exactly the relation one obtains by using the partition relation.

Corollary 3.5. ([Ba2, Cor. 2.5]) (Partition relation in length one and two) For r, r1, r2 ≥
0 and s, s1, s2 > 0 we have the following relations in length one and two

[
s

r

]
=
[
r + 1
s− 1

]
,

[
s1, s2

r1, r2

]
=

∑

0≤j≤r1
0≤k≤s2−1

(−1)k
(
s1 − 1 + k

k

)(
r2 + j

j

)[
r2 + j + 1 , r1 − j + 1
s2 − 1− k , s1 − 1 + k

]
.

Remark 3.6. If we replace in the generating series in Definition 3.4 the bi-brackets by the
corresponding bi-words in and enforce the partition relation (3.1) for this power series, we
obtain an involution

P : Q〈Abi
z 〉 → Q〈Abi

z 〉 .

By Corollary 3.7 it is for example P (zs,r) = zr+1,s−1. This will be needed to describe the
second product structure in the next section.

41



Chapter 3. Bi-brackets and a second product expression for brackets

3.4 Double shuffle relations for bi-brackets

The partition relation together with the quasi-shuffle product can be used to obtain a
second expression for the product of two bi-brackets. Before giving the general explanation
this second product expression we illustrate it in two examples.

Example 3.7. i) We want to given a second product expression for the product [2] · [3].
By the partition relation we know that [2] =

[
1
1

]
, [3] =

[
1
2

]
and using the quasi-shuffle

product we have
[
1
1

]
·
[
1
2

]
=
[
1, 1
1, 2

]
+
[
1, 1
2, 1

]
− 3

[
1
3

]
+ 3

[
2
3

]
.

The partition relations for the length two bi-brackets on the right is given by
[
1, 1
1, 2

]
=
[
3, 2
0, 0

]
+ 3

[
4, 1
0, 0

]
= [3, 2] + 3[4, 1] ,

[
1, 1
2, 1

]
=
[
2, 3
0, 0

]
+ 2

[
3, 2
0, 0

]
+ 3

[
4, 1
0, 0

]
= [2, 3] + 2[3, 2] + 3[4, 1] .

Combining all of this we obtain
[
2
0

]
·
[
3
0

]
=
[
1
1

]
·
[
1
2

]

=
[
1, 1
1, 2

]
+
[
1, 1
2, 1

]
− 3

[
1
3

]
+ 3

[
2
3

]

= [2, 3] + 3[3, 2] + 6[4, 1] + 3
[
4
1

]
− 3[4] .

Compare this to the shuffle product of multiple zeta values

ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

Since d[3] = 3
[

4
1

]
this example exactly coincides with the formula in Proposition 2.12

for the derivative d[k].

ii) In higher length, expressing the product of two bi-brackets in a similar way as in i)
becomes interesting, since then the extra terms can’t be expressed with the operator d
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3.4. Double shuffle relations for bi-brackets

anymore. Doing the same calculation for the product [3] · [2, 1], i.e. using the partition
relation, the quasi-shuffle product and again the partition relation we obtain

[3] · [2, 1] =
[
1
2

]
·
[
1, 1
0, 1

]

=
[
1, 1, 1
2, 0, 1

]
+
[
1, 1, 1
0, 2, 1

]
+
[
1, 1, 1
0, 1, 2

]
+ 3

[
1, 2
0, 3

]
+
[
2, 1
2, 1

]
− 3

[
1, 1
0, 3

]
−
[
1, 1
2, 1

]

= [2, 1, 3] + [2, 2, 2] + 2[2, 3, 1] + 2[3, 1, 2] + 5[3, 2, 1] + 9[4, 1, 1]

+
[
2, 3
0, 1

]
+ 2

[
3, 2
0, 1

]
+ 3

[
4, 1
1, 0

]
− [2, 3]− 2[3, 2]− 6[4, 1] .

This product can be seen as the analog of the shuffle product

ζ(3) · ζ(2, 1) = ζ(2, 1, 3) + ζ(2, 2, 2) + 2ζ(2, 3, 1) + 2ζ(3, 1, 2) + 5ζ(3, 2, 1) + 9ζ(4, 1, 1) .

Here the bi-brackets, which are not given as brackets, can not be written in terms of the
operator d in an obvious way.

This works for arbitrary lengths and yields a natural way to obtain the second product
expression for bi-brackets. To be more precise, denote by P : Q〈Abi

z 〉 → Q〈Abi
z 〉 the

involution defined in Remark 3.8. Using this convention the second product expression
for bi-brackets can be written in Q〈Abi

z 〉 for two words u, v ∈ Q〈Abi
z 〉 as P (P (u) � P (v)),

i.e. the two product expressions of bi-brackets which correspond to the stuffle and shuffle
product of multiple zeta values are given by

[u] · [v] = [u� v] , [u] · [v] = [P (P (u) � P (v))] . (3.4)

In contrast to multiple zeta values these two product expression are the same for some
cases, as one can check for the example [1] · [1, 1]. In the smallest length case, we have the
following explicit formulas for the two products expressions.

Proposition 3.8. ([Ba, Prop. 3.3]) For s1, s2 > 0 and r1, r2 ≥ 0 we have the following
two expressions for the product of two bi-brackets of length one:

i) ("Stuffle product analog for bi-brackets")
[
s1

r1

]
·
[
s2

r2

]
=
[
s1, s2

r1, r2

]
+
[
s2, s1

r2, r1

]
+
(
r1 + r2

r1

)[
s1 + s2

r1 + r2

]

+
(
r1 + r2

r1

)
s1∑

j=1

(−1)s2−1Bs1+s2−j
(s1 + s2 − j)!

(
s1 + s2 − j − 1

s1 − j

)[
j

r1 + r2

]

+
(
r1 + r2

r1

)
s2∑

j=1

(−1)s1−1Bs1+s2−j
(s1 + s2 − j)!

(
s1 + s2 − j − 1

s2 − j

)[
j

r1 + r2

]
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ii) ("Shuffle product analog for bi-brackets")
[
s1

r1

]
·
[
s2

r2

]
=

∑

1≤j≤s1
0≤k≤r2

(
s1 + s2 − j − 1

s1 − j

)(
r1 + r2 − k

r1

)
(−1)r2−k

[
s1 + s2 − j, j
k, r1 + r2 − k

]

+
∑

1≤j≤s2
0≤k≤r1

(
s1 + s2 − j − 1

s1 − 1

)(
r1 + r2 − k
r1 − k

)
(−1)r1−k

[
s1 + s2 − j, j
k, r1 + r2 − k

]

+
(
s1 + s2 − 2
s1 − 1

)[
s1 + s2 − 1
r1 + r2 + 1

]

+
(
s1 + s2 − 2
s1 − 1

)
r1∑

j=0

(−1)r2Br1+r2−j+1

(r1 + r2 − j + 1)!

(
r1 + r2 − j
r1 − j

)[
s1 + s2 − 1

j

]

+
(
s1 + s2 − 2
s1 − 1

)
r2∑

j=0

(−1)r1Br1+r2−j+1

(r1 + r2 − j + 1)!

(
r1 + r2 − j
r2 − j

)[
s1 + s2 − 1

j

]

Having these two expressions for the product of bi-brackets we obtain a large family of linear
relations between them. Computer experiments suggest that actually every bi-bracket can
be written in terms of brackets and that motivates the following surprising conjecture.

Conjecture 3.9. The algebra BD of bi-brackets is a subalgebra ofMD and in particular
we have

FilW,D,L
k,d,l (BD) ⊂ FilW,L

k+d,l+d(MD) .

The results towards this conjecture, beside the computer experiments which have been
done up to weight 8, are the following

Proposition 3.10. ([Ba2, Prop. 4.4]) For l = 1 the Conjecture 3.11 is true.

In [BK3] it will be shown, that Conjecture 3.11 is also true for all length up to weight 7. For
higher weights and lengths there are no general statements. The only general statement
for the length two case is given by the following Proposition.

Proposition 3.11. ([Ba2, Prop. 5.9]) For all s1, s2 ≥ 1 it is
[
s1, s2

1, 0

]
,

[
s1, s2

0, 1

]
∈ FilW,L

s1+s2+1,3(MD)
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3.5. The shuffle brackets

3.5 The shuffle brackets
We now want to define a q-series which is an element in BD and whose products can be
written in terms of the "real" shuffle product of multiple zeta values. For e1, . . . , el ≥ 1 we
generalize the generating function of bi-brackets to the following

∣∣∣∣∣∣

X1, ... , Xl
Y1, ... , Yl
e1, ... , el

∣∣∣∣∣∣
=

∑

u1>···>ul>0

l∏

j=1
Euj(Yj)Luj(Xj)ej . (3.5)

In particular for e1 = · · · = el = 1 these are the generating functions of the bi-brackets.
To show that the coefficients of these series are in BD for arbitrary ej we need to define
the differential operator DYe1,...,el

:= DY1,e1DY2,e2 . . . DYl,el with

DYj ,e =
e−1∏

k=1

(
1
k

(
∂

∂Yl−j+1
− ∂

∂Yl−j+2

)
− 1

)
.

where we set ∂
∂Yl+1

= 0.

Lemma 3.12. Let A be an algebra spanned by elements as1,...,sl with s1, . . . , sl ∈ N, let
H(X1, . . . , Xl) = ∑

sj as1,...,slX
s1−1
1 . . . Xsl−1

1 be the generating functions of these elements
and define for f ∈ Q[[X1, . . . , Xl]]

f ](X1, . . . , Xl) = f(X1 + · · ·+Xl, X2 + · · ·+Xl, . . . , Xl) .

Then the following two statements are equivalent.

i) The map (H1,�)→ A given by zs1 . . . zsj 7→ as1,...,sl is an algebra homomorphism.

ii) For all r, s ∈ N it is

H](X1, . . . , Xr) ·H](Xr+1, . . . , Xr+s) = H](X1, . . . , Xr+s)|sh(r+s)
r

,

where sh(r+s)
r = ∑

σ∈Σ(r,s) σ in the group ring Z[Sr+s] and the symmetric group Sr

acts on Q[[X1, . . . , Xr]] by (f
∣∣∣σ)(X1, . . . , Xr) = f(Xσ−1(1), . . . , Xσ−1(r)) .

Proof. This can be proven by induction over l together with Proposition 8 in [I].

Theorem 3.13. ([Ba2, Thm. 5.7]) For s1, . . . , sl ∈ N define [s1, . . . , sl]� ∈ BD as the
coefficients of the following generating function

H�(X1, . . . , Xl) =
∑

s1,...,sl≥1
[s1, . . . , sl]�Xs1−1

1 . . . Xsl−1
l

:=
∑

1≤m≤l
i1+···+im=l

1
i1! . . . im!D

Y
i1,...,im

∣∣∣∣∣
X1, Xim+1, Xim−1+im+1, . . . , Xi2+···+im+1

Y1, . . . , Yl

∣∣∣∣∣∣∣∣Y=0
.

Then we have the following two statements
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Chapter 3. Bi-brackets and a second product expression for brackets

i) The [s1, . . . , sl]� fulfill the shuffle product, i.e.

H]
�

(X1, . . . , Xr) ·H]
�

(Xr+1, . . . , Xr+s) = H]
�

(X1, . . . , Xr+s)|sh(r+s)
r

.

ii) For s1 ≥ 1, s2, . . . , sl ≥ 2 we have [s1, . . . , sl]� = [s1, . . . , sl].

For low lengths we obtain the following examples:

Corollary 3.14. It is [s1]� = [s1] and for l = 2, 3, 4 the [s1, . . . , sl]�are given by

i) [s1, s2]� = [s1, s2] + δs2,1 ·
1
2

([
s1

1

]
− [s1]

)
,

ii) [s1, s2, s3]� = [s1, s2, s3] + δs3,1 ·
1
2

([
s1, s2

0, 1

]
− [s1, s2]

)

+ δs2,1 ·
1
2

([
s1, s3

1, 0

]
−
[
s1, s3

0, 1

]
− [s1, s3]

)

+ δs2·s3,1 ·
1
6

([
s1

2

]
− 3

2

[
s1

1

]
+ [s1]

)
,

iii) [s1, s2, s3, s4]� = [s1, s2, s3, s4] + δs4,1 ·
1
2

([
s1, s2, s3

0, 0, 1

]
− [s1, s2, s3]

)

+δs3,1 ·
1
2

([
s1, s2, s4

0, 1, 0

]
−
[
s1, s2, s4

0, 0, 1

]
+ [s1, s2, s4]

)

+δs2,1 ·
1
2

([
s1, s3, s4

1, 0, 0

]
−
[
s1, s3, s4

0, 1, 0

]
+ [s1, s3, s4]

)

+δs2·s4,1 ·
1
4

([
s1, s3

1, 1

]
− 2

[
s1, s3

0, 2

]
−
[
s1, s3

1, 0

]
+ [s1, s3]

)

+δs3·s4,1 ·
1
6

([
s1, s2

0, 2

]
− 3

2

[
s1, s2

0, 1

]
+ [s1, s2]

)

+δs2·s3,1 ·
1
6

([
s1, s4

0, 2

]
−
[
s1, s4

1, 1

]
+ 3

2

[
s1, s4

0, 1

]
+
[
s1, s4

2, 0

]
− 3

2

[
s1, s4

1, 0

]
+ [s1, s4]

)

+δs2·s3·s4,1 ·
1
24

([
s1

3

]
− 2

[
s1

2

]
+ 11

6

[
s1

1

]
− [s1]

)
.

Proof. This follows by calculating the coefficients of the series G� in Theorem 3.15.

The shuffle brackets will be used to define shuffle regularized multiple Eisenstein series in
the next chapter.
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Chapter 4

Regularizations of multiple
Eisenstein series

This chapter is devoted to Question 1 in the introduction, which was to find a regularization
of the multiple Eisenstein series. We want to present two type of regularization: The
shuffle regularized multiple Eisenstein series ([BT], [Ba2]) and stuffle regularized multiple
Eisenstein series ([Ba2]).
The definition of shuffle regularized multiple Eisenstein series uses a beautiful connection
of the Fourier expansion of multiple Eisenstein series and the coproduct of formal iterated
integrals. The other regularization, the stuffle regularized multiple Eisenstein series uses
the construction of the Fourier expansion of multiple Eisenstein series together with a
result on regularization of multitangent functions by O. Bouillot ([Bo]).
We start by reviewing the definition of formal iterated integrals and the coproduct defined
by Goncharov. An explicit example in length two will make the above mentioned connec-
tion of multiple Eisenstein series and this coproduct clear. After doing this, we give the
definition of shuffle and stuffle regularized multiple Eisenstein series as presented in [BT]
and [Ba2]. At the end of this chapter we compare these two regularizations with a help of
a few examples.

4.1 Formal iterated integrals

Following Goncharov (Section 2 in [G]) we consider the algebra I generated by the elements

I(a0; a1, . . . , aN ; aN+1), ai ∈ {0, 1}, N ≥ 0.
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Chapter 4. Regularizations of multiple Eisenstein series

together with the following relations

i) For any a, b ∈ {0, 1} the unit is given by I(a; b) := I(a; ∅; b) = 1.

ii) The product is given by the shuffle product �

I(a0; a1, . . . , aM ; aM+N+1)I(a0; aM+1, . . . , aM+N ; aM+N+1)

=
∑

σ∈shM,N
I(a0; aσ−1(1), . . . , aσ−1(M+N); aM+N+1),

where shM,N is the set of σ ∈ SM+N such that σ(1) < · · · < σ(M) and σ(M + 1) <
· · · < σ(M +N).

iii) The path composition formula holds: for any N ≥ 0 and ai, x ∈ {0, 1}, one has

I(a0; a1, . . . , aN ; aN+1) =
N∑

k=0
I(a0; a1, . . . , ak;x)I(x; ak+1, . . . , aN ; aN+1).

iv) For N ≥ 1 and ai, a ∈ {0, 1} it is I(a; a1, . . . , aN ; a) = 0.

v) The path inversion is satisfied:

I(a0; a1, . . . , aN ; aN+1) = (−1)NI(aN+1; aN , . . . , a1; a0) .

Definition 4.2. (Coproduct) Define the coproduct ∆ on I by

∆ (I(a0; a1, . . . , aN ; aN+1)) :=
∑


I(a0; ai1 , . . . , aik ; aN+1)⊗

k∏

p=0
I(aip ; aip+1, . . . , aip+1−1; aip+1)


 ,

where the sum on the right runs over all i0 = 0 < i1 < · · · < ik < ik+1 = N + 1 with
0 ≤ k ≤ N .

Proposition 4.1. ([G, Prop. 2.2]) The triple (I,�,∆) is a commutative graded Hopf
algebra over Q.

To calculate ∆ (I(a0; a1, . . . , a8; a9)) one sums over all possible diagrams of the following
form.
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4.1. Formal iterated integrals

a8

a7

a6
a5a4

a3

a2

a1

a0 a9

I(a
7 ; a

8 ; a
9 )

I(a4 ; a5 , a6 ; a7)

I(a
1; a

2,
a 3; a

4)

I
(a

0;
a 1

)

Figure 4.1: One diagram for the calculation of ∆ (I(a0; a1, . . . , a8; a9)). It gives the term
I(a0; a1, a4, a7; a9)⊗ I(a0; a1)I(a1; a2, a3; a4)I(a4; a5, a6; a7)I(a7; a8; a9) .

For our purpose it will be important to consider the quotient space1

I1 = I/I(1; 0; 0)I .

Let us denote by
I(a0; a1, . . . , aN ; aN+1)

an image of I(a0; a1, . . . , aN ; aN+1) in I1. The quotient map I → I1 induces a Hopf algebra
structure on I1, but for our application we just need that for any w1, w2 ∈ I1, one has
∆(w1 � w2) = ∆(w1) � ∆(w2). The coproduct on I1 is given by the same formula as
before by replacing I with I. For integers n ≥ 0, s1, . . . , sr ≥ 1, we set

In(s1, . . . , sr) := I(1; 0, 0, . . . , 1︸ ︷︷ ︸
s1

, . . . , 0, 0, . . . , 1︸ ︷︷ ︸
sr

, 0, . . . , 0︸ ︷︷ ︸
n

; 1).

In particular, we write I(s1, . . . , sr) to denote2 I0(s1, . . . , sr).

Proposition 4.2. ([BT, Eq. (3.5),(3.6) and Prop. 3.5])

i) We have In(∅) = 0 if n ≥ 1 or 1 if n = 0.
1If one likes to interpret the integrals as real integrals, then the passage from I to I1 regularizes these

integrals such that "− log(0) =
∫

1>t>0
dt
t := 0".

2This notion fits well with the iterated integral expression of multiple zeta values. Recall that

ζ(2, 3) =
∫

1>t1>···>t5>0

dt1
t1
· dt2

1− t2︸ ︷︷ ︸
2

· dt3
t3
· dt4
t4
· dt5

1− t5︸ ︷︷ ︸
3

.

This corresponds to I(2, 3) (but is of course not the same since the I are formal symbols).
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Chapter 4. Regularizations of multiple Eisenstein series

ii) For integers n ≥ 0, s1, . . . , sr ≥ 1,

In(s1, . . . , sr) = (−1)n
∗∑(

r∏

j=1

(
kj − 1
sj − 1

))
I(k1, . . . , kr) ,

where the sum runs over all k1 + · · ·+ kr = s1 + · · ·+ sr + n with k1, . . . , kr ≥ 1.

iii) The set {I(s1, . . . , sr) | r ≥ 0, si ≥ 1} forms a basis of the space I1.

We give an example for ii): In I1 it is I(1; 0; 0) = 0 and therefore

0 = I(1; 0; 0)I(1; 0, 1; 0)

= I(1; 0, 0, 1; 0) + I(1; 0, 0, 1; 0) + I(1; 0, 1, 0; 0)

= 2I(3) + I1(2)

which gives I1(2) = −2I(3) = (−1)1
(

2
1

)
I(3).

Remark 4.3. Statement iii) in Proposition 4.3 basically states that we can identify I1

with H1 by sending I(s1, . . . , sl) to zs1 . . . zsl . In other words we can equip H1 with the
coproduct ∆. Instead of working with I we will use this identification in the next section,
when defining the shuffle regularized multiple Eisenstein series.

Example 4.4. In the following we are going to calculate ∆(I(3, 2)) = ∆(I(1; 0, 0, 1, 0, 1; 0)).
Therefore we have to determine all possible markings of the diagram

where the corresponding summand in the coproduct does not vanish. For simplicity we
draw ◦ to denote a 0 and • to denote a 1. We will consider the 4 = 22 ways of marking the
two • in the top part of the circle separately. As mentioned in the introduction, we want to
compare the coproduct to the Fourier expansion of multiple Eisenstein series. Therefore,
in this case we also calculate the expansion of G3,2(τ) using the construction described in
Section 1.2. Recall that we also had the 4 different parts GRR

3,2 , GUR
3,2 , GRU

3,2 and GUU
3,2 . We

will see that the number and positions of the marked • correspond to the number and
positions of the letter U in the word w of Gw.

i) Diagrams with no marked •:
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4.1. Formal iterated integrals

Corresponding sum in the coproduct:

I(0; ∅; 1)⊗ I(1; 0, 1, 0, 0, 1; 0) = 1⊗ I(2, 3) .

The part of the Fourier expansion of G3,2 which is associated to this, is the one with
no U "occurring", i.e. GRR

3,2 (τ) = ζ(3, 2).

ii) Diagrams with the first • marked:

Corresponding sum in the coproduct:

I(1; 0, 0, 1; 0)⊗
(
I(1; 0) · I(0; 0) · I(0; 1) · I(1; 0, 1; 0)

)
= I(3)⊗ I(2) .

The associated part of the Fourier expansion of G3,2 is GUR
3,2 (τ) = g3(τ) · ζ(2).

iii) Diagrams with the second • marked:

Corresponding sum in the coproduct:

I(1; 0, 1; 0)⊗
(
I(1; 0, 0, 1; 0) · I(0; 1) · I(1; 0)

)

+I(1; 0, 1; 0)⊗
(
I(1; 0) · I(0; 0, 1, 0; 1) · I(1; 0)

)

+I(1; 0, 0, 1; 0)⊗
(
I(1; 0) · I(0; 0) · I(0; 1, 0; 1) · I(1; 0)

)

= I(2)⊗ I(3)− I(2)⊗ I1(2) + I(3)⊗ I(2) ,
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Chapter 4. Regularizations of multiple Eisenstein series

where we used I(0, 0, 1, 0; 1) = −I1(2) and I(0; 1, 0; 1) = (−1)2I(1; 0, 1; 0) = I(2).
Together with I1(2) = −2I(3) this gives

3I(2)⊗ I(3) + I(3)⊗ I(2) .

Also the associated part of the Fourier expansion is the most complicated one. We
had GRU

3,2 (τ) = ∑
m>0 Ψ3,2(mτ) and with (1.6) we derived Ψ3,2(x) = 3Ψ2(x) · ζ(3) +

Ψ3(x) · ζ(2), i.e.
GRU

3,2 (τ) = 3g2(τ) · ζ(3) + g3(τ) · ζ(2) .

iv) Diagrams with both • marked:

Corresponding sum in the coproduct: I(2, 3) ⊗ 1. The associated part of the Fourier
expansion of G3,2 is GUU

3,2 (τ) = g3,2(τ).

Summing all 4 parts together we obtain for the coproduct

∆(I(3, 2)) = 1⊗ I(2, 3) + 3I(2)⊗ I(3) + 2I(3)⊗ I(2) + I(2, 3)⊗ 1

and for the Fourier expansion of G2,3(τ):

G3,2(τ) = ζ(3, 2) + 3g2(τ)ζ(3) + 2g3(τ)ζ(2) + g3,2(τ) .

This shows that the left factors of the terms in the coproduct corresponds to the functions
g and the right factors to the multiple zeta values. We will use this in the next section to
define shuffle regularized multiple Eisenstein series.

4.3 Shuffle regularized multiple Eisenstein series
In this section we present the definition of shuffle regularized multiple Eisenstein series
as it was done in [BT] together with the simplification developed in [Ba2]. We use the
observation of the section before and use the coproduct ∆ of formal iterated integrals
to define these series. As mentioned in Remark 4.4 we can equip the space H1 with
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4.3. Shuffle regularized multiple Eisenstein series

the coproduct ∆ instead of working with the space I1. Denote by MZB ⊂ C[[q]] the
space of all formal power series in q which can be written as a Q-linear combination of
products of multiple zeta values, powers of (−2πi) and bi-brackets. In the following, we
set q = exp(2πiτ) with τ being an element in the upper half-plane. Since the coefficient of
bi-brackets just have polynomials growth, the elements in MZB and BD can be viewed
as holomorphic functions in the upper half-plane with this identification.
In analogy to the map Z� : (H1,�) → MZ of shuffle regularized multiple zeta values
(Proposition 1.2), the map g� : (H1,�) → Q[2πi][[q]] defined on the generators zt1 . . . ztl
by

g�(zt1 . . . ztm) = g�t1+...+tm(τ) := (−2πi)t1+···+tm [t1, . . . , tm]� ,

is also an algebra homomorphism by Theorem 3.15.
With this notation we can recall the definition of G� from [Ba2] (which is a variant of the
definition in [BT], where the authors did not use bi-brackets and the shuffle bracket).

Definition 4.4. For integers s1, . . . , sl ≥ 1, define the functions G�s1,...,sl
(τ) ∈MZB, called

shuffle regularized multiple Eisenstein series, as

G�s1,...,sl
(τ) := m

(
(Z� ⊗ g�) ◦∆

(
zs1 . . . zsl

))
,

where m denotes the multiplication given by m : a⊗ b 7→ a · b.

We can view G� as an algebra homomorphism G� : (H1,�) → MZB such that the
following diagram commutes

(H1,�) ∆ //

G�

��

(H1,�)⊗ (H1,�)
Z�⊗ g�

��
MZB MZ⊗Q[2πi][[q]]m

oo

Theorem 4.5. ([Ba2, Thm. 6.5 ], [BT, Thm. 1.1, 1.2]) For all s1, . . . , sl ≥ 1 the shuffle
regularized multiple Eisenstein series G�s1,...,sl

have the following properties:

i) They are holomorphic functions on the upper half-plane having a Fourier expansion
with the shuffle regularized multiple zeta values as the constant term.

ii) They fulfill the shuffle product.

iii) For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G�s1,...,sl
(τ) = Gs1,...,sl(τ)

and therefore they fulfill the stuffle product in these cases.
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Chapter 4. Regularizations of multiple Eisenstein series

Parts i) and ii) in this theorem follow directly by definition. The important part here is iii),
which states that the connection of the Fourier expansion and the coproduct, as illustrated
in Example 4.5, holds in general. It also proves that the shuffle regularized multiple
Eisenstein series fulfill the stuffle product in many cases. Though the exact failure of the
stuffle product of these series is unknown so far.

4.5 Stuffle regularized multiple Eisenstein series

Motivated by the calculation of the Fourier expansion of multiple Eisenstein series described
in Section 1.2 we consider the following construction.

Construction 4.6. Given a Q-algebra (A, ·) and a family of homomorphism

{w 7→ fw(m)}m∈N

from (H1, ∗) to (A, ·), we define for w ∈ H1 and M ∈ N

Fw(M) :=
∑

1≤k≤l(w)
w1...wk=w

M>m1>···>mk>0

fw1(m1) . . . fwk(mk) ∈ A ,

where l(w) denotes the length of the word w and w1 . . . wk = w is a decomposition of w
into k words in H1.

Proposition 4.7. ([Ba2, Prop. 6.8]) For all M ∈ N the assignment w 7→ Fw(M), de-
scribed above, determines an algebra homomorphism from (H1, ∗) to (A, ·). In particular
{w 7→ Fw(m)}m∈N is again a family of homomorphism as used in Construction 4.8.

For a word w = zs1 . . . zsl ∈ H1 we also write in the following fs1,...,sl(m) := fw(m) and
similarly Fs1,...,sl(M) := Fw(M).

Example 4.8. Let fw(m) be as in Construction 4.8. In small lengths the Fw are given by

Fs1(M) =
∑

M>m1>0
fs1(m1) , Fs1,s2(M) =

∑

M>m1>0
fs1,s2(m1) +

∑

M>m1>m2>0
fs1(m1)fs2(m2)
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4.5. Stuffle regularized multiple Eisenstein series

and one can check directly by the use of the stuffle product for the fw that

Fs1(M) · Fs2(M) =
∑

M>m1>0
fs1(m1) ·

∑

M>m2>0
fs2(m2)

=
∑

M>m1>m2>0
fs1(m1)fs2(m2) +

∑

M>m2>m1>0
fs2(m2)fs1(m1) +

∑

M>m1>0
fs1(m1)fs2(m1)

=
∑

M>m1>m2>0
fs1(m1)fs2(m2) +

∑

M>m2>m1>0
fs2(m2)fs1(m1)

+
∑

M>m1>0
(fs1,s2(m1) + fs2,s1(m1) + fs1+s2(m1))

= Fs1,s2(M) + Fs2,s1(M) + Fs1+s2(M) .

Let us now give an explicit example for maps fw in which we are interested. Recall
(Definition 1.5) that for integers s1, . . . , sl ≥ 2 we defined the multitangent function by

Ψs1,...,sl(z) =
∑

n1>···>nl
nj∈Z

1
(z + n1)s1 · · · (z + nl)sl

.

In [Bo], where these functions were introduced, the author uses the notation T es1,...,sl(z)
which corresponds to our notation Ψs1,...,sl(z). It was shown there that the series Ψs1,...,sl(z)
converges absolutely when s1, . . . , sl ≥ 2. These functions fulfill (for the cases they are
defined) the stuffle product. As explained in Section 1.2 the multitangent functions appear
in the calculation of the Fourier expansion of the multiple Eisenstein series Gs1,...,sl , for
example in length two it is

Gs1,s2(τ) = ζ(s1, s2)+ζ(s1)
∑

m1>0
Ψs2(m1τ)+

∑

m1>0
Ψs1,s2(m1τ)+

∑

m1>m2>0
Ψs1(m1τ)Ψs2(m2τ) .

One nice result of [Bo] is a regularization of the multitangent function to get a definition of
Ψs1,...,sl(z) for all s1, . . . , sl ∈ N. We will use this result together with the above construction
to recover the Fourier expansion of the multiple Eisenstein series.

Theorem 4.9. ([Bo]) For all s1, . . . , sl ∈ N there exist holomorphic functions Ψs1,...,sl on
H with the following properties

i) Setting q = e2πiτ for τ ∈ H the map w 7→ Ψw(τ) defines an algebra homomorphism
from (H1, ∗) to (C[[q]], ·).

ii) In the case s1, . . . , sl ≥ 2 the Ψs1,...,sl are given by the multitangent functions in
Definition 1.5.

55



Chapter 4. Regularizations of multiple Eisenstein series

iii) The monotangents functions have the q-expansion given by

Ψ1(τ) = π

tan(πτ) = (−2πi)
(

1
2 +

∑

n>0
qn
)
, Ψk(τ) = (−2πi)k

(k − 1)!
∑

n>0
nk−1qn for k ≥ 2.

iv) (Reduction into monotangent function) Every Ψs1,...,sl(τ) can be written as a MZ-
linear combination of monotangent functions. There are explicit εs1,...,sl

i,k ∈MZ s.th.

Ψs1,...,sl(τ) = δs1,...,sl +
l∑

i=1

si∑

k=1
εs1,...,sl
i,k Ψk(τ) ,

where δs1,...,sl = (πi)l
l! if s1 = · · · = sl = 1 and l even and δs1,...,sl = 0 otherwise. For

s1 > 1 and sl > 1 the sum on the right starts at k = 2, i.e. there are no Ψ1(τ)
appearing and therefore there is no constant term in the q-expansion.

Proof. This is just a summary of the results in Section 6 and 7 of [Bo]. The last statement
iv) is given by Theorem 6 in [Bo].

Due to iv) in the Theorem the calculation of the Fourier expansion of multiple Eisenstein
series, where ordered sums of multitangent functions appear, reduces to ordered sums of
monotangent functions. The connection of these sums to the brackets, i.e. to the functions
g, is given by the following fact which can be seen by using iii) of the above Theorem. For
n1, . . . , nr ≥ 2 it is

gs1,...,sr(τ) =
∑

m1>···>ml>0
Ψs1(m1τ) . . .Ψsl(mlτ) .

For w ∈ H1 we now use the Construction 4.8 with A = C[[q]] and the family of homomor-
phism {w 7→ Ψw(nτ)}n∈N (See Theorem 4.11 i) ) to define

g∗,M(w) := (−2πi)|w|
∑

1≤k≤l(w)
w1...wk=w

∑

M>m1>···>mk>0
Ψw1(m1τ) . . .Ψwk(mkτ) .

From Proposition 4.9 it follows that for all M ∈ N the map g∗,M is an algebra homomor-
phism from (H1, ∗) to C[[q]].
To define stuffle regularized multiple Eisenstein series we need the following: For an arbi-
trary quasi-shuffle algebra Q〈A〉 define the following coproduct for a word w

∆H(w) =
∑

uv=w
u⊗ v .
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4.5. Stuffle regularized multiple Eisenstein series

Then it is known due to Hoffman ([H]) that the space (Q〈A〉,�,∆H) has the structure of
a bialgebra. With this we try to mimic the definition of the G� and use the coproduct
structure on the space (H1, ∗,∆H) to define for M ≥ 0 the function G∗,M and then take
the limit M → ∞ to obtain the stuffle regularized multiple Eisenstein series. For this we
consider the following diagram

(H1, ∗) ∆H //

G∗,M
��

(H1, ∗)⊗ (H1, ∗)
g∗,M⊗Z∗
��

C[[q]] C[[q]]⊗MZm
oo

with the above algebra homomorphism g∗,M : (H1, ∗)→ C[[q]].

Definition 4.6. For integers s1, . . . , sl ≥ 1 and M ≥ 1, we define the q-series G∗,Ms1,...,sr ∈
C[[q]] as the image of the word w = zs1 . . . zsl ∈ H1 under the algebra homomorphism
(Z∗ ⊗ g∗,M) ◦∆H :

G∗,Ms1,...,sl
(τ) := m

(
(g∗,M ⊗ Z∗) ◦∆H

(
w
))
∈ C[[q]] .

For s1, . . . , sl ≥ 2 the limit

G∗s1,...,sl
(τ) := lim

M→∞
G∗,Ms1,...,sl

(τ) (4.1)

exists and we have Gs1,...,sl = G∗s1,...,sl
= G�s1,...,sl

([Ba2, Prop. 6.13]).

Remark 4.10. The open question is for what general s1, . . . , sl the limit in (4.1) exists.
It is believed that this is exactly the case for s1 ≥ 2 and s2, . . . , sl ≥ 1 as explained in
Remark 6.14 in [Ba2]. This would be the case if Ψ1,...,1 are the only multitangent functions
with a constant term in the decomposition of Theorem 4.11 iv). That this is the case is
remarked, without a proof, in [Bo2] in the last sentence of page 3.

Theorem 11. ([Ba2]) For all s1, . . . , sl ∈ N and M ∈ N the G∗,Ms1,...,sl
∈ C[[q]] have the

following properties:

i) Their product can be expressed in terms of the stuffle product.

ii) In the case where the limit G∗s1,...,sl
:= limM→∞G∗,Ms1,...,sl

exists, the functions G∗s1,...,sl

are elements inMZB.

iii) For s1, . . . , sl ≥ 2 the G∗s1,...,sl
exist and equal the classical multiple Eisenstein series

Gs1,...,sl(τ) = G∗s1,...,sl
(τ) .
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Chapter 4. Regularizations of multiple Eisenstein series

4.7 Double shuffle relations for regularized multiple
Eisenstein series

By Theorem 4.7 we know that the product of two shuffle regularized multiple Eisenstein
series G�s1,...,sl

with s1, . . . , sl ≥ 1 can be expressed by using the shuffle product formula.
This means we can for example replace every ζ by G� in the shuffle product (0.4) of
multiple zeta values and obtain

G�2 ·G�3 = G�2,3 + 3G�3,2 + 6G�4,1 . (4.2)

Due to Theorem 4.7 iii) we know that G�s1,...,sl
= Gs1,...,sl whenever s1, . . . , sl ≥ 2. Since the

product of two multiple Eisenstein series Gs1,...,sl can be expressed using the stuffle product
formula we also have

G�2 ·G�3 = G2 ·G3 = G2,3 +G3,2 +G5

= G�2,3 +G�3,2 +G�5 .
(4.3)

Combining (4.2) and (4.3) we obtain the relation G�5 = 2G�3,2 + 6G�4,1. In the following we
will call these relations, i.e. the relations obtained by writing the product of two G�s1,...,sl

with s1, . . . , sl ≥ 2 as the stuffle and shuffle product, restricted double shuffle relations.
We know that multiple zeta values fulfill even more linear relations, in particular we can
express the product of two multiple zeta values ζ(s1, . . . , sl) in two different ways whenever
s1 ≥ 2 and s2, . . . , sl ≥ 1. A natural question therefore is, in which cases the G� also fulfill
these additional relations. The answer to this question is that some are satisfied and some
are not, as the following will show.
In [Ba2, Example 6.15] it is shown that G�2,1,2 = G∗2,1,2 , G�2,1 = G∗2,1, G�2,2,1 = G∗2,2,1 and
G�4,1 = G∗4,1. Since the product of two G∗ can be expressed using the stuffle product we
obtain

G�2 ·G�2,1 = G∗2 ·G∗2,1
= G∗2,1,2 + 2G∗2,2,1 +G∗4,1 +G∗2,3

= G�2,1,2 + 2G�2,2,1 +G�4,1 +G�2,3 .

(4.4)

Using also the shuffle product to express G�2 · G�2,1 we obtain a linear relation in weight
5 which is not covered by the restricted double shuffle relations. This linear relation was
numerically observed in [BT] but could not be proven there. So far it is not known exactly

58



4.7. Double shuffle relations for regularized multiple Eisenstein series

which products of the G� can be written in terms of stuffle products.

We end this chapter by comparing different versions of the double shuffle relations and
explain, why multiple Eisenstein series can’t fulfill every double shuffle relation of multiple
zeta values. For this we write for words u, v ∈ H1

ds(u, v) := u� v − u ∗ v ∈ H1 .

Recall that by H0 we denote the algebra of all admissible words, i.e. H0 = 1 · Q + xHy.
Additionally we set H2 = Q〈{z2, z3, . . . }〉 to be the span of all words in H1 with no z1

occurring, i.e. the words for which the multiple Eisenstein series G exists. These are also
the words for which the product of two multiple Eisenstein series can be expressed as the
shuffle and stuffle product by Theorem 4.7. Denote by |w| ∈ H1 the length of the word w
with respect to the alphabet {x, y} and define

edsk :=
{

ds(u, v) ∈ H0 | |u|+ |v| = k, u ∈ H0, v ∈ H0 ∪ {z1}
}
,

fdsk :=
{

ds(u, v) ∈ H0 | |u|+ |v| = k, u, v ∈ H0
}
,

rdsk :=
{

ds(u, v) ∈ H0 | |u|+ |v| = k, u, v ∈ H2
}
.

Also set eds = ⋃
k>0 edsk and similarly fds and rds. These spaces can be seen as the words

in H0 corresponding to the extended1-, finite- and the restricted double shuffle relations.
We have the inclusions

rdsk ⊂ fdsk ⊂ edsk .

View ζ as a map H0 → MZ by sending the word zs1 . . . zsl to ζ(s1, . . . , sl). It is known
([IKZ, Thm. 2]), that edsk is in the kernel of the map ζ and it is expected (Statement (3)
after Conjecture 1 in [IKZ]) that actually edsk = ker(ζ). Viewing G� in a similar way as
a map H0 → MZB, we know that rdsk is contained in the kernel of this map (Theorem
4.7 iv)). But due to (0.8) we also have ds(z2, z2z1) ∈ ker(G�) which is not an element of
rds5. In [Ba] Example 6.15 ii) it is shown that there are also elements in fdsk ⊂ edsk, that
are not in the kernel of G�. We therefore expect

rds ( kerG� ( eds
1In [IKZ] the authors introduced the notion of extended double shuffle relations. We use this notion

here for smaller subset of these relations given there as the relations described in statement (3) on page
315.
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and the above examples show, that it seems to be crucial to understand for which indices
we have G� = G∗ to answer these questions.
We now discuss applications of the extended double shuffle relations to the classical theory
of (quasi-)modular forms. As we have seen in the introduction it is known due to Euler
that

ζ(2)2 = 5
2ζ(4) , ζ(4)2 = 7

6ζ(8) , ζ(6)2 = 715
691ζ(12) . (4.5)

In the following, we want to show how to prove these relations using extended double
shuffle relations and argue why for multiple Eisenstein series the second is fulfilled but the
first and the last equation of (4.5) are not.

i) The relation ζ(2)2 = 5
2ζ(4) can be proven in the following way by using double shuffle

relations. It is z2 ∗ z2 = 2 ds(z3, z1)− 1
2 ds(z2, z2) + 5

2z4, since

ds(z3, z1) = z3z1 + z2z2 − z4 ,

ds(z2, z2) = 4z3z1 − z4 ,

z2 ∗ z2 = 2z2z2 + z4 .

Applying the map ζ we therefore deduce

ζ(2)2 = ζ(z2 ∗ z2) = ζ
(

2 ds(z3, z1)− 1
2 ds(z2, z2) + 5

2z4

)
= 5

2ζ(4) .

This relation is not true for Eisenstein series. Though ds(z2, z2) is in the kernel of G�

the element ds(z3, z1) is not. In fact, using the explicit formula for the Fourier expan-
sion of G�3,1 and G�2,2 together with Proposition 2.12 for d[2] we obtain G�(ds(z3, z1)) =
6ζ(2) dG2, where as before d = q d

dq
. Using this we get

G2
2 = G�(z2 ∗ z2) = G�

(
2 ds(z3, z1)− 1

2 ds(z2, z2) + 5
2z4

)
= 12ζ(2) dG2 + 5

2G4 .

This is a well-known fact in the theory of quasi-modular forms ([Za]).

ii) Similarly to the above example one can prove the relation ζ(4)2 = 7
6ζ(8) by checking

that

z4 ∗ z4 = 2
3 ds(z4, z4)− 1

2 ds(z3, z5) + 7
6z8

and since ds(z4, z4), ds(z3, z5) ∈ rds8 ⊂ kerG� we also derive G4
2 = 7

6G8 by applying
the map G� to this equation.
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iii) To prove the relation ζ(6)2 = 715
691ζ(12) in addition to the double shuffles of the form

ds(za, zb) double shuffles of the form ds(zazb, zc) are needed as well. This follows
indirectly from the results obtained in [GKZ]. Using the computer one can check that

z6 ∗ z6 = 2z6z6 + z12 = 715
691z12 + 1

22 · 19 · 113 · 691 · (R + E)

with R ∈ rds12 and E ∈ eds12 \ rds12 being the quite complicated elements

R = 2005598 ds(z6, z6)− 8733254 ds(z7, z5) + 8128450 ds(z8, z4) + 5121589 ds(z9, z3)

+ 16364863 ds(z10, z2) + 2657760 ds(z2z8, z2) + 5220600 ds(z3z7, z2)

+ 12711531 ds(z4z6, z2) + 10460184 ds(z5z5, z2) + 18601119 ds(z6z4, z2)

+ 33877826 ds(z7z3, z2) + 39496002 ds(z8z2, z2)− 13288800 ds(z2z2, z8)

− 5220600 ds(z2z7, z3)− 5734750 ds(z3z6, z3)− 84659 ds(z4z5, z3)

+ 2820467 ds(z5z4, z3)− 5486485 ds(z6z3, z3) + 8462489 ds(z7z2, z3)

− 6067131 ds(z2z6, z4)− 7532671 ds(z3z5, z4)− 10879336 ds(z4z3, z5)

− 5151234 ds(z4z4, z4) + 3440519 ds(z5z3, z4)− 1458819 ds(z6z2, z4)

+ 2259096 ds(z5z2, z5)− 4319105 ds(z3z4, z5)− 778598 ds(z5z2, z5)

+ 7609581 ds(z2z4, z6) + 13064898 ds(z3z3, z6)− 1281420 ds(z3z2, z7) ,

E = −22681134 ds(z11, z1) + 10631040 ds(z3z8, z1) + 4241200 ds(z7z1, z4)

+ 31893120 ds(z4z7, z1) + 58185960 ds(z5z6, z1) + 78309000 ds(z6z5, z1)

+ 77976780 ds(z7z4, z1) + 44849700 ds(z8z3, z1)− 13288800 ds(z9z2, z1)

− 15946560 ds(z10z1, z1) + 75052824 ds(z9z1, z2) + 19477164 ds(z8z1, z3)

− 12951740 ds(z6z1, z5)− 10631040 ds(z2z1, z9)

Here the elements E and R are in the kernel of ζ but E, in contrast to R, is not in
the kernel of G�. The defect here is given by the cusp form ∆ in weight 12 as one can
derive

G�(E) = −2147
1200(−2πi)12∆ .

It is still an open problem how to derive these Euler relations in general by using double
shuffle relations. The last example shows that this also seems to be very complicated. But
as the examples above show, this might be of great interest to understand the connection
of modular forms and multiple zeta values. This together with the question which double
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shuffle relations are fulfilled by multiple Eisenstein series will be considered in upcoming
works by the author.
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Chapter 5

q-analogues of multiple zeta values

In general, a q-analogue of an mathematical object is a generalization involving a new
parameter q that returns the original object in the limit as q → 1. The easiest example of
such an generalization is the q-analogue of a natural number n ∈ N given by

[n]q := 1− qn
1− q = 1 + q + · · ·+ qn−1 .

Clearly this gives back the original number n as limq→1[n]q = n.
Several different models for q-analogues of multiple zeta values have been studied in recent
years. A good overview of them can be found in [Zh]. There are different motivations to
study q-analogues of multiple zeta values.
That our brackets can be seen as q-analogue of multiple zeta values somehow occurred by
accident since their original motivation was their appearance in the Fourier expansion of
multiple Eisenstein series. But as turned out, seeing them as q-analogues gives a direct
connection to multiple zeta values. In this chapter we first show how the brackets can be
seen as a q-analogue of multiple zeta values and then discuss how one can obtain relations
between multiple zeta values using the results obtained in [BK]. The second section will
be devoted to connecting the brackets to other q-analogues.

5.1 Brackets as q-analogues of MZV and the map Zk

Define for k ∈ N the map Zk : Q[[q]]→ R ∪ {∞} by

Zk(f) = lim
q→1

(1− q)kf(q) .
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Since we have seen that the brackets can be written as

[s1, . . . , sl] = 1
(s1 − 1)! . . . (sl − 1)!

∑

n1>···>nl>0

l∏

j=1

qnjPsj−1 (qnj)
(1− qnj)sj

and using Pk−1(1) = (k − 1)! and interchanging the summation and the limit we derive
([BK, Prop. 6.4]), that for s1 > 1, i.e. [s1, . . . , sl] ∈ qMZ

Zk ([s1, . . . , sl]) =



ζ(s1, . . . , sl) , k = s1 + · · ·+ sl,

0 , k > s1 + · · ·+ sl .

Due toMD = qMZ[ [1] ] (Theorem 2.11) we can define a well-defined map1 on the whole
spaceMD by

Zalg
k : FilWk (MD)→ R[T ]

Zalg
k




k∑

j=0
gj[1]k−j


 =

k∑

j=0
Zj(gj)T k−j ∈ R[T ]

where gj ∈ FilWj (qMZ).
Every relation between multiple zeta values of weight k is contained in the kernel of the
map Zk. Therefore the kernel of Zk was studied in [BK].

Theorem 5.1. ([BK, Thm. 1.13]) For the kernel of Zalg
k ∈ FilWk (MD) we have

i) If for [s1, . . . , sl] it holds s1 + · · ·+ sl < k, then Zalg
k [s1, . . . , sl] = 0.

ii) For any f ∈ FilWk−2(MD) we have Zalg
k d(f) = 0, i.e., d FilWk−2(MD) ⊆ kerZk.

iii) If f ∈ FilWk (MD) is a cusp form for SL2(Z), then Zalg
k (f) = 0.

Example 5.2. We illustrate some applications for Theorem 5.1. For this we recall iden-
tities for the derivatives and relations of brackets as they were given in [BK]. All of them
can be obtained by using the results explained in Chapter 2.

d[1] = [3] + 1
2[2]− [2, 1] , (5.1)

d[2] = [4] + 2[3]− 1
6[2]− 4[3, 1] , (5.2)

d[2] = 2[4] + [3] + 1
6[2]− 2[2, 2]− 2[3, 1] , (5.3)

d[1, 1] = [3, 1] + 3
2[2, 1] + 1

2[1, 2] + [1, 3]− 2[2, 1, 1]− [1, 2, 1] , (5.4)

[8] = 1
40[4]− 1

252[2] + 12[4, 4] . (5.5)

1This map is similar to the evaluation map Z∗ : H1 → R[T ], of stuffle regularized multiple zeta values,
given in Proposition 1 in [IKZ]. We used this map in the previous chapters (Proposition 1.2) with T = 0.
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Using Theorem 5.1 as immediate consequences and without any difficulties we recover the
following well-known identities for multiple zeta values.

i) If we apply Z3 to (5.1) we deduce ζ(3) = ζ(2, 1).

ii) If we apply Z4 to (5.2) and (5.3) we deduce ζ(4) = 4ζ(3, 1) = 4
3ζ(2, 2).

iii) The identity (5.4) reads in qMZ[ [1] ] as

d[1, 1] =
(

[3]− [2, 1] + 1
2[2]

)
· [1] + 2[3, 1]− 1

2[4]− 1
2[2, 1]− 1

2[3] + 1
3[2] .

Applying Zalg
4 we deduce again the two relations ζ(3) = ζ(2, 1) and 4ζ(3, 1) = ζ(4),

since by Theorem 5.1 we have

Zalg
4 (d[1, 1]) = (ζ(3)− ζ(2, 1))T − 1

2ζ(4) + 2ζ(3, 1) = 0 .

iv) If we apply Z8 to (5.5) we deduce ζ(8) = 12ζ(4, 4).

v) As we have seen in Proposition 2.13 the cusp form ∆ can be written as

− 1
26 · 5 · 691∆ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1
1408[2]− 83

14400[4] + 187
6048[6]− 7

120[8]− 5197
691 [12] . (5.6)

Letting Z12 act on both sides of (5.6) one obtains the relation (0.6)
5197
691 ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) .

But as mentioned in the introduction there are also elements in the kernel of Zk that are
not covered by Theorem 5.1. In weight 4 one has the relation of multiple zeta values
ζ(4) = ζ(2, 1, 1), i.e. it is [4] − [2, 1, 1] ∈ kerZ4. But this element can’t be written as
a linear combination of cusp forms, lower weight brackets or derivatives. But using the
double shuffle relations for bi-brackets described in Section 3.2 one can prove1 that

[4]− [2, 1, 1] = 1
2 (d[1] + d[2])− 1

3[2]− [3] +
[
2, 1
1, 0

]
. (5.7)

1That the last term
[2,1

1,0
]
in (5.7) is in the kernel of Z4 can be proven in the following way: In Proposition

7.2 [BK] it is shown, that an element f =
∑

n>0 anq
n with an = O(nm) and m < k − 1 is in the kernel of

Zk. Here we have
[
2, 1
1, 0

]
=

∑

u1>u2>0
v1,v2>0

v1u1q
v1u1+v2u2 <

∑

u1,u10
v1,v2>0

v1u1q
v1u1+v2u2 = d[1] · [1] ,

where the < is meant to be coefficient wise. Since the coefficients of d[1] · [1] grow like n2 log(n)2 we
conclude

[2,1
1,0
]
∈ kerZ4.
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Another way to see that many of the bi-brackets of weight k are in the kernel of the map
Zk is the following. Assume that s1 > r1 + 1 and sj ≥ rj + 1 for j = 2, . . . , l, then using
again the representation with the Eulerian polynomials (See also Proposition 1 [Zu]) we
get

Zs1+···+sl

([
s1, . . . , sl
r1, . . . , rl

])
= 1
r1! . . . rl!

ζ(s1 − r1, . . . , sl − rl)

and in particular with this assumption it is
[
s1,...,sl
r1,...,rl

]
∈ kerZs1+···+sl+1.

The study of the kernel Zk is of great interest since it contains every relation of weight k.
We expect that every element in the kernel of Zk can be described using bi-brackets of a
"certain kind" and it seems to be a really interesting question to specify this "certain kind"
explicitly. To determine which bi-brackets are exactly in the kernel of the map Zk and also
which bi-brackets can be written in terms of brackets in qMZ is an open problem. The
naive guess, that exactly the bi-brackets

[
s1,...,sl
r1,...,rl

]
where at least one rj > 0 are elements in

the kernel of Zs1+···+sl+r1+···+rl is wrong, since for example

lim
q→1

(1− q)3
[
1, 1
1, 0

]
=∞ .

5.2 Connection to other q-analogues

In [Zh] the author gives an overview over several different q-analogues of multiple zeta
values. Here we complement his work and focus on aspects related to our brackets. To
compare the brackets to other q-analogues we first generalize the notion of a q-analogue of
multiple zeta values as it was done in [BK2]. This notion of a q-analogue does cover many
but not all q-analogues described in [Zh].
In the following we fix a subset S ⊂ N, which we consider as the support for index entries,
i.e. we assume s1, . . . , sl ∈ S. For each s ∈ S we let Qs(t) ∈ Q[t] be a polynomial with
Qs(0) = 0 and Qs(1) 6= 0. We set Q = {Qs(t)}s∈S. A sum of the form

ZQ(s1, . . . , sl) :=
∑

n1>···>nl>0

l∏

j=1

Qsj(qnj)
(1− qnj)sj (5.8)

with polynomials Qs as before, defines a q-analogue of a multiple zeta-value of weight
k = s1 + · · ·+ sl and length l. Observe only because of Qs1(0) = 0 this defines an element
of Q[[q]]. That these objects are in fact a q-analogue of a multiple zeta-value is justified
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by the following calculation.

lim
q→1

(1− q)kZQ(s1, . . . , sl) =
∑

n1>···>nl>0

l∏

j=1
lim
q→1

(
Qsj(qnj)

(1− q)sj
(1− qnj)sj

)

= Qs1(1) . . . Qsl(1) · ζ(s1, . . . , sl) .

Here we used that lim
q→1

(1− q)s/(1− qn)s = 1/ns and with the same arguments as in [BK]
Proposition 6.4, the above interchange of the limit with the sum can be justified for all
(s1, ..., sl) with s1 > 1. Related definitions for q-analogues of multiple zeta values are given
in [Br], [Ta], [Zu2] and [OOZ]. It is convenient to define ZQ(∅) = 1 and then we denote
the vector space spanned by all these elements by

Z(Q,S) :=
〈
ZQ(s1, . . . , sl)

∣∣∣ l ≥ 0 and s1, . . . , sl ∈ S
〉
Q
. (5.9)

Note by the above convention we have, that Q is contained in this space.

Lemma 5.3. ([BK2, Lemma 2.1]) If for each r, s ∈ S there exists numbers λj(r, s) ∈ Q
such that

Qr(t) ·Qs(t) =
∑

j∈S
1≤j≤r+s

λj(r, s)(1− t)r+s−jQj(t) , (5.10)

then the vector space Z(Q,S) is a Q-algebra.

Theorem 5.4. ([BK2, Thm. 2.4]) Let Z(Q,N>1) be any family of q-analogues of multiple
zeta values as in (5.9), where each Qs(t) ∈ Q is a polynomial with degree at most s − 1,
then

Z(Q,N>1) =MD] ,

where MD] was the in Section 2.2 defined subalgebra of MD spanned by all brackets
[s1, . . . , sl] with sj ≥ 2. Therefore, all such families of q-analogues of multiple zeta values
are Q-subalgebras ofMD.

The following proposition allows one to write an arbitrary element in Z(Q,N>1) as an
linear combination of [s1, . . . , sl] ∈MD].

Proposition 5.5. ([BK2, Prop. 2.5]) Assume k ≥ 2. For 1 ≤ i, j ≤ k − 1 define the
numbers bki,j ∈ Q by

k−1∑

j=1

bki,j
j! t

j :=
(
t+ k − 1− i

k − 1

)
.
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With this it is for 1 ≤ i ≤ k − 1 and QE
j (t) = 1

(j−1)!tPj(t)

ti =
k∑

j=2
bki,j−1(1− t)k−jQE

j (t) .

We give some examples of q-analogues of multiple zeta values, with some being of the above
type.

i) To write the brackets in the above way we choose QE
s (t) = 1

(s−1)!tPs−1(t), where the
Ps(t) are the Eulerian polynomials defined earlier by

tPs−1(t)
(1− t)s =

∞∑

d=1
ds−1td

for s ≥ 0. With this we have for all s1, . . . , sl ∈ N

[s1, ..., sl] :=
∑

n1>...>nl>0

l∏

j=1

QE
sj

(qnj)
(1− qnj)sj .

andMD = Z({QE
s (t))}s,N).

ii) The polynomials QT
s (t) = ts−1 are considered in [Ta],[Zu2] and sums of the form (5.8)

with s1 > 1 and s2, . . . , sl ≥ 1 are studied there. Using Proposition 5.5 every q-analogue
of this type can be written explicitly in terms of brackets.

iii) Okounkov chooses the following polynomials in [O]

QO
s (t) =




t
s
2 s = 2, 4, 6, . . .

t
s−1

2 (1 + t) s = 3, 5, 7, . . . .

and defines for s1, . . . , sl ∈ S = N>1

Z(s) =
∑

n1>···>nl>0

l∏

j=0

QO
sj

(qnj)
(1− qnj)sj .

We write for the space of the Okounkov q-multiple zetas

qMZV = Z({QO
s (t)}s,N>1) .
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Due to Theorem 5.4 we have qMZV =MD]. In [O] Okounkov conjectures, that the space
qMZV is closed under the operator d. In length 1 this is proven in Proposition 2.9 [BK2].

iv) There are also q-analogues which are not of the type as in (5.8). For example, the
model introduced in [OOZ] and further studied in [MMEF]. For s1, . . . , sl ≥ 1 they are
define by

zq(s1, . . . , sl) =
∑

n1>···>nl>0

qn1

(1− qn1)s1 . . . (1− qnl)sl .

It is easy to see, that every zq(s1, . . . , sl) can be written in terms of bi-brackets. For example

zq(2, 1) =
∑

n1>n2>0

qn1

(1− qn1)2(1− qn2) =
∑

n1>n2>0

qn1(qn2 + 1− qn2)
(1− qn1)2(1− qn2)

=
∑

n1>n2>0

qn1qn2

(1− qn1)2(1− qn2) +
∑

n1>n2>0

qn1

(1− qn1)2

= [2, 1] +
∑

n1>0

(n1 − 1)qn1

(1− qn1)2 = [2, 1] +
[
2
1

]
− [2] .

Similarly one can prove zq(2, 1, 1) = [2, 1, 1] − 2[2, 1] +
[

2,1
1,0

]
+
[

2
2

]
− 3

2

[
2
1

]
+ [2]. For higher

weights this also works as illustrated in the following

zq(2, 2) =
∑

n1>n2>0

qn1

(1− qn1)2(1− qn2)2 =
∑

n1>n2>0

qn1(qn2 + 1− qn2)
(1− qn1)2(1− qn2)2

= [2, 2] + zq(2, 1) = [2, 2] + [2, 1] +
[
2
1

]
− [2] .

Using again Proposition 5.5 it becomes clear for arbitrary weights s1, . . . , sl ≥ 2 we can
write zq(s1, . . . , sl) in terms of bi-brackets.

Writing any q-analogue in terms of bi-brackets enables us to use the double shuffle structure
explained in Chapter 3 to obtain linear relations for all of these q-analogues. This is still
work in progress and is not part of this thesis.
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Abstract

We study the algebra MD of generating function for multiple divisor

sums and its connections to multiple zeta values. The generating functions

for multiple divisor sums are formal power series in q with coe�cients in Q

arising from the calculation of the Fourier expansion of multiple Eisenstein

series. We show that the algebra MD is a �ltered algebra equipped with

a derivation and use this derivation to prove linear relations in MD. The

(quasi-)modular forms for the full modular group SL2(Z) constitute a sub-

algebra ofMD this also yields linear relations inMD. Generating functions

of multiple divisor sums can be seen as a q-analogue of multiple zeta values.

Studying a certain map from this algebra into the real numbers we will derive

a new explanation for relations between multiple zeta values, including those

in length 2, coming from modular forms.
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1 Introduction

Multiple zeta values are natural generalizations of the Riemann zeta values that
are de�ned for integers s1 > 1 and si ≥ 1 for i > 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1

ns11 . . . nsll
.

Because of its occurence in various �elds of mathematics and physics these real
numbers are of particular interest. The Q-vector space of all multiple zeta values
of weight k is then given by

MZk :=
〈
ζ(s1, . . . , sl)

∣∣ s1 + · · ·+ sl = k and l > 0
〉
Q
.

It is well known that the product of two multiple zeta values can be written as a
linear combination of multiple zeta values of the same weight by using the stu�e
or shu�e relations. Thus they generate a Q-algebraMZ. There are beautiful con-
jectures about the dimensions of �nite dimensional subspaces ofMZ determined
by the weight and the depth �ltration.
In [GKZ] Gangl, Kaneko and Zagier introduced double Eisenstein series, which
were generalized to multiple Eisenstein series in [Ba1]. These series are sums over
certain positive sectors in the multiple product of a lattice. They give natural
generalizations of the well-known Eisenstein series from the theory of modular
forms similar as the multiple zeta values generalize special values of the Riemann
zeta function. These functions do by construction satisfy the stu�e relations. But
due to convergence problems the shu�e relation needs some modi�cation; it seems
to hold up to an error term which involves derivatives. The motivation behind
this article is the idea to understand these corrections algebraically, although this
will not be discussed here furthermore (c.f. [BBK], [BT]). It has been shown in
[Ba1] that multiple Eisenstein series have a Fourier expansion, which decomposes
as a MZ-linear combination of generating functions for multiple divisor sums
[s1, . . . , sl] which we also refer to as brackets in this paper. For example the
double Eisenstein series G4,4 and the triple Eisenstein series G3,2,2 are given by

G4,4(τ) =ζ(4, 4) + 20ζ(6)(−2πi)2[2](qτ ) + 3ζ(4)(−2πi)4[4](qτ ) + (−2πi)8[4, 4](qτ ) ,

G3,2,2(τ) =ζ(3, 2, 2) +

(
54

5
ζ(2, 3) +

51

5
ζ(3, 2)

)
(−2πi)2[2](qτ ) +

16

3
ζ(2, 2)(−2πi)3[3](qτ )

+ 3ζ(3)(−2πi)4[2, 2](qτ ) + 4ζ(2)(−2πi)5[3, 2](qτ ) + (−2πi)7[3, 2, 2](qτ ) ,

where τ ∈ H, qτ = exp(2πiτ) and the brackets [s1, . . . , sl] are kind of a combinato-
rial object1 that will be described now. As a generalization of the classical divisor

1In [GKZ] certain linear combinations of these functions were called combinatorial Eisenstein
series

2
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sums we de�ne for natural numbers r1, . . . , rl ∈ N0 = {0, 1, 2, . . . } the multiple

divisor sum by

σr1,...,rl(n) =
∑

u1v1+···+ulvl=n
u1>···>ul>0

vr11 . . . vrll . (1.1)

For any integers s1, . . . , sl > 0 the generating function for the multiple divisor sum
σs1−1,...,sl−1 is de�ned by the formal power series

[s1, . . . , sl] :=
1

(s1 − 1)! . . . (sl − 1)!

∑

n>0

σs1−1,...,sl−1(n)qn ∈ Q[[q]] .

Here and in the following, we will simply write [s1, . . . , sl] instead of [s1, . . . , sl](q).
We refer to these generating functions of multiple divisor sums also as brackets.2 .

Example 1.1. We give a few examples:

[2] = q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + 15q8 + . . . ,

[4, 2] =
1

6

(
q3 + 3q4 + 15q5 + 27q6 + 78q7 + 135q8 + . . .

)
,

[4, 4, 4] =
1

216

(
q6 + 9q7 + 45q8 + 190q9 + 642q10 + 1899q11 + . . .

)
,

[3, 1, 3, 1] =
1

4

(
q10 + 2q11 + 8q12 + 16q13 + 43q14 + 70q15 + . . .

)
,

[1, 2, 3, 4, 5] =
1

288

(
q15 + 17q16 + 107q17 + 512q18 + 1985q19 + . . .

)
.

Notice that the �rst non vanishing coe�cient of qn in [s1, . . . , sl] appears at

n = l(l+1)
2

, because it belongs to the "smallest" possible partition

l · 1 + (l − 1) · 1 + · · ·+ 1 · 1 = n ,

i.e. uj = j and vj = 1 for 1 ≤ j ≤ l. The number k = s1 + · · · + sl is called the
weight of [s1, . . . , sl] and l denotes the length. These numbers satisfy l ≤ k.

De�nition 1.2. We de�ne the vector space MD to be the Q vector space gen-
erated by [∅] = 1 ∈ Q[[q]] and all brackets [s1, . . . , sl]. On MD we have the
increasing �ltration FilW• given by the weight and the increasing �ltration FilL•
given by the length, i.e., we have

FilWk (MD) :=
〈
[s1, . . . , sl]

∣∣ s1 + · · ·+ sl ≤ k
〉
Q

FilLl (MD) :=
〈
[s1, . . . , sr]

∣∣ r ≤ l
〉
Q
.

2 The brackets [2, . . . , 2] were in the context of partitions already studied by P.A. MacMahon
(see [Ma]) and named generalized divisor sums. It was shown in [AR] that these are quasi-
modular forms, see also Remark 2.1

3
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If we consider the length and weight �ltration at the same time we use the short
notation FilW,L

k,l := FilWk FilLl . As usual we set

grWk (MD) := FilWk (MD)/FilWk−1(MD)

grLl (MD) := FilLl (MD)/FilLl−1(MD) .

and as above grW,L
k,l := grWk grLl .

For example for even k ≥ 4 the Eisenstein series Gk, which are well-known to be
modular forms of weight k for the group SL2(Z), are elements in this vector spaces,
because they satisfy

Gk =
ζ(k)

(−2πi)k
+

1

(k − 1)!

∑

n>0

σk−1(n)qn = −1

2

Bk

k!
[∅] + [k] ∈ FilWk (MD),

also the quasi-modular form G2 of weight 2 is an element of FilW2 (MD). Our �rst
result is

Theorem 1.3. The Q-vector spaceMD has the structure of a bi�ltered Q-Algebra

(MD, ·, FilW• , FilL• ), where the multiplication is the natural multiplication of for-

mal power series and the �ltrations FilW• and FilL• are induced by the weight and
length, in particular

FilW,L
k1,l1

(MD) · FilW,L
k2,l2

(MD) ⊂ FilW,L
k1+k2,l1+l2

(MD).

Remark 1.4. In fact we prove that this product onMD is a quasi-shu�e product
in the sense of Hofmann and Ihara [HI].

Example 1.5. The �rst products of brackets are given by

[1] · [1] = 2[1, 1] + [2]− [1] , (1.2)

[1] · [2] = [1, 2] + [2, 1] + [3]− 1

2
[2] , (1.3)

[1] · [2, 1] = [1, 2, 1] + 2[2, 1, 1]− 3

2
[2, 1] + [2, 2] + [3, 1] . (1.4)

For small weight k or at least a small l length we can compute a su�ciently large
number of the Fourier coe�cients of a bracket. We can therefore determine lower
bounds for the number of linearly independent elements in FilW,L

k,l (MD), in order
to do so we need to check that the matrix of with rows given by the Fourier
coe�cients of each element has a su�cient high rank.

Theorem 1.6. We have the following exact values or lower bounds for dimQ FilW,L
k,l (MD)

4
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k\l 0 1 2 3 4 5 6 7 8 9 10 11

0 1

1 1 2

2 1 3 4

4 1 4 7 8

3 1 5 10 14 15

5 1 6 14 22 27 28

6 1 7 18 32 44 50 51

7 1 8 23 44 67 84 91 92

8 1 9 28 59 97 133 156 164 165

9 1 10 34 76 135 200 254 284 293 294

10 1 11 40 97 183 290 396 474 512 522 523

11 1 12 47 120 242 408 594 760 869 916 927 928

12 1 13 54 147 313 559 ? ? ? ? ? ?

13 1 14 62 177 398 ? ? ? ? ? ? ?

14 1 15 70 212 498 ? ? ? ? ? ? ?

15 1 16 79 249 ? ? ? ? ? ? ? ?

Table 1: dimQ FilW,L
k,l (MD): exact value, lower bound

The number of generators of FilW,L
k,l (MD) is easily calculated, thus giving an upper

bound for the dimension of this space is equivalent to give a lower bound for the
number of relations in the generators of FilW,L

k,l (MD). The equalities come from
the fact that we know enough relations in the cases marked black in Table 1.
For the multiple zeta values conjecturally all linear relations are due the fact that
the shu�e and the stu�e relations give two di�erent description of the product
of two multiple zeta values, albeit in practice there are di�erent methods to prove
distinct relations like the cyclic sum identity [HO] or the Zagier-Ohno relation
[OZ]. So far we know only one way to write a product of two brackets as a
linear combination inMD and this doesn't su�ce to give linear relations between
elements inMD. However, as we will see now,MD has the additional structure of
a di�erential algebra and moreover there are several ways to express the derivative
of a bracket. By now linear relations inMD are proved either by using derivatives
and or the theory of quasi-modular forms.

Theorem 1.7. The operator d = q d
dq
is a derivation onMD, it maps FilW,L

k,l (MD)

to FilW,L
k+2,l+1(MD).

5
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Our proof actually allows us to derive explicit formulas for d[s1] and d[s1, s2].

Remark 1.8. Our formula for d[k] may be seen as the Euler decomposition for-
mula forMD, since for we prove in Proposition 3.3 that for s1 + s2 = k + 2

[s1]·[s2] =
∑

a+b=k+2

((
a− 1

s1 − 1

)
+

(
a− 1

s2 − 1

))
[a, b]−

(
k

s1 − 1

)
[k+1]+

(
k

s1 − 1

)
d[k]

k
.

Frankly speaking the derivative d[k] measures the failure of the shu�e relation for
the product of two length one bracket.

We will show now how to derive from these formulas non trivial linear relations.

Example 1.9. (Relations from derivatives) The �rst derivatives are given by

d[1] = [3] +
1

2
[2]− [2, 1] , (1.5)

d[2] = [4] + 2[3]− 1

6
[2]− 4[3, 1] , (1.6)

d[2] = 2[4] + [3] +
1

6
[2]− 2[2, 2]− 2[3, 1] , (1.7)

d[1, 1] = [3, 1] +
3

2
[2, 1] +

1

2
[1, 2] + [1, 3]− 2[2, 1, 1]− [1, 2, 1] . (1.8)

The di�erence of (1.6) and (1.7) leads to the �rst linear relation in FilW4 (MD):

[4] = 2[2, 2]− 2[3, 1] + [3]− 1

3
[2] . (1.9)

Example 1.10. (Leibniz rule) Since d is a derivation it satis�es the Leibniz rule,
e.g., because of (1.2)

d[1] · [1] + [1] · d[1] = d([1] · [1]) = d(2[1, 1] + [2]− [1]) .

Now using (1.5), (1.6) and (1.8) together with the explicit description of the various
products we could alternatively prove the relation (1.9).

Example 1.11. (Relations from modular forms) It is a well-known fact from the
theory of modular forms that G2

4 = 7
6
G8 because the space of weight 8 modular

forms for SL2(Z) is one dimensional. We therefore have

1

720
[4] + [4] · [4] =

7

6
[8] .

Using the product as described in Proposition 2.8 we get

[4] · [4] = 2[4, 4] + [8] +
1

360
[4]− 1

1512
[2] ,

which then gives the following relation in FilW8 (MD):

[8] =
1

40
[4]− 1

252
[2] + 12[4, 4] . (1.10)

6
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Beside the methods mentioned in Example 1.9 and 1.11 other obvious ways to get
relations in weight k are either to multiply a relation in weight l by a bracket of
weight k − l or to take the derivative of a relation in weight k − 2.

Example 1.12. (Relations from known relations) If we multiply the relation (1.9)
in weight 4 with [2], then we obtain in FilW6 (MD):

[6] =
1

20
[2]− 1

12
[3]− 1

4
[4] + [5]− 4

3
[2, 2] +

1

6
[3, 1] + [2, 3] + 2[3, 2]

+ 6[2, 2, 2]− 2[3, 1, 2]− 2[2, 3, 1]− 2[3, 2, 1] + [2, 4]− 2[3, 3] + [4, 2]− 2[5, 1] .
(1.11)

If we apply d to the relation (1.9) in weight 4, then we obtain in FilW6 (MD):

[6] =
1

20
[2]− 3

4
[3] +

11

4
[4]− 3[5]− 2

3
[2, 2] +

3

2
[3, 1] + 4[2, 3] + 2[2, 4] (1.12)

+ 5[3, 2]− 18[4, 1] + 5[4, 2] + 6[5, 1]− 8[2, 3, 1]− 8[3, 1, 2]− 2[3, 2, 1] + 18[4, 1, 1] .

In order to study the linear relations in the generators ofMD systematically it is
better �rst to understand some of the algebra structure ofMD. For this purpose
we call a brackets [s1, . . . , sl] admissible, if s1 > 1. We show that the vector space
qMZ of admissible brackets is a sub algebra ofMD. In addition we prove that
MD is a polynomial ring over qMZ with indeterminate [1], i.e. we have

MD = qMZ[[1]]

(see Theorem 2.14). With this structure in our hands it is easy see that it su�ces
to study the linear relations in the generators of the quotient spaces grW,L

k,l (qMZ)
in order to get upper bounds on the dimensions of all the graded or �ltrated pieces
of qMZ orMD. In Theorem 5.5 we present our results in this direction. We like
to emphasize that the focus of this article is not to give the best possible results
on the number of relations. We expect that with a more detailed study of the kind
of relations we can obtain so far we could derive much better results and we plan
to come back to this in future [Ba2].
The notation qMZ shall emphasize the relation to q-analogues of multiple zeta
values, which will be explained now. Our algebra qMZ is related, but not iso-
morphic, to a recent modi�cation of multiple q zeta values as proposed in [OT] or
[Ta], see also Remark 6.1.
De�ne for k ≥ 0 the map Zk on FilWk (qMZ) by

Zk[s1, . . . , sl] = lim
q→1

(1− q)k[s1, . . . , sl].

We will show that with this de�nition we have

Zk ([s1, . . . , sl]) =





ζ(s1, . . . , sl) , k = s1 + · · ·+ sl,

0 , k > s1 + · · ·+ sl .
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SinceMD = qMZ[[1]] we can de�ne a map Zalg
k : FilWk (MD)→ R[T ] by

Zalg
k

(
k∑

j=0

gj[1]k−j
)

=
k∑

j=0

Zj(gj)T
k−j ∈ R[T ]

where gj ∈ FilWj (qMZ). For our next result an analytical interpretation of Zalg
k

in a broader context is the key fact.

Theorem 1.13. For the kernel of Zalg
k ∈ FilWk (MD) we have

i) If for [s1, . . . , sl] it holds s1 + · · ·+ sl < k, then Zalg
k [s1, . . . , sl] = 0.

ii) For any f ∈ FilWk−2(MD) we have Zalg
k d(f) = 0, i.e., d FilWk−2(MD) ⊆ kerZk.

iii) If f ∈ FilWk (MD) is a cusp form for SL2(Z), then Zalg
k (f) = 0, i.e. Sk(SL2(Z)) ⊆

kerZk.

Using Theorem 1.13 we get as immediate consequences and without any di�culties
the following well-known identities for multiple zeta values.

Example 1.14. i) If we apply Z3 to (1.5) we deduce ζ(3) = ζ(2, 1).

ii) If we apply Z4 to (1.6) and (1.7) we deduce ζ(4) = 4ζ(3, 1) = 4
3
ζ(2, 2).

iii) The identity (1.8) reads in qMZ[[1]] as

d[1, 1] =

(
[3]− [2, 1] +

1

2
[2]

)
· [1] + 2[3, 1]− 1

2
[4]− 1

2
[2, 1]− 1

2
[3] +

1

3
[2] .

Applying Zalg
4 we deduce again the two relations ζ(3) = ζ(2, 1) and 4ζ(3, 1) =

ζ(4), since by Theorem 1.13 we have

Zalg
4 (d[1, 1]) = (ζ(3)− ζ(2, 1))T − 1

2
ζ(4) + 2ζ(3, 1) = 0 .

iv) If we apply Z8 to (1.10) we deduce ζ(8) = 12ζ(4, 4).

v) As an application of Theorem 1.6 we can prove for the cusp form ∆ ∈
S12(SL2(Z)) the representation

− 1

26 · 5 · 691
∆ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+
1

1408
[2]− 83

14400
[4] +

187

6048
[6]− 7

120
[8]− 5197

691
[12] . (1.13)

Letting Z12 act on both sides of (1.13) one obtains the relation

5197

691
ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) .

8
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Finally we point to the fact that the last identity coming from the cusp form ∆ has
been obtained via period polynomials in [GKZ]. A remarkable fact of this relation
is that it is not provable within the double shu�e relations in weight 12 and depth
2 alone, since also the extended double shu�e relations are needed for its proof.
This article contains results that will be part of the dissertation project by the
�rst author.
We thank O. Bouillot, F. Brown, J. Burgos, H. Gangl, O. Schnetz, D. Zagier,
J. Zhao and W. Zudilin for their interest in our work and for helpful remarks.

2 The algebra of generating function of multiple

divisor sums

The proof of Theorem 1.3 will occupy this section. First we consider products of
polylogarithms at negative integers. This will give us an explicit formula for the
product of two brackets.

Remark 2.1. We start with a remark on where brackets also have appeared before.
In the following we will write {a}l for a length l sequence a, . . . , a.

i) The sum in (1.1) can be interpreted as a sum over all partitions of n into l
distinct parts uj. The vj count the appearance of the parts uj. For example
let l = 2, n = 5 and r1 = r2 = 1 then we have �ve partitions of 5 into 2
distinct parts:

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1

= 4 · 1 + 1 · 1 = 3 · 1 + 2 · 1 = 3 · 1 + 1 · 2 = 2 · 2 + 1 · 1 = 2 · 1 + 1 · 3

and therefore σ0,0(5) = 5 and σ2,1(5) = 12·11+12·11+12·21+22·11+12·31 = 11 .

ii) The multiple divisor sum σ{0}l counts the number of partitions of n into l
distinct parts. Therefore the generating function of the partition functions
p(n) which counts all partitions of n can be written as

∑

n>0

p(n)qn =
∑

l>0

[{1}l] .

iii) The brackets [2, . . . , 2] were already studied by P. A. MacMahon (see [Ma])
under the name of generalized divisor sums in the context of partitions. They
were also studied in [AR]where it was also shown, that they are quasi-modular
forms.

9

Appendix A. The algebra of generating functions for multiple divisor sums and
applications to multiple zeta values

86



De�nition 2.2. Recall that for s, z ∈ C, |z| < 1 the polylogarithm Lis(z) of
weight s is given by

Lis(z) =
∑

n>0

zn

ns
.

We then de�ne a normalized polylogarithm by

L̃i1−s(z) :=
Li1−s(z)

Γ(s)
.

The normalized polylogarithm Li1−s(z) extends to an entire function in s and to
a holomorphic function in z where |z| < 1. However for our purposes it is enough
to know that for natural s > 0 this is a rational function in z with a pole at z = 1
(c.f. Remark 2.4). Now we can de�ne brackets as functions in q.

Proposition 2.3. For q ∈ C with |q| < 1 and for all s1, . . . , sl ∈ N we can write
the brackets as

[s1, . . . , sl] =
∑

n1>···>nl>0

L̃i1−s1 (qn1) . . . L̃i1−sl (qnl) .

Proof. This follows directly from the de�nitions, see also Lemma 2.5.

Remark 2.4. As mentioned above the polylogarithms Li−s(z) for s ∈ N are
rational functions in z with a pole in z = 1. More precisely for |z| < 1 they can
be written as

Li−s(z) =
∑

n>0

nszn =
zPs(z)

(1− z)s+1

where Ps(z) is the s-th Eulerian polynomial. Such a polynomial is given by

Ps(X) =
s−1∑

n=0

As,nX
n ,

where the Eulerian numbers As,n are de�ned by

As,n =
n∑

i=0

(−1)i
(
s+ 1

i

)
(n+ 1− i)s .

Therefore the coe�cients (the Eulerian numbers) of Ps are positive. It ful�lls the
relation

Pk+1(t) = Pk(t)(1 + kt) + t(1− t)P ′k(t)
and therefore Pk(1) = k!. For proofs of all these properties see for example [Fo]. In
particular the recursive formula can be found in [Fo] as equation (3.3). Proposition
2.6 then gives an expression for the product of Eulerian polynomials as rational
linear combinations of polynomials in the form (1− z)jPi(z) with j, i ∈ N.

10
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Lemma 2.5. For s1, . . . , sl ∈ N we have

[s1, . . . , sl] =
1

(s1 − 1)! . . . (sl − 1)!

∑

n1>···>nl>0

l∏

j=1

qnjPsj−1 (qnj)

(1− qnj)sj
,

where Pk(t) is the k-th Eulerian polynomial.

Proof. The claim follows directly from Remark 2.4 because

∑

n1>···>nl>0

l∏

j=1

qnjPsj−1 (qnj)

(1− qnj)sj
=

∑

n1>···>nl>0

l∏

j=1

∑

vj>0

v
sj−1
j qvjnj =

∑

n>0

σs1−1,...,sl−1(n)qn .

The product of [s1] and [s2] can thus be written as

[s1] · [s2] =
∑

n1>n2>0

L̃i1−s1 (qn1) L̃i1−s2 (qn2) +
∑

n2>n1>0

· · ·+
∑

n1=n2>0

L̃i1−s1 (qn1) L̃i1−s2 (qn1)

= [s1, s2] + [s2, s1] +
∑

n>0

L̃i1−s1 (qn) L̃i1−s2 (qn) .

In order to prove that this product is an element of FilWs1+s2(MD) the product

L̃i1−s1 (qn) L̃i1−s2 (qn) must be a rational linear combination of L̃i1−j (qn) with 1 ≤
j ≤ s1 + s2. We therefore need the following

Lemma 2.6. For a, b ∈ N we have

L̃i1−a(z) · L̃i1−b(z) =
a∑

j=1

λja,bL̃i1−j(z) +
b∑

j=1

λjb,aL̃i1−j(z) + L̃i1−(a+b)(z) ,

where the coe�cient λja,b ∈ Q for 1 ≤ j ≤ a is given by

λja,b = (−1)b−1
(
a+ b− j − 1

a− j

)
Ba+b−j

(a+ b− j)! .

Proof. We prove this by using the generating function

L(X) :=
∑

k>0

L̃i1−k(z)Xk−1 =
∑

k>0

∑

n>0

nk−1zn

(k − 1)!
Xk−1 =

∑

n>0

enXzn =
eXz

1− eXz .

With this one can see by direct calculation that

L(X) · L(Y ) =
1

eX−Y − 1
L(X) +

1

eY−X − 1
L(Y ) .

11
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By the de�nition of the Bernoulli numbers

X

eX − 1
=
∑

n≥0

Bn

n!
Xn

this can be written as

L(X) ·L(Y ) =
∑

n>0

Bn

n!
(X−Y )n−1L(X)+

∑

n>0

Bn

n!
(Y −X)n−1L(Y )+

L(X)− L(Y )

X − Y .

The statement then follows by calculating the coe�cient of Xa−1Y b−1 in this equa-
tion.

Example 2.7. We have λ11,1 = B1 = −1
2
and thus

L̃i1−1(z) · L̃i1−1(z) = −L̃i1−1(z) + L̃i1−2(z) .

Therefore the product [1] · [1] is given by

[1] · [1] = 2[1, 1] + [2]− [1] .

More generally, Lemma 2.6 implies the following explicit formula for the product
in the length one case.

Proposition 2.8. We have the formula

[s1] · [s2] = [s1, s2] + [s2, s1] + [s1 + s2] +

s1∑

j=1

λjs1,s2 [j] +

s2∑

j=1

λjs2,s1 [j] .

Proof. This is a straightforward calculation

In order to prove Theorem 1.3 we need to show that the above considerations work
in general and not only in the length 1 case. For this we use the notion of quasi-
shu�e algebras ([HI]). Let A = {z1, z2, . . . } be the set of letters zj for each natural
number j ∈ N, QA the Q-vector space generated by these letters and Q〈A〉 the
noncommutative polynomial algebra over Q generated by words with letters in A.
For a commutative and associative product � on QA, a, b ∈ A and w, v ∈ Q〈A〉
we de�ne on Q〈A〉 recursively a product by 1 ∗ w = w ∗ 1 = w and

aw ∗ bv := a(w ∗ bv) + b(aw ∗ v) + (a � b)(w ∗ v) .

Equipped with this product one has the

Proposition 2.9. The vector space Q〈A〉 with the product ∗ is a commutative
Q-algebra.

12
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Proof. See [HI] Theorem 2.1.

Motivated by the product expression of the polylogarithms in Lemma 2.6 we de�ne
the product � on QA by

za � zb =
a∑

j=1

λja,bzj +
b∑

j=1

λjb,azj + za+b .

This is an commutative and associative product on QA, because it arises from the
product of the pairwise linearly independent polylogarithms L̃i1−t(z) in Proposition
2.6, and therefore (Q〈A〉, ∗) is a commutative Q-algebra by Proposition 2.9 above.
Theorem 1.3 now follows from the next proposition.

Proposition 2.10. For the linear map [ . ] : (Q〈A〉, ∗) −→ (MD, ·) de�ned on the
generators w = zs1 . . . zsl by [w] := [s1, . . . , sl] we have

[w ∗ v] = [w] · [v]

and thereforeMD is a Q-algebra and [ . ] an algebra homomorphism.

Proof. This follows by the same argument as in the multiple zeta value case, see
e.g. [H1] Thm 3.2, by using induction on the length of the words w and v together
with Proposition 2.6.

Now we have proven Theorem 1.3. As a special case of this theorem we have the
following explicit formula.

Example 2.11. For a, b, c ∈ N we have

[a] · [b, c] = [za ∗ zbzc] = [zazbzc + zbzazc + zbzcza + zb(za � zc) + (za � zb)zc]
= [a, b, c] + [b, a, c] + [b, c, a] + [a+ b, c] + [b, a+ c]

+
a∑

j=1

λja,c[b, j] +
c∑

j=1

λjc,a[b, j] +
a∑

j=1

λja,b[j, c] +
b∑

j=1

λjb,a[j, c].

We would like to point out another structure of the algebra MD, which will be
important later on when we consider the connection to multiple zeta values, and
which was already mentioned in the introduction.

De�nition 2.12. We de�ne the set of all admissible brackets qMZ as the span of
all brackets [s1, . . . , sl] with s1 > 1. With FilW,L

k,l (qMZ) we denote the admissible
brackets of length l and weight k similar to the non-admissible case.

With this we have the

Theorem 2.13. The vector space qMZ is a subalgebra ofMD.
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Proof. It is enough to show that qMZ is closed under multiplication. Let f =
[a, . . . ] and g = [b, . . . ] be elements in qMZ, i.e. a > 1 and b > 1. Due to
Proposition 2.10 we have

f · g = [zaw] · [zbv] = [zaw ∗ zbv] ,

where w, v ∈ Q〈A〉 are words in the alphabet A = {z1, z2, . . . }. So in order to
prove the statement we have to show that zaw ∗ zbv is a linear combination of
words zcu ∈ Q〈A〉 with c > 1 and arbitrary words u ∈ Q〈A〉. By the de�nition of
the quasi-shu�e product ∗ we have

zaw ∗ zbv = za(w ∗ zbv) + zb(zaw ∗ v) + (za � zb)(w ∗ v) .

The �rst two summands clearly ful�ll this condition, because we assumed a, b > 1,
so it remains to show that za � zb ∈ QA is a linear combination of letters zj with
j > 1. Again by de�nition we obtain

za � zb = za+b +
a∑

j=1

λja,bzj +
b∑

j=1

λjb,azj

= za+b +
(
λ1a,b + λ1b,a

)
z1 +

a∑

j=2

λja,bzj +
b∑

j=2

λjb,azj ,

so it su�ces to show that λ1a,b + λ1b,a vanishes for a, b > 1. From the de�nition of

λja,b in Lemma 2.6 it is easy to see that

λ1a,b + λ1b,a =
(
(−1)a−1 + (−1)b−1

)(a+ b− 2

a− 1

)
Ba+b−1

(a+ b− 1)!
.

This term clearly vanishes when a and b have di�erent parity. In the other case
a+ b− 1 is odd and greater than 1, as a, b > 1. It is well known that in this case
Ba+b−1 = 0, from which we deduce that λ1a,b + λ1b,a = 0.

Theorem 2.14. i) We haveMD = qMZ[ [1] ].

ii) The algebraMD is a polynomial ring over qMZ with indeterminate [1], i.e.
MD is isomorphic to qMZ[T ] by sending [1] to T .

Proof. i) First we show that any f ∈ FilWk (MD) can be written as a polynomial
in [1]. If we show that for a �xed l and f ∈ FilW,L

k,l (MD) one can �nd

g1 ∈ FilW,L
k,l (qMZ) and g2, g3 ∈ FilW,L

k,l−1(MD) such that f can be written as

f = g1 + [1] · g2 + g3 , (2.1)

then the claim follows directly by induction on l.
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To show (2.1) it is clear that we can focus on the generators of MD which
we write as f = [{1}m, s1, . . . , sl−m], with s1 > 1 and k = m+ s1 + · · ·+ sl−m.
By induction over m we prove that every element of such form can be written
as in (2.1). For m = 0 it is f ∈ FilWk (qMZ), i.e. g1 = f and g2 = g3 = 0. For
the induction step we obtain by the quasi-shu�e product

m · [{1}m, s1, . . . , sl−m] = [1] · [{1}m−1, s1, . . . , sl−m]− g3
−

∑

m1+···+mi=m
mj≥0 ,∀j=1...i

m1<m

[{1}m1 , s1, {1}m2 , . . . , sl−m, {1}mi ] .

with g3 ∈ FilW,L
k,l−1(MD). The elements in the sum start with at most m − 1

ones, so we obtain a representation in the form of (2.1) inductively.

ii) We have to show that [1] is algebraically independent over qMZ and therefore
the representation of f ∈ MD in i) as a polynomial in [1] with coe�cients
in qMZ is unique. From Proposition 6.4 we obtain that for [s1, . . . , sl] ∈
qMZ with s1 + · · · + sl = k we have for q close to 1 the approximations
[s1, . . . , sl] ≈ 1

(1−q)k and from Remark 6.7 we know [1] ≈ − log(1−q)
1−q . Therefore

the only polynomial in qMZ[T ], which has [1] as one of its roots, is the
constant polynomial 0.

Remark 2.15. It is clear that [1] is an irreducible element in the ringMD, thus
it is clear thatMD /

(
[1] ·MD

)
is a domain. But the non-obvious fact is that this

domain can be represented by qMZ.

At the end of this section we want to mention two other subalgebras ofMD. For
this denote byMDeven the space spanned by 1 and all [s1, . . . , sl] with sj even for
all 0 ≤ j ≤ l and byMD] the space spanned by all by 1 and all [s1, . . . , sl] with
sj > 1.

Proposition 2.16. MDeven andMD] are subalgebras ofMD.

Proof. By the quasi-shu�e product formula Proposition 2.10 it is su�cient to
show that for 1 ≤ j ≤ a the λja,b ∈ Q given by

λja,b = (−1)b−1
(
a+ b− j − 1

a− j

)
Ba+b−j

(a+ b− j)!

vanish for j odd if a and b are even to prove thatMDeven is a subalgebra ofMD.
But this follows direclty by the fact that the Bk vanish for odd k > 1 and that the
case a+ b− j = 1 does not occur since j ≤ a and b ≥ 2.

15
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In order to prove thatMD] is a subalgebra ofMD we have to show that

λ1a,b + λ1b,a =
(
(−1)a−1 + (−1)b−1

)(a+ b− 2

a− 1

)
Ba+b−1

(a+ b− 1)!

vanishes for a, b > 1. This term clearly vanishes when a and b have di�erent parity.
In the other case it is Ba+b−1 = 0, because a + b − 1 is odd and greater than 1.
Hence it is λ1a,b + λ1b,a = 0, whenever a, b > 1.

The spaceMD] is studied further in [BK], where the authors consider a connection
of this space to other q-analogues of multiple zeta values.

3 A derivation and linear relations inMD
Our strategy to prove Theorem 1.7 is to use generating series of brackets. This
allows us to express the derivative in terms of elements in MD. We make these
calculations explicit in the case of �rst in the length 1 case and then for the length
2 case. Similar formulas for the general case are rather complicated.

Lemma 3.1. The generating series T (X1, . . . , Xl) of brackets of length l can be
written as

T (X1, . . . , Xl) =
∑

s1,...,sl>0

[s1, . . . , sl]X
s1−1
1 . . . Xsl−1

l =
∑

n1,...,nl>0

l∏

j=1

enjXjqn1+···+nj

1− qn1+···+nj
.

Proof. This can be seen by direct computation using the geometric series and the
Taylor expansion of the exponential function:

∑

n1,...,nl>0

l∏

j=1

enjXjqn1+···+nj

1− qn1+···+nj
=

∑

n1,...,nl>0

l∏

j=1

enjXj

∑

vj>0

qvj(n1+···+nj)

=
∑

n1,...,nl>0

l∏

j=1

∑

kj≥0

n
kj
j

kj!
X
kj
j

∑

vj>0

qvj(n1+···+nj)

uj=vj+···+vl
=

∑

k1,...,kl≥0




∑

u1>···>ul>0
n1,...,nl>0

nk11 . . . nkll
k1! . . . kl!

qu1n1+···+ulnl


Xk1

1 . . . Xkl
l

=
∑

s1,...,sl>0

[s1, . . . , sl]X
s1−1
1 . . . Xsl−1

l .
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We now study the derivative of brackets of length 1, much of the formulas presented
for this purpose may implicitly found also in [GKZ]. In particular the next lemma
is essentially a part of the calculation in the proof of Theorem 7 in [GKZ]. We
give it nevertheless because it is a good preparation for the proof of our Theorem
1.7.

Lemma 3.2. i) The product of two generating functions of multiple divisor
sums of length 1 is given by

T (X) · T (Y ) = T (X + Y,X) + T (X + Y, Y )− T (X + Y ) +R1(X, Y )

where

R1(X, Y ) =
∑

n>0

en(X+Y ) qn

(1− qn)2
.

ii) We have
∑

n>0

enX
qn

(1− qn)2
=
∑

k>0

d[k]

k
Xk + [2].

In particular

R1(X, Y ) =
∑

k>0

d[k]

k
(X + Y )k + [2] .

Proof. i) Remember that the generating functions are given by

T (X) =
∑

k>0

[k]Xk−1 =
∑

n>0

enX
qn

1− qn

and

T (X, Y ) =
∑

s1,s2>0

[s1, s2]X
s1−1Y s2−1 =

∑

n1,n2>0

en1X+n2Y
qn1

1− qn1

qn1+n2

1− qn1+n2
.

With this in our hands we calculate

T (X)T (Y ) =
∑

n1,n2>0

en1X+n2Y
qn1

1− qn1

qn2

1− qn2

=
∑

n1>n2>0

· · ·+
∑

n2>n1>0

· · ·+
∑

n2=n1>0

· · · =: F1 + F2 + F3.

For these terms we get furthermore

F1 =
∑

n1>n2>0

en1X+n2Y
qn1

1− qn1

qn2

1− qn2

n1=n2+n′
1=
∑

n′
1,n2>0

en
′
1X+n2(X+Y ) qn

′
1+n2

1− qn′
1+n2

qn2

1− qn2
= T (X + Y,X)

17
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F2 =
∑

n2>n1>0

en1X+n2Y
qn1

1− qn1

qn2

1− qn2

n2=n1+n′
2=
∑

n1,n′
2>0

en1(X+Y )+n2Y
qn1

1− qn1

qn1+n′
2

1− qn1+n′
2

= T (X + Y, Y ).

Using
(

qn

1−qn
)2

= qn

(1−qn)2 −
qn

1−qn , we get for the last term

F3 =
∑

n1=n2>0

en1(X+Y )

(
qn1

1− qn1

)2

=
∑

n>0

en(X+Y ) qn

(1− qn)2
−
∑

n>0

en(X+Y ) qn

(1− qn)

=R1(X, Y )− T (X + Y ) .

ii) This can be seen by direct computation. First observe

dT (X) =
∑

k>0

d[k]Xk−1 = d
∑

n>0

enX
qn

1− qn =
∑

n>0

nenX
qn

(1− qn)2
.

and then use this to evaluate

∑

k>0

d[k]

k
Xk =

∑

k>0

∫ X

0

d[k]tk−1dt

=

∫ X

0

dT (t)dt =
∑

n>0

∫ X

0

nentdt
qn

(1− qn)2

=
∑

n>0

enX
qn

(1− qn)2
−
∑

n>0

qn

(1− qn)2
=
∑

n>0

enX
qn

(1− qn)2
− [2] .

We now want to give explicit expressions for the derivative of multiple divisor sums
of length 1, which follow from the lemmas above:

Proposition 3.3. For s1, s2 with s1 + s2 > 2 and s = s1 + s2 − 2 we have the
following expression for d[s]:
(

s

s1 − 1

)
d[s]

s
= [s1]·[s2]+

(
s

s1 − 1

)
[s+1]−

∑

a+b=s+2

((
a− 1

s1 − 1

)
+

(
a− 1

s2 − 1

))
[a, b] .

Proof. This is a direct consequence of Lemma 3.2 by considering the coe�cient
of Xs1−1Y s2−1 in the equation

T (X) · T (Y ) = T (X + Y,X) + T (X + Y, Y )− T (X + Y ) +
∑

k>0

d[k]

k
(X + Y )k + [2] .
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by using

T (X + Y,X) + T (X + Y, Y ) =
∑

s1,s2>0
a+b=s1+s2

((
a− 1

s1 − 1

)
+

(
a− 1

s2 − 1

))
[a, b]Xs1−1Y s2−1 ,

T (X + Y ) =
∑

s1,s2>0

((
s1 + s2 − 2

s1 − 1

)
[s1 + s2 − 1]

)
Xs1−1Y s2−1 ,

∑

k>0

d[k]

k
(X + Y )k =

∑

s1,s2>0

((
s1 + s2 − 2

s1 − 1

)
d[s1 + s2 − 2]

s1 + s2 − 2

)
Xs1−1Y s2−1 .

Example 3.4. In the following formulas we used the explicit description for the
product given in Proposition 2.8.

i) In the smallest case s = 1 there is just one choice given by s1 = 1, s2 = 2:

d[1] = [3] +
1

2
[2]− [2, 1] .

ii) For s = 2 we can choose s1 = 1, s2 = 3 and s1 = s2 = 2 and therefore we get
the two expressions:

d[2] = 2[4] + [3] +
1

6
[2]− 2[2, 2]− 2[3, 1] ,

d[2] = [4] + 2[3]− 1

6
[2]− 4[3, 1] ,

from which the �rst linear relation in weight 4 follows:

[4] = 2[2, 2]− 2[3, 1] + [3]− 1

3
[2] .

iii) In the case s = 3 one again gets two expressions and therefore one relation.

iv) For s = 4 one has s1 = 1, s2 = 5 or s1 = 2, s2 = 4 and s1 = s2 = 3 which
gives

d[4] = 4[6] + 2[5] +
1

3
[4]− 1

180
[2]− 4[2, 4]− 4[3, 3]− 4[4, 2]− 4[5, 1] ,

d[4] = [6] + 4[5]− 1

12
[4] +

1

180
[2]− 2[3, 3]− 3[4, 2]− 8[5, 1] ,

d[4] =
2

3
[6] + 4[5]− 1

180
[2]− 4[4, 2]− 8[5, 1] .
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From which the following two relations follow

5[6] = 3[5]− 1

2
[4] + 6[2, 4] + 6[3, 3]− 6[5, 1]

3[6] = 2[5]− 5

12
[4] +

1

90
[2] + 4[2, 4] + 2[3, 3] + [4, 2]− 4[5, 1] .

Theorem 3.5. Suppose k ≥ 4, then there are at least bk
2
c − 1 linear relations in

the generators of grW,L
k,2 (qMZ).

Proof. It is clear that the expressions for d[k−2] in Proposition 3.3 are symmetric
in s1 and s2. There are bk

2
c choices for s1 and s2 with s1 + s2 = k and s1 ≤ s2.

For each such choice we get a di�erent expression for d[k− 2], because for s1 ≤ s2
it only contains the length 2 terms [s1 + 1, s2− 1], . . . , [s1 + s2− 1, 1] ∈ qMZ with
non vanishings coe�cients. This can be seen if we rewrite the statement by using
the stu�e product [s1] · [s2] = [s1, s2] + [s2, s1] + [s1 � s2]:

(
k − 2

s1 − 1

)
d[k − 2]

k − 2

= [s1 � s2] +

(
k − 2

s1 − 1

)
[k − 1]−

∑

a+b=k
a>s1

((
a− 1

s1 − 1

)
+

(
a− 1

s2 − 1

)
− δa,s2

)
[a, b] .

By the same considerations as in proof of Theorem 2.13 we �nd that [s1 � s2] ∈
qMZ. Therefore we get bk

2
c − 1 relations.

We have checked that for k ≤ 20 we get all relations in length two by the above
method, cf. Theorem 5.5. This give some evidence for

Conjecture 3.6. For all weights k ≥ 4 the number of linear relations in the
generators of grW,L

k,2 qMZ equals bk
2
c − 1.

Now we want to consider the derivative in the length two case.

Lemma 3.7. The product of two generating functions of multiple divisor sums of
length 1 and 2 is given by

T (X) · T (Y, Z) =T (X + Y, Y, Z) + T (X + Y,X + Z,Z) + T (X + Y,X + Z,X)

− T (X + Y, Z)− T (X + Y,X + Z) +R2(X, Y, Z) ,

where

R2(X, Y, Z) =
∑

n1,n2>0

en1(X+Y )+n2Z
qn1

(1− qn1)2
qn1+n2

1− qn1+n2

+
∑

n1,n2>0

en1(X+Y )+n2(X+Z) qn1

1− qn1

qn1+n2

(1− qn1+n2)2
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Proof. i) We again split the sum into di�erent parts as in the case for T (X)T (Y ):

T (X) · T (Y, Z) =
∑

n1,n2,n3>0

en1X+n2Y+n3Z
qn1

1− qn1

qn2

1− qn2

qn2+n3

1− qn2+n3

=
∑

n2>n1

· · ·+
∑

n1>n2+n3

· · ·+
∑

n2+n3>n1>n2

· · ·+
∑

n1=n2

· · ·+
∑

n1=n2+n3

. . .

=: F1 + F2 + F3 + F4 + F5 .

The proof of F1+F2+F3 = T (X+Y, Y, Z)+T (X+Y,X+Y, Z)+T (X+Y,X+Y,X)
is similar to the calculation in the lemma above and we leave it out here. The
evaluation of F4 and F5 are similar and we therefore just illustrate the F4 case:

F4 =
∑

n1=n2,n3>0

en1(X+Y )+n3Z

(
qn1

1− qn1

)2
qn1+n3

1− qn1+n3
,

=
∑

n1=n2,n3>0

en1(X+Y )+n3Z

(
qn1

(1− qn)2
− qn1

1− qn1

)
qn1+n3

1− qn1+n3
,

=
∑

n1,n3>0

en1(X+Y )+n3Z
qn1

(1− qn)2
qn1+n3

1− qn1+n3
− T (X + Y, Z) .

De�nition 3.8. We de�ne the operator D(f) on functions in X by

D(f) =

(
∂

∂X
f

) ∣∣∣
X=0

.

Observe that D(R1(X, Y )) = dT (Y ) and for the length 2 it holds

Lemma 3.9. We have

D(R2(X, Y, Z)) = dT (Y, Z).

Proof. For the two summands of R2(X, Y, Z) one gets

D


 ∑

n1,n2>0

en1(X+Y )+n2Z qn1

(1− qn1)2
qn1+n2

1− qn1+n2


 =

∑

n1,n2>0

n1e
n1Y+n2Z qn1

(1− qn1)2
qn1+n2

1− qn1+n2
,

D


 ∑

n1,n2>0

en1(X+Y )+n2(X+Z) qn1

1− qn1

qn1+n2

(1− qn1+n2)2


 =

∑

n1,n2>0

(n1 + n2)e
n1Y+n2Z qn1

1− qn1

qn1+n2

(1− qn1+n2)2
.
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Adding these two terms one obtains dT (Y, Z), because with d qn

1−qn = n·qn
(1−qn)2 and

the product formula we obtain

dT (Y, Z) = d
∑

n1,n2>0

en1Y+n2Z
qn1

1− qn1

qn1+n2

1− qn1+n2
=

∑

n1,n2>0

(
n1e

n1Y+n2Z
qn1

(1− qn1)2
qn1+n2

1− qn1+n2
+ (n1 + n2)e

n1Y+n2Z
qn1

1− qn1

qn1+n2

(1− qn1+n2)2

)

Proposition 3.10. The derivative of [s1, s2] can be written as

d[s1, s2] = [2] · [s1, s2]− s1[s1 + 1, s2, 1]− s2[s1, s2 + 1, 1]− [s1, s2, 2]

−
( ∑

a+b=s1+2

(a− 1)[a, b, s2] +
∑

a+b=s2+1

s1[s1 + 1, a, b] +
∑

a+b=s2+2

(a− 1)[s1, a, b]

)

+ 2s1[s1 + 1, s2] + s2[s1, s2 + 1] .

Proof. This follows directly from Lemma 3.7 by applying the operator

D(f) =

(
d

dX
f

) ∣∣
X=0

on both sides of the equation. It is straightforward to calculate D(T (. . . , . . . ))
for the various generating series T (. . . , . . . ) in Lemma 3.7, e.g., the lefthand side
becomes [2]·T (Y, Z). By means of Lemma 3.9 the claim follows easily by collecting
all the terms.

Example 3.11. i) For s1 = s2 = 1 Proposition 3.10 gives the representation of
d[1, 1] already mentioned above in (1.8):

d[1, 1] = [3, 1] + [1, 3] +
3

2
[2, 1] +

1

2
[1, 2]− 2[2, 1, 1]− [1, 2, 1] ;

here we used the quasi-shu�e product

[2] · [1, 1] = [3, 1] + [1, 3] + [2, 1, 1] + [1, 2, 1] + [1, 1, 2]− 1

2
[2, 1]− 1

2
[1, 2] .

ii) For s1 = 1, s2 = 2 the corollary gives

d[1, 2] = −1

6
[1, 2]+2[1, 3]+[1, 4]+

3

2
[2, 2]+[3, 2]−4[1, 3, 1]− [2, 1, 2]−2[2, 2, 1] .
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iii) For s1 = 1, s2 = 2 the corollary gives

d[2, 1] = −1

6
[2, 1] +

1

2
[2, 2] + [2, 3] + 4[3, 1] + [4, 1]− [2, 2, 1]− 6[3, 1, 1] .

iv) The case s1 = s2 = 2 is given by

d[2, 2] = −1

3
[2, 2]+2[2, 3]+[2, 4]+4[3, 2]+[4, 2]−4[2, 3, 1]−4[3, 1, 2]−4[3, 2, 1] .

At this point we like to indicate that the Leibniz rule is another source of linear
relations inMD.

Example 3.12. i) By means of the Leibniz rule and the quasi-shu�e product
we have

d[1] · [2] + [1] · d[2] = d([1] · [2]) = d

(
[1, 2] + [2, 1] + [3]− 1

2
[2]

)
.

Evaluating both sides separately we deduce the following linear relation in
length 3

[5] =2[3, 1, 1]− [2, 2, 1] + [2, 3] + 2[3, 2]− [4, 1]

+
1

2
[4] +

1

2
[2, 2]− 2[3, 1] +

1

6
[2, 1]− 1

12
[2] +

1

12
[3] . (3.1)

ii) Using the same argument for [1] · [3] we have

d[1] · [3] + [1] · d[3] = d([1][3]) = d

(
[1, 3] + [3, 1] + [4] +

1

12
[2]− 1

2
[3]

)

from which the following relation in weight 6 follows

[6] =
1

120
[2]− 1

24
[3] +

1

2
[5] +

1

4
[2, 2]− [2, 2, 2] +

1

2
[2, 3]− [2, 3, 1]

+ [2, 4] +
1

12
[3, 1] + 2[3, 1, 2]− [3, 2]− 3[4, 1] + 3[4, 1, 1] + 5[4, 2]− [5, 1] .

Theorem 3.13. i) There is a linear relation in the generators of grW,L
5,3 (qMZ).

ii) There are at least 3 linear relations in the generators of grW,L
6,3 (qMZ).

Proof. i) From Example 3.12 i) we deduce the relation

0 ≡ 2[3, 1, 1]− [2, 2, 1]

in grW,L
5,3 (qMZ).
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ii) From Example 3.12 ii) we deduce the relation

0 ≡ 2[3, 1, 2] + 3[4, 1, 1]

in grW,L
6,3 (qMZ) and from Example 1.12 we deduce that

0 ≡ 3[2, 2, 2]− [3, 1, 2]− [2, 3, 1]− [3, 2, 1]

0 ≡ −4[2, 3, 1]− 4[3, 1, 2]− [3, 2, 1] + 9[4, 1, 1]

We �nally want to prove that the map d is a derivation for arbitrary length using
the same combinatorial arguments as in the length one and two cases but without
calculating explicit representations for d[s1, . . . , sl].

Proof. (of Theorem 1.7) To prove this statement we are going to use the same
combinatorial arguments as in the Lemma 3.7, Lemma 3.9 and Proposition 3.10
in a general way which means that we have

T (X)·T (Y1, . . . , Yl) =
∑

m,n1,...,nl>0

emX+n1Y1+···+nlYl
qm

1− qm
qn1

1− qn1
. . .

qn1+···+nl

1− qn1+···+nl

=T (X + Y1, . . . , X + Yl, X) +
l∑

j=1

T (X + Y1, . . . , X + Yj, Yj, . . . , Yl)

+Rl −
l∑

j=1

T (X + Y1, . . . , X + Yj, Yj+1, . . . , Yl) ,

(3.2)

where

Rl =
l∑

j=1

( ∑

n1,...,nl>0

en1(X+Y1)+···+nj(X+Yj)+nj+1Yj+1+···+nlYl

l∏

i=1

qn1+···+ni

(1 + qn1+···+ni)δi,j+1

)
.

This can be seen by splitting up the sum in the same way as above. The �rst line
comes from the parts where one sums over the ordered pairs n1 + · · ·+nj−1 < m <
n1+ · · ·+nj for j = 1, . . . , l and n1+ · · ·+nl < m. Setting m = n1+ · · ·+nj−1+m′

and nj = m′ + n′j for these terms it is easy to see that one gets the sum over
m′, n1, . . . , n

′
j, . . . , nl which then gives T (X + Y1, . . . , X + Yj, Yj, . . . , Yl).

The second line arises from the sum over m = n1 + · · ·+nj. In this case one again
uses the identity (

qn

1− qn
)2

=
qn

(1− qn)2
− qn

1− qn
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from which the rest follows easily.
Letting the operator D(f) =

(
d
dX
f
) ∣∣

X=0
act on this it is easy to see that the last

term then becomes

D(Rl) =
l∑

j=1

( ∑

n1,...,nl>0

(n1 + · · ·+ nj)e
n1Y1+···+nlYl

l∏

i=1

qn1+···+ni

(1 + qn1+···+ni)δi,j+1

)

and this is exactly dT (Y1, . . . , Yl) which can be seen by induction on l and the prod-
uct formula. The product on the left becomes [2]T (Y1, . . . , Yl) and the remaining
terms on the right all have elements in FilW,L

k+2,l+1(MD) as their coe�cients and
therefore the statement follows.

Proposition 3.14. The space qMZ is closed under d.

Proof. This follows directly by the proof of Theorem 1.7 since in the formula for
dT (Y1, . . . , Yl), which one obtains by applying D to equation (3.2), it is easy to
see that the coe�cients of the monomials which contains a Y1 are all in qMZ.

Remark 3.15. We didn't give an explicit formula for the derivative of brackets of
length l, since a general formula seems to be confusing. But for a speci�c bracket
one can get its derivative by applying �rst the operator D to the equation (3.2)
and then collecting the corresponding coe�cients. For example for l = 3 one can
deduce

d[2, 1, 1] = −1

6
[2, 1, 1] +

1

2
[2, 1, 2]− [2, 1, 2, 1] + [2, 1, 3] +

3

2
[2, 2, 1]

− 2 [2, 2, 1, 1] + [2, 3, 1] + 6[3, 1, 1]− 8[3, 1, 1, 1] + [4, 1, 1].

Remark 3.16. Changing the perspective we can view Theorem 1.7) and its special
cases Lemma 3.7, Lemma 3.9 and Proposition 3.10 as results, which express the
failure of the shu�e relation for [s]·[s1, . . . , sl] in terms of multiple divisor functions
of lower weight and length and derivatives. An optimistic guess is that this is also
the case for more complicated products. We want to come back to this in [BBK].

4 The subalgebra of (quasi-)modular forms

We call

Gk =
ζ(k)

(2πi)k
+

1

(k − 1)!

∑

n>0

σk−1(n)qn =
ζ(k)

(2πi)k
+ [k] .

the Eisenstein series of weight k. For even k = 2n due to Eulers theorem we have
in addition

ζ(2n) =
(−1)n−1B2n(2π)2n

2(2n)!
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and therefore

G2n = −1

2

B2n

(2n)!
+ [2n] ∈ FilW2n(MD),

for example

G2 = − 1

24
+ [2] , G4 =

1

1440
+ [4] , G6 = − 1

60480
+ [6] .

Proposition 4.1. i) The ring of modular forms M(Γ1) for Γ1 = SL2(Z) and

the ring of quasi-modular forms M̃(Γ1) are graded subalgebras ofMD.

ii) The Q-algebra of quasi-modular forms M̃k(Γ1) is closed under the derivation
d and therefore it is a subalgebra of the graded di�erential algebra (MD, d).

iii) We have the following inclusions of Q-algebras

Mk(Γ1) ⊂ M̃(Γ1) ⊂MDeven ⊂MD] ⊂ qMZ ⊂MD .

Proof. LetMk(Γ1) (resp. M̃k(Γ1)) be the space of (quasi-)modular forms of weight
k for Γ1. Then the �rst claim follows directly from the well-known facts

M(Γ1) =
⊕

k>1

M(Γ1)k = Q[G4, G6]

M̃(Γ1) =
⊕

k>1

M̃(Γ1)k = Q[G2, G4, G6] .

The second claim is a well known fact in the theory of quasi-modular forms and a
proof can be found in [Za2] p. 49. It su�ces to show that the derivatives of the
generators are given by

dG2 = d[2] = 5G4 − 2G2
2 , dG4 = 15G6 − 8G2G4 ,

dG6 = 20G8 − 12G2G6 =
120

7
G2

4 − 12G2G6 .

The last statement follows immediately by i) and the results before.

Remark 4.2. The above formulas for d[2], d[4] and d[6] can also be proven with
Proposition 3.3.

Example 4.3. The theory of modular forms yield linear relations in MD. We
indicate here how to derive such a relation in weight 8. It is a well-known fact
from the theory of modular forms that G2

4 = 7
6
G8 because the space of weight 8

modular forms is one dimensional. We therefore have

1

2073600
+

1

720
[4] + [4] · [4] =

(
1

1440
+ [4]

)2

=
1

2073600
+

7

6
[8] .
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Using the quasi-shu�e product from Proposition 2.6 we get

[4] · [4] = 2[4, 4] + [8] +
1

360
[4]− 1

1512
[2] ,

which then gives the following relation in weight 8:

[8] =
1

40
[4]− 1

252
[2] + 12[4, 4] .

It is well known that the weight is additive for multiplication of modular forms.
The above relation shows that the length is not additive with respect to the mul-
tiplication of modular forms.

Proposition 4.4. The algebra of modular forms is graded with respect to the
weight and �ltered with respect to the length. We have

∑

k

dimQ grW,L
k,l M(Γ1)x

kyl = 1 +
x4

1− x2y +
x12

(1− x4)(1− x6)y
2 ,

in particular

∑

k

dimQMk(Γ1)x
k =

1

(1− x4)(1− x6) .

Proof. For each k there is an Eisenstein series Gk and this is the only element
of length 1 in Mk(Γ1). Now the �rst statement follows immediately from the fact
that the polynomials GaGb with a + b = k generate Mk(Γ1) as an vector space
[Za1]. Setting y in the �rst formula we see again that the modular forms G4 and
G6 generate M(Γ1) as an algebra.

Notice that because of Theorem 1.6 we know all relations in FilW,L
8,2 (MD) and

therefore we could give a purely algebraic proof the relation G2
4 = 7

6
G8 without

using the theory of modular forms, which relies on complex analysis. Moreover,
again using Theorem 1.6, we can prove in FilW12(MD) new identities for the cusp
form ∆ =

∑
n>0 τ(n)qn.

Proposition 4.5. For (a, b) ∈ {(2, 4), (4, 6), (6, 8), (8, 10), (10, 11), (11, 12)} the
cusp form ∆ ∈ S12 can be uniquely written as

∆ =
2b + 50

2b − 2a
· [a] +

2a + 50

2a − 2b
· [b] +

∑

m+n=12

dm,n · [m,n] ,

where dm,n ∈ Q. Moreover, any other representation of ∆ in FilW,L
12,2 (MD) is a

linear combination of these six representations.
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Proof. By Theorem 1.6 we just have to solve systems of linear equations coming
from the coe�cients of the brackets in question. Using the relations coming from
Proposition 3.3 this can be made very e�cient with the computer.

Taking a suitable linear combination of the identities in Proposition 4.5 we get the
representation (1.13) of ∆ given in the introduction.

Remark 4.6. At the end of this section we just want to give a short remark
concerning the arithmetical aspect of the relations in Proposition 4.5 on which we
don't want to focus in detail in these notes. Formulas like the ones above give
several representation of the Fourier coe�cients of cusp forms in terms of multiple
divisor sums. One can also see the well-known congruence τ(n) ≡ σ11(n) mod 691
and it is easy to derive a lot of other congruences involving τ(n) and the brackets
out of such relations.

5 Experiments and conjectures: dimensions

In this section we present data of some computer calculations regarding the number
of linear independent brackets with length and weight smaller or equal to 15. In
some cases we can prove these bounds to be sharp. Based on these experiments,
we make a conjecture on the dimension of the graded pieces of qMZ and therefore
also for MD. We �rst recall our results on the algebraic structure of MD and
qMZ, where qMZ is the sub algebra ofMD generated by admissible brackets.
Both are a bi-�ltered algebras with respect to the �ltration FilW• given by the
weight and the �ltration FilL• given by the length. Therefore as vector spaces we
have

MD ∼=
⊕

k

grWk (MD) ∼=
⊕

k

⊕

l≤k
grW,L
k,l (MD) (5.1)

qMZ ∼=
⊕

k

grWk (qMZ) ∼=
⊕

k

⊕

l≤k−1
grW,L
k,l (qMZ). (5.2)

Proposition 5.1. In the direct sums in (5.1) and (5.2) each summand is a �nite
dimensional vector space. In particular, we have

dimQ grW,L
k,l (MD) ≤

(
k − 1

l − 1

)
, dimQ grW,L

k,l (qMZ) ≤
(
k − 2

l − 1

)
.

Proof. Let b(k, l) denote the number of brackets [s1, . . . , sl] of weight k and length
l, i.e. s1 + · · ·+ sl = k and let a(k, l) denote the number of admissible brackets of
this type, i.e. s1 + · · ·+ sl = k with s1 > 1. It su�ces to show

b(k, l) =

(
k − 1

l − 1

)
, a(k, l) =

(
k − 2

l − 1

)
. (5.3)
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Now, if we write k = 1 + · · · + 1, then these formulas are an easy combinatorial
fact, which can be seen by counting the possible ways of replacing l − 1 of k − 1
plus symbols by a semi-column and then interpreting the remaining sums as tuples
(s1, . . . , sl) (resp. k − 2 since we can't replace the �rst plus symbol).

De�nition 5.2. We de�ne

d′(k, l) = dimQ grW,L
k,l (qMZ).

The next proposition shows that, in order to understand the dimensions of the
various subspaces of qMZ as well as ofMD, which are induced by the �ltration
given by weight or length, it su�ces to understand d′(k, l).

Proposition 5.3. We have for qMZ the identities

dimQ grWk (qMZ) =
k∑

i=0

d′(k, i)

dimQ FilWk (qMZ) =
k∑

j=0

j∑

i=0

d′(j, i)

dimQ FilW,L
k,l (qMZ) =

k∑

j=0

l∑

i=0

d′(j, i)

and forMD we have

dimQ grW,L
k,l (MD) =

k∑

j=0

d′(k − j, l − j)

dimQ grWk (MD) = dimQ FilWk (qMZ) =
k∑

l=0

k∑

j=0

d′(k − j, l − j)

dimQ FilWk (MD) =
k∑

j=0

k∑

i=0

j∑

r=0

d′(j − r, i− r)

dimQ FilW,L
k,l (MD) =

k∑

j=0

l∑

i=0

j∑

r=0

d′(j − r, i− r)

Proof. If V is a vector space with �ltration F• such that

0 = F0(V ) ⊆ F1(V ) ⊆ · · · ⊆ Fk(V ) ⊆ · · · ⊆ V ,

then Fk(V ) ∼= ⊕j≤k grFj (V ). We further know that

MD ∼= qMZ[[1]] ,
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hence modulo FilW,L
k,l−1(MD) and FilW,L

k−1,l(MD) we have

grW,L
k,l (MD) ≡

k∑

i=0

grW,L
k−i,l−i(qMZ)[1]i.

Now the claim follows by the properties of the product.

Theorem 5.4. We have the following results for dimQ FilW,L
k,l (qMZ)

k\l 0 1 2 3 4 5 6 7 8 9 10 11

0 1

1 1 1

2 1 2 2

3 1 3 4 4

4 1 4 6 7 7

5 1 5 9 12 13 13

6 1 6 12 18 22 23 23

7 1 7 16 26 35 40 41 41

8 1 8 20 36 53 66 72 73 73

9 1 9 25 48 76 103 121 128 129 129

10 1 10 30 63 107 155 196 220 228 229 229

11 1 11 36 80 145 225 304 364 395 404 405 405

12 1 12 42 100 193 317 456 ? ? ? ? ?

13 1 13 49 123 251 ? ? ? ? ? ? ?

14 1 14 56 150 321 ? ? ? ? ? ? ?

15 1 15 64 179 ? ? ? ? ? ? ? ?

Table 2: dimQ FilW,L
k,l (qMZ): proven exact, proven lower bounds.

Proof. We �rst explain how we obtain lower bounds with the help of a computer,
then we give an upper bounds by listing enough relations.
Lower bounds:
We calculated with the help of a computer a reasonable number of the coe�cients
for each of the brackets in FilW,L

k,l (qMZ). Now the rank of the matrix whose rows

are the coe�cients gives us for dimQ FilW,L
k,l (qMZ) a lower bound. Since we work

only with a �nite number of columns, it may happen that we can't distinguish
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linear independent elements. The result of our computer calculations is that all
the entries3 in the table of Theorem 5.4 are lower bounds.
For example in the case of FilW,L

4,3 (qMZ) we checked that the following matrix



1 3 4 7 6 12 8 15

1
2

5
2

5 21
2

13 25 25 85
2

1
6

3
2

14
3

73
6

21 42 172
3

195
2

0 0 1 2 6 7 15 18

0 0 1 3 9 15 30 45

0 0 1
2

1 4 9
2

25
2

15

0 0 0 0 0 1 2 5




,

whose rows are the �rst 8 coe�cients of the 7 brackets

[2], [3], [4], [2, 1], [2, 2], [3, 1], [2, 1, 1]

has rank 6. Thus there are at least 7 (including the constant) linear independent
elements in FilW,L

4,3 (qMZ) and therefore dimQ FilW,L
4,3 (qMZ) ≥ 7.

Upper bounds:
Because of the identity

dimQ FilW,L
k,l (qMZ) =

∑

i≤k,j≤l
dimQ grW,L

i,j (qMZ)

it su�ces to give upper bounds for dimQ grW,L
i,j (qMZ). We use the bounds given

by a(k, l) minus the number of known relations between the generators. There is
at least no relations in the generators of grW,L

k,1 (qMZ), in fact [k] is a generator. In

grW,L
k,2 (qMZ) we know by Theorem 3.5 that there are at least

⌊
(k−2)

2

⌋
relations in

between generators. In addition we know by Theorem 3.13 the number of relations
in length 3 for the weights 5 and 6. Now it is easily checked that the lower and
upper bounds coincide for the black marked entries in the table and hence the
theorem is proven. For example in the case of FilW,L

4,3 (qMZ) we have that

dimQ FilW,L
4,3 (qMZ) ≤

∑

0≤k≤4

∑

0≤l≤3
dimQ grW,L

k,l (qMZ)

= 1 +
∑

2≤k≤4
(1− 0) +

∑

3≤k≤4

((k − 2

1

)
−
⌊

(k − 2)

2

⌋)
+ 1− 0

= 1 + 3 + 2 + 1 = 7.

3 The total running time on a standard PC for each entry was less then 24 hours. We point
to the fact, that re�nements of our code may give some more entries in the table.
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Unfortunaly there is no direct way to get the dimension of grW,L
k,l (qMZ) with the

help of a computer. However we can deduce the following conditional result.

Theorem 5.5. i) We have the following results for d′(k, l) = dimQ grW,L
k,l (qMZ)

k�l 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0

1 0 0

2 0 1 0

3 0 1 1 0

4 0 1 1 1 0

5 0 1 2 2 1 0

6 0 1 2 3 3 1 0

7 0 1 3 4 5 4 1 0

8 0 1 3 6 8 8 5 1 0

9 0 1 4 7 11 14 12 6 1 0

10 0 1 4 10 16 21 23 17 7 1 0

11 0 1 5 11 21 32 38 36 23 8 1 0

12 0 1 5 14 28 44 60 ? ? 30 9 1

13 0 1 6 16 35 ? ? ? ? ? 38 10

14 0 1 6 20 43 ? ? ? ? ? ? 47

15 0 1 7 21 ? ? ? ? ? ? ? ?

Table 3: dimQ grW,L
k,l (qMZ): proven, conjectured.

ii) We have the following results for the number of relations in dimQ grW,L
k,l (qMZ)
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k�l 1 2 3 4 5 6 7 8 9 10

1

2 0

3 0 0

4 0 1 0

5 0 1 1 0

6 0 2 3 1 0

7 0 2 6 5 1 0

8 0 3 9 12 7 1 0

9 0 3 14 24 21 9 1 0

10 0 4 18 40 49 33 11 1 0

11 0 4 25 63 ? ? ? 13 1 0

12 0 5 36 16 ? ? ? ? 15 1

13 0 5 ? ? ? ? ? ? ? 17

14 0 6 ? ? ? ? ? ? ? ?

15 0 6 ? ? ? ? ? ? ? ?

Table 4: Relations in dimQ grW,L
k,l (qMZ): proven, conjectured.

Proof. i) If the dimensions of FilW,L
k,l (qMZ) are given, then

dimQ grW,L
k,l (qMZ) = dimQ FilW,L

k,l (qMZ)− dimQ FilW,L
k−1,l(qMZ)

− dimQ FilW,L
k,l−1(qMZ) + dimQ FilW,L

k−1,l−1(qMZ),

because we have

grW,L
k,l (qMZ) ∼= FilLl

(
FilWk (qMZ)/FilWk−1(qMZ)

)

/
FilLl−1

(
FilWk (qMZ)/FilWk−1(qMZ)

)
.

Now using Theorem 5.4 we get all the black marked entries in Table 3. For the
conjectured entries in Table 3 we assumed that all the entries in Table 2 were
exact, except for the diagonals for which we guessed the entries for weight bigger
then 11.
ii) The number of independent relations we found give all the black marked entries
in Table 4, since by i) we know that there aren't more. The conjectured entries in
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Table 4 equal the di�erence of the number of generators a(k, l) of in grW,L
k,l (qMZ)

minus the corresponding dimension conjectured in i).

Proof. (of Theorem 1.6) The entries in Table 1 were calculated from the values
for d′(k, l) given in Theorem 5.5 by means of the formula given in Proposition 5.3.
Actually we have double-checked this table with the computer.

Remark 5.6. Of course a lot of the conjectured relations in the table of Theorem
5.5 can be obtained by using the methods mentioned in this paper. We expect
that with a more detailed study of the kind of relations we can obtain so far we
could derive much better results and we plan to come back to this in future [Ba2].

Remark 5.7. The lower bounds where proven with the help of a computer and
we expect that our program has found all the linear independent elements. We
therefore conjecture that Table 3 in Theorem 5.5 gives the exact values of d′(k, l)
for all k, l we have tested. Assuming this we can ask for relations that are satis�ed
by the d′(k, l). We observe that d′k =

∑k
l=1 d

′(k, l) satis�es: d′0 = 1, d′1 = 0, d′2 = 1
and

d′k = 2d′k−2 + 2d′k−3, for 5 ≤ k ≤ 11.

We see no reason why this shouldn't hold for all k > 11 also, i.e. we ask whether

∑

k≥0
grWk (qMZ)xk =

∑

k≥0
d′kx

k ?
=

1− x2 + x4

1− 2x2 − 2x3
. (5.4)

Even more speculative we may ask whether there a polynomial P (x, y), Q(x, y) ∈
Q[x, y] such that

∑

k,l≥0
dimQ grW,L

k,l (qMZ)xkyl =
∑

k,l≥0
d′(k, l)xkyl

?
=
P (x, y)

Q(x, y)
. (5.5)

and P (x,1)
Q(x,1)

= 1−x2+x4
1−2x2−2x3 . In fact, for the data we have so far there exist a family of

polynomials P (x, y) and Q(x, y) such that if P (x,y)
Q(x,y)

=
∑
a(k, l)xkyl, then d′(k, l) =

a(k, l) for all d′(k, l) in table in Theorem 3.
A general reason why such conjectural formulas may hold is that these are analo-
gous to the Zagier conjecture for the dimension dk ofMZk

∑

k≥0
dimQ grWk (MZ)Xk =

∑

k≥0
dkX

k ?
=

1

1−X2 −X3
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and its re�nement by the Broadhurst Kreimer conjecture

∑

k≥0
l≥0

dimQ grW,L
k,l (MZ)XkY l ?

=
1 + E(X)Y

1−O(X)Y + S(X)Y 2 − S(X)Y 4
.

where

E(X) =
X2

1−X2
, O(X) =

X3

1−X2
, S(X) =

X12

(1−X4)(1−X6)
.

We �nally observe that conjecturally the algebra qMZ is much bigger thanMZ
as we read of the following table.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

dk 1 0 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37

d′k 1 0 1 2 3 6 10 18 32 56 100 176 312 552 976 1728 3056

Table 5: First values of dk and d
′
k.

6 Interpretation as a q-analogue of multiple zeta

values

We will show that the brackets can be seen as an q-analogue of multiple zeta
values.

Remark 6.1. The most common example for an q-analogue of multiple zeta values
are the multiple q-zeta values (see for example [Br]). They are de�ned for s1 >
1,s2, . . . , sl ≥ 1 as

ζq(s1, . . . , sl) =
∑

n1>···>nl>0

n∏

j=1

qnj(sj−1)

[nj]
sj
q

, (6.1)

where one has to be careful with the notation here, because the brackets [n]q in
this case denote the q-analogue of a natural number nj. They are given by

[n]q =
1− qn
1− q =

n−1∑

j=0

qj .

With this it is easy to see that since s1 > 1

lim
q→1

ζq(s1, . . . , sl) = ζ(s1, . . . , sl) .
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These function also ful�ll a lot of relations from which one can deduce relations of
MZV due to the limiting process.
It seems strange to us, that albeit the cases (1− q)s[s] have been treated as q-zeta
values [Zu], [Pu] or [KKW] the de�nition (6.1) has become standard (see e.g. [Br],
[Zh],[OKZ]) and not (1− q)s1+,...,sk [s1, . . . , sl].

Remark 6.2. There is also another q-analogue, which is more directly connected
to the brackets. It is de�ned by

ζq(s1, . . . , sl) = (1− q)−kζq(s1, . . . , sl)

=
∑

n1>···>nl>0

qn1(s1−1) . . . qnl(sl−1)

(1− qn1)s1 . . . (1− qnl)sl

and which are called modi�ed q-multiple zeta values in [OT] or [Ta].
If all sj > 1, then modi�ed q-multiple zeta values can be written in terms of
brackets, which follows from the fact that the Eulerian polynomials form a basis
of a certain space of polynomials [BK]. Clearly one has ζq(2, . . . , 2) = [2, . . . , 2]
because P1(t) = 1. If all indices sj ≥ 2 the connection gets a little bit more
complicated. For example it is

ζq(4) = [4]− [3] +
1

3
[2] ,

and this is due to the identity

t3

(1− t)4 =
tP3(t)

3!(1− t)4 −
tP2(t)

2!(1− t)3 +
1

3

tP1(t)

(1− t)2 .

When one of the sj is equal to 1 we don't expect such a simple connection. But
still there seems to be a connections if s1 > 1, for example

ζq(2, 1) ≡ [2, 1]− [2] + d[1] mod q100Q[[q]] .

It is not di�cult to check that the space of modi�ed q-multiple zeta is closed under
multiplication (see e.g. [HI], p. 2). However, the algebra of admissible brackets
qMZ is not isomorphic to the Q-algebra of modi�ed q-multiple zeta values in the
sense of [OT] or [Ta]. This is in essence due to the relation ζq(2, 1) = ζq(3) in
contrast to [2, 1] 6= [3].

De�nition 6.3. For k ∈ N we de�ne the map Zk : FilWk (qMZ)→ R by

Zk ([s1, . . . , sl]) = lim
q→1

(
(1− q)k[s1, . . . , sl]

)
.
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Proposition 6.4. The map Zk is linear and on the generators of FilWk (qMZ),
i.e., on brackets with s1 > 0, it is given by

Zk ([s1, . . . , sl]) =





ζ(s1, . . . , sl) , k = s1 + · · ·+ sl,

0 , k > s1 + · · ·+ sl .

Proof. Using Lemma 2.5 and Lemma 6.6 below, we derive for k = s1 + · · ·+ sl

Zk ([s1, . . . , sl]) = lim
q→1

(
(1− q)k[s1, . . . , sl]

)

= lim
q→1

(
(1− q)k

∑

n1>···>nl>0

l∏

j=1

qnjPsj−1 (qnj)

(sj − 1)!(1− qnj)sj

)

=
∑

n1>···>nl>0

lim
q→1

l∏

j=1

(1− q)sj
(1− qnj)sj

qnjPsj−1(q
nj)

(sj − 1)!

= ζ(s1, . . . , sl);

here we used that the k-th Eulerian polynomial Pk(t) satis�es Pk(1) = k!. If
k > s1 + . . . sl it is Zk ([s1, . . . , sl]) = lim

q→1
(1 − q)k−s1−···−slζ(s1, . . . , sl) = 0. In

Lemma 6.6 we will justify the interchange of the limit and the summation.

Corollary 6.5. Let f =
∑

n≥0 anq
n be a quasi-modular form of weight k. Then

the map Zk sends f to (−2πi)ka0. The space Sk of weight k cusp-forms is therefore

a subspace of the kernel of Zk.

Proof. Any quasi-modular form of weight k can be written as a homogenous
polynomial in G2, G4 and G6, therefore M̃k(Γ1) ⊂ Qk. Since Zk is a linear operator
we can focus on the monomials. Let us consider the most simplest case �rst. For
a, b ∈ {2, 4, 6} we have

Za+b(GaGb) = lim
q→1

(1− q)a+bGaGb = lim
q→1

(1− q)aGa lim
q→1

(1− q)bGb = Za(Ga)Zb(Gb)

and by Proposition 6.4 we have Za(Ga)Zb(Gb) = ζ(a)ζ(b) which is exactly (−2πi)a+b

times the constant term of GaGb. The same argument holds for more general
monomials and therefore the claim follows.

Lemma 6.6. i) De�ne a series {FM(q)}M∈N by

FM(q) =
∑

M≥n1>···>nl>0

l∏

j=1

(1− q)sjqnjPsj−1 (qnj)

(1− qnj)sj(sj − 1)!
,
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then it converges uniformly to (1−q)k[s1, . . . , sl] for q in the interval [0, 1] and
therefore

lim
q→1

(
(1− q)k[s1, . . . , sl]

)
=

∑

n1>···>nl>0

lim
q→1

l∏

j=1

(1− q)sjqnjPsj−1 (qnj)

(1− qnj)sj(sj − 1)!
(6.2)

ii) Let k, n ∈ N be natural numbers and de�ne the function

fk,n(q) =
(1− q)kqnPk−1(qn)

(1− qn)k(k − 1)!
,

then for q ∈ [0, 1] it is f1,n(q) ≤ 1
n
and for k > 1 we have fk,n(q) ≤ 1

n2 .

Proof. We start with the proof of ii) because we need it for the proof of i). It is

f1,n(q) =
(1− q)qn
(1− qn)

because P0(q
n) = 1. This is bounded by 1

n
because the function

bn(q) = n(1− q)qn − (1− qn)

is negative for all q ∈ (0, 1) which can be seen by bn(1) = 0 and the fact that the
derivative

b′n(q) = n2(1− q)qn−1 + n(qn−1 − qn) .

is positive. We will show that

(1− q)2qn
(1− qn)2

· Pk−1(q
n)

(k − 1)!
≤ 1

n2

for all k. This will be su�cient ii) for proving the statement for all k ≥ 2 because
it is 1−q

1−qn < 1 for q ∈ (0, 1). Because of the positivity of the coe�cients of Pk−1(q)

and Pk−1(1) = (k − 1)! we have for q ∈ (0, 1) that

Pk−1(qn)

(k − 1)!
≤ 1 .

It therefore remains to show that

hn(q) :=
(1− q)2qn
(1− qn)2

− 1

n2

!

≤ 0 .

We will do this by showing that hn(q) is monotonically increasing in the desired
interval and

lim
q→1

hn(q) = 0 .
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The latter can be seen by using l'hospital twice. For the monotonicity we �rst
derive the derivative of h:

h′n(q) =
−(1− q)qn−1

(1− qn)3
·
(
2q(1− qn)− n(1− q)(1 + qn)

)
.

The �rst factor is negative and we therefore just have to proof that the term in
the brackets is also negative for all n ∈ N and q ∈ (0, 1) which we will do by
induction on n. For n = 1 this is trivial and for the inductive step we �rst rewrite
the statement as

2
q(1− qn)

(1− q) = 2
n∑

j=1

qj ≤ n(1 + qn) .

Assuming that this holds for an n we can write

2
n+1∑

j=1

qj = 2
n∑

j=1

qj + 2qn+1 ≤ n(1 + qn) + 2qn+1 .

Now we have to show that

n(1 + qn) + 2qn+1
!

≤ (n+ 1)(1 + qn+1)

which we again do by �rst setting

gn(q) := (n+ 1)(1 + qn+1)−
(
n(1 + qn) + 2qn+1

)
= n(qn−1 − qn) + 1− qn+1

and then noticing that gn(1) = 0. The derivative g′n(q) = −qn−1(n2(1− q) + q) is
clearly negative for q ∈ (0, 1) which implies gn(q) ≥ 0 and therefore �nishes the
inductive step.
We now prove i). Using the bounds in ii) and taking into account s1 > 1 we have
the bound

FM(q) =
∑

M≥n1>···>nl>0

l∏

j=1

(1− q)sjqnjPsj−1 (qnj)

(1− qnj)sj(sj − 1)!

≤
∑

M≥n1>···>nl>0

1

n2
1n2 . . . nl

≤ ζ(2, 1, . . . , 1)

for q ∈ [0, 1] and all M > 0. Therefore the sum on the right-hand side of (6.2)
converges uniformly as a function in q and therefore we can interchange limit and
summation.

Remark 6.7. In [Pu] it is shown [1] ≈ − log(1−q)
1−q near q = 1. Since a bracket

[s1, . . . , sl] with s1 = 1 are polynomials in [1], it is clear that Zk can't be extended
as an analytical map as given in De�nition 6.3 to all FilWk (MD).
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7 Applications to multiple zeta values

As mentioned in the introduction we now want to consider a direct connection of
brackets with multiple zeta values (MZV).
We start by de�ning for any ρ ∈ R≥1 the following spaces

Qρ =

{∑

n>0

anq
n ∈ R[[q]] | an = O(nρ−1)

}

and

Q<ρ =

{∑

n>0

anq
n ∈ R[[q]] | ∃ ε > 0 with an = O(nρ−1−ε)

}
,

where an = O(nρ−1) is the usual big O notation which means that there is an
C ∈ R with |an| ≤ Cnρ−1 for all n ∈ N.

Lemma 7.1. i) Both Q<ρ and Qρ are R vector spaces.

ii) We have Qρ−1 ⊂ Q<ρ ⊂ Qρ.

iii) Let r, s ∈ R≥1 then

Q<r · Q<s ⊂ Q<r+s, Q<r · Qs ⊂ Q<r+s and Qr · Qs ⊂ Qr+s .

Proof. It is obvious that i) and ii) hold. For iii) we consider f =
∑

n>0 anq
n ∈ Qr,

g =
∑

n>0 bnq
n ∈ Qs. Then by de�nition |an| ≤ C1n

r−1 and |bn| ≤ C2n
s−1 for some

constants C1 and C2. Setting f · g =
∑

n>0 cnq
n we derive

|cn| =
∣∣∣∣∣
∑

n1+n2=n

an1bn2

∣∣∣∣∣ ≤ C1C2

∑

n1+n2=n

nr−11 ns−12 ≤ C1C2n · nr−1ns−1 = O(nr+s−1) .

and therefore f ·g ∈ Qr+s. By similar considerations the remaining cases follow.

Proposition 7.2. For ρ > 1 de�ne the map Zρ for a f =
∑

n>0 anq
n ∈ R[[q]] by

Zρ(f) = lim sup
q→1

(1− q)ρ
∑

n>0

anq
n ,

where one assumes q ∈ (0, 1). Then the following statements are true

i) Zρ is a linear map from Qρ to R

ii) Q<ρ ⊂ kerZρ.

iii) dQ<ρ−1 ⊂ ker(Zρ), where as before d = q d
dq
.
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Proof. We prove i) and ii) simultaneously. In order to do this we use the following
expression for the polylogarithm

Li−s(q) = Γ(1 + s)(− log q)−s−1 +
∞∑

n=0

ζ(−s− n)

n!
(log q)n

which is valid for s 6= −1,−2,−3, . . . , |z| < 1 and where ζ(−s− n) is the analytic
continuation of the Riemann zeta-function. The proof of this can be found in [CG]
Corollary 2.1. The logarithm has the following expansion near q = 1

− log(q) =
∞∑

n=1

(1− q)n
n

.

Using this one gets for ε ≥ 0

lim sup
q→1

(1− q)ρ
∑

n>0

nρ−1−εqn = lim
q→1

(1− q)ρ Liε+1−ρ(q)

= lim sup
q→1

(1− q)ρ
(

Γ(ρ− ε)(− log q)−ρ+ε +
∞∑

n=0

ζ(−ρ+ ε− n)

n!
(log q)n

)

= Γ(ρ− ε) lim sup
q→1

(1− q)ρ(∑∞
n=1

(1−q)n
n

)ρ−ε =





Γ(ρ) , ε = 0

0 , ε > 0
.

Now assume that for a ε ≥ 0 we have f =
∑

n>0 anq
n with |an| ≤ C · nρ−1−ε, i.e.

f ∈ Qρ for ε = 0 and f ∈ Q<ρ for ε > 0, then the calculation above gives

|Zρ(f)| =
∣∣∣∣∣Zρ
(∑

n>0

anq
n

)∣∣∣∣∣ ≤ C · Zρ
(∑

n>0

nρ−1−ε
)

=





C · Γ(ρ) , ε = 0

0 , ε > 0

and therefore Zρ(f) ∈ R and Zρ(f) = 0 respectively.
For iii) we just have to observe that the derivative d = q d

dq
on
∑

n>0 anq
n is given

by
∑

n>0 nanq
n. With this it is clear that with i) we obtain d (Q<ρ−1) ⊂ Q<ρ ⊂

ker(Zρ).

The brackets [s1, . . . , sl] can be considered as elements in the spaces we studied
above.

Proposition 7.3. i) For any s1, . . . , sl we have [s1, . . . , sl] ∈ Q<s1+···+sl+1.

ii) If all s1, s2, . . . , sl > 1, then [s1, . . . , sl] ∈ Qs1+···+sl .
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iii) For any s1, . . . , sl we have

[s1, . . . , sl] ⊂ ker(Zs1+···+sl+1)

and
d[s1, . . . , sl] ⊂ ker(Zs1+···+sl+2)

Proof. We begin with the proof of ii). It is a well-known fact that for s > 1 the
divisor sums σs−1(n) are in O(ns−1) and therefore [s] ∈ Qs. Then by Lemma 7.1
iii) we have

∑
n>0 as1,...,sl(n)qn := [s1] . . . [sl] ∈ Qs1+···+sl .

It is clearly

σs1−1,...,sl−1(n) =
∑

u1v1+···+ulvl=n
u1>···>ul>0

vs1−11 . . . vsl−1l

≤
∑

u1v1+···+ulvl=n
vs1−11 . . . vsl−1l = as1,...,sl(n) ,

which implies [s1, . . . , sl] ∈ Qs1+···+sl .
In order to show i) we can use the same argument as in ii) except that one has
σ0(n) ∈ O(log(n)) ⊂ O(nε) for any ε > 0. Using this we obtain [1] ∈ Q<2 and
therefore [s1, . . . , sl] ∈ Q<s1+···+sl+1 for s1, . . . , sl ≥ 1.
Finally iii) is an immediate consequence of Proposition 7.2 ii) and iii).

UsingMD = qMZ[[1]] we de�ne a map

Zalg
k : FilWk (MD) −→ R[T ] ,

Zalg
k

(
k∑

j=0

gj[1]k−j
)

=
k∑

j=0

Zj(gj)T
k−j ∈ R[T ] ,

where gj ∈ FilWj (qMZ).

Proposition 7.4. For all f ∈ FilWk (MD) it is Zalg
k+2(d f) = 0.

Proof. An element in FilWk (MD) can be written as
∑k

j=0 gj[1]k−j with gj ∈
FilWj (qMZ). The map Zalg

k is linear, it therefore su�ces to prove the statement

for a f ∈ FilWk (MD) of the form f = gj[1]k−j. The derivative of this f is given by

d f = d gj · [1]k−j + (k − j)gj d[1] · [1]k−j−1 .

As we saw before it is d[1] = [3] + 1
2
[2]− [2, 1] ∈ qMZ and by Proposition 3.14 it

is d gj ∈ qMZ. The map Zalg
k+2 is therefore given on d f by

Zalg
k+2(d f) = Zj+2 (d gj)T

k−j + (k + j)Zj+3 (gj d[1])T k−j−1 .

It is Zj+3 (gj d[1]) = Zj(gj) ·Z3(d[1]) and by Proposition 7.3 we obtain Z3 (d[1]) =
Zj+2 (d gj) = 0 from which the statement follows
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Remark 7.5. The authors also expect that the implication

Zk(f) = 0 =⇒ Zalg
k (f) = 0

holds for arbitrary f ∈MD.

Now Theorem 1.13 follows by Proposition 7.3 and Proposition 7.4. Using these
propositions we are able to derive relations between MZV coming from elements in
the kernel of the map Zk. We give a few examples which give a new interpretation
of well known identities of multiple zeta values.

Example 7.6. i) We have seen earlier that the derivative of [1] is given by

d[1] = [3] +
1

2
[2]− [2, 1]

and because of the proposition it is d[1], [2] ∈ kerZ3 from which ζ(2, 1) = ζ(3)
follows.

ii) (Shu�e product) Proposition 3.3 stated for s1 + s2 = k + 2 that

(
k

s1 − 1

)
d[k]

k
= [s1]·[s2]+

(
k

s1 − 1

)
[k+1]−

∑

a+b=k+2

((
a− 1

s1 − 1

)
+

(
a− 1

s2 − 1

))
[a, b] .

Applying Zk+2 on both sides we obtain the shu�e product for single zeta
values

ζ(s1) · ζ(s2) =
∑

a+b=k+2

((
a− 1

s1 − 1

)
+

(
a− 1

s2 − 1

))
ζ(a, b) .

Example 7.7. For the cusp form ∆ ∈ S12 ⊂ ker(Z12) we derived the representa-
tion

1

26 · 5 · 691
∆ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+
1

1408
[2]− 83

14400
[4] +

187

6048
[6]− 7

120
[8]− 5197

691
[12] .

Letting Z12 act on both sides one obtains the relation

5197

691
ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) .

In general it is known due to [GKZ] that every cusp form of weight k give rise to
a relation between double zeta values with odd entries modulo ζ(k). We believe
that one can give an alternative proof of his fact with the help of brackets.

43

Appendix A. The algebra of generating functions for multiple divisor sums and
applications to multiple zeta values

120



At the end we want to mention a curious property of the brackets which seems to
appear at length 3. Fixing a weight k and a length l one could ask, if there are
linear relations between brackets [s1, . . . , sl] with the same weight s1 + · · ·+ sl = k
and length l. For l = 2 using the computer the authors could not �nd any such
relations up to weight 30. But for l = 3 there seem to be relations of this form
starting in weight 9. The �rst two of them are given by:

Conjecture 7.8. In FilW,L
9,3 (MD) and FilW,L

10,3 (MD) we have the relation

0 =
9

5
[2, 3, 4] + 2 [2, 4, 3]− [2, 5, 2]

+ 2 ([3, 5, 1]− [3, 1, 5])− 1

5
[3, 2, 4]− [3, 3, 3]− [3, 4, 2]

+
3

5
([4, 4, 1]− [4, 1, 4])− 11

10
[4, 2, 3] +

1

2
[4, 3, 2]

+
4

5
( [5, 1, 3]− [5, 3, 1])− [6, 1, 2] + [6, 2, 1] .

and

0 =
4

3
[2, 3, 5] +

14

5
[2, 4, 4] +

29

15
[2, 5, 3]− [2, 6, 2]

+ 2 ([3, 6, 1]− [3, 1, 6])− 2

3
[3, 2, 5] +

2

5
[3, 3, 4]− 1

15
[3, 4, 3]− [3, 5, 2]

+ 2 ([4, 5, 1]− [4, 1, 5])− 6

5
[4, 2, 4]− 4

3
[4, 3, 3]− 2

5
[4, 4, 2]

+
2

5
([5, 4, 1]− [5, 1, 4])− [5, 2, 3] +

1

5
[5, 3, 2]

+
1

3
([6, 1, 3]− [6, 3, 1])− [7, 1, 2] + [7, 2, 1] .

Notice that these are all elements in FilW9 (qMZ) (resp. FilW10(qMZ)) and therefore
a relation for triple zeta values would follow from this. There are similar relations
in higher weights and computations show the following:

k 1-8 9 10 11 12 13 14 15 16 17 18 19 20

tk 0 1 1 3 6 8 12 16 21 25 32 37 45

Table 6: Conjectured numbers tk of relations between [a, b, c] with a+ b+ c = k.
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The double shuffle relations

for multiple Eisenstein series

Henrik Bachmann∗, Koji Tasaka†

Abstract

We study the multiple Eisenstein series introduced by Gangl, Kaneko

and Zagier. We give a proof of (restricted) finite double shuffle rela-

tions for multiple Eisenstein series by revealing an explicit connection

between the Fourier expansion of multiple Eisenstein series and the

Goncharov coproduct on Hopf algebras of iterated integrals.

Keywords: Multiple zeta value, Multiple Eisenstein series, The Goncharov

coproduct, Modular forms, Double shuffle relation.

Subjclass[2010]: 11M32, 11F11, 13J05, 33E20.

1 Introduction

The purpose of this paper is to study the multiple Eisenstein series, which

are holomorphic functions on the upper half-plane {τ ∈ C | Im(τ) > 0}
and which can be viewed as a multivariate generalisation of the classical

Eisenstein series, defined as an iterated multiple sum

Gn1,...,nr(τ) =
∑

0≺λ1≺···≺λr
λ1,...,λr∈Zτ+Z

1

λn1
1 · · ·λnr

r

(n1, . . . , nr−1 ∈ Z≥2, nr ∈ Z≥3),

(1.1)

∗email : henrik.bachmann@uni-hamburg.de, Universität Hamburg
†email : koji.tasaka@math.nagoya-u.ac.jp, Graduate School of Mathematics, Nagoya

University
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where the positivity lτ +m ≻ 0 of a lattice point is defined to be either l > 0

or l = 0, m > 0, and lτ +m ≻ l′τ +m′ means (l− l′)τ +(m−m′) ≻ 0. These

functions were first introduced and studied by Gangl, Kaneko and Zagier [7,

Section 7], where they investigated the double shuffle relation satisfied by

double zeta values for the double Eisenstein series Gn1,n2(τ). Here the double

zeta value is the special case of multiple zeta values defined by

ζ(n1, . . . , nr) =
∑

0<m1<···<mr
m1,...,mr∈Z

1

mn1
1 · · ·mnr

r

(n1, . . . , nr−1 ∈ Z≥1, nr ∈ Z≥2).

(1.2)

Their results were extended to the double Eisenstein series for higher level

(congruence subgroup of level N) in [12] (N = 2) and in [16] (N : general),

and have interesting applications to the theory of modular forms (see [15])

as well as the study of double zeta values of level N . Our aim of this paper

is to give a framework of and a proof of double shuffle relations for multiple

Eisenstein series.

The double shuffle relation, or rather, the finite double shuffle relation

(cf. e.g. [10]) describes a collection of Q-linear relations among multiple zeta

values arising from two ways of expressing multiple zeta values as iterated

sums (1.2) and as iterated integrals (3.1). Each expression produces an al-

gebraic structure on the Q-vector space spanned by all multiple zeta values.

The product associated to (1.2) (resp. (3.1)) is called the harmonic product

(resp. shuffle product). For example, using the harmonic product, we have

ζ(3)ζ(3) = 2ζ(3, 3) + ζ(6),

and by the shuffle product formulas one obtains

ζ(3)ζ(3) = 12ζ(1, 5) + 6ζ(2, 4) + 2ζ(3, 3). (1.3)

Combining these equations gives the relation

12ζ(1, 5) + 6ζ(2, 4)− ζ(6) = 0.

For the multiple Eisenstein series (1.1), it is easily seen that the har-

2
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monic product formulas hold when the series defining Gn1,...,nr(τ) converges

absolutely, i.e. n1, . . . , nr−1 ∈ Z≥2 and nr ∈ Z≥3, but the shuffle product

is not the case – the shuffle product formula (1.3) replacing ζ with G does

not make sense because an undefined multiple Eisenstein series G1,5(τ) is in-

volved. This paper develops the shuffle product of multiple Eisenstein series

by revealing an explicit connection between the multiple Eisenstein series and

the Goncharov coproduct, and as a consequence the validity of a restricted

version of the finite double shuffle relations for multiple Eisenstein series is

obtained.

This paper begins by computing the Fourier expansion of Gn1,...,nr(τ) for

n1, . . . , nr ≥ 2 (the case nr = 2 will be treated by a certain limit argument

in Definition 2.1) in Section 2. The Fourier expansion is deeply related with

the Goncharov coproduct ∆ (see (3.4)) on Hopf algebras of iterated inte-

grals introduced by Goncharov [8, Section 2], which was first observed by

Kaneko in several cases and studied by Belcher [6]. His Hopf algebra I•(S)

is reviewed in Section 3.2, and we will observe a relationship between the

Fourier expansion and the Goncharov coproduct ∆ in the quotient Hopf al-

gebra I1
• := I•/I(0; 0; 1)I• (I• := I•({0, 1}), which can not be seen in I•.

The space I1
• has a linear basis (Proposition 3.5)

{I(n1, . . . , nr) | r ≥ 0, n1, . . . , nr ∈ Z>0},

and we will express the Goncharov coproduct ∆(I(n1, . . . , nr)) as a certain

algebraic combination of the above basis (Propositions 3.7 and 3.9). As an

example of this expression, one can compute

∆(I(2, 3)) = I(2, 3)⊗ 1 + 3I(3)⊗ I(2) + 2I(2)⊗ I(3) + 1⊗ I(2, 3).

The relationship is then obtained by comparing the formula for ∆(I(n1, . . . , nr))

with the Fourier expansion of Gn1,...,nr(τ), which in the case of r = 2 can be

found by (2.8) and (3.11). More precisely, let us define the Q-linear maps

zx : I1
• → R and g : I1

• → C[[q]] given by I(n1, . . . , nr) 7→ ζx(n1, . . . , nr)

and I(n1, . . . , nr) 7→ gn1,...,nr(q), where ζx(n1, . . . , nr) is the regularised mul-

tiple zeta value with respect to the shuffle product (see Definition 3.1) and

gn1,...,nr(q) is the generating series of the multiple divisor sum appearing in

3
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the Fourier expansion of multiple Eisenstein series (see (2.4)). For instance,

by (2.8) we have

G2,3(τ) = ζ(2, 3) + 3ζ(3)g2(q) + 2ζ(2)g3(q) + g2,3(q),

and hence
(
zx ⊗ g

)
◦∆(I(2, 3)) = G2,3(τ). In general, we have the following

theorem which is the first main result of this paper.

Theorem 1.1. For integers n1, . . . , nr ≥ 2 we have

(
zx ⊗ g

)
◦∆(I(n1, . . . , nr)) = Gn1,...,nr(τ) (q = e2π

√−1τ ).

The maps ∆ : I1
• → I1

•⊗I1
• and zx : I1

• → R are algebra homomorphisms

(Propositions 3.4 and 3.6) but the map g : I1
• → C[[q]] is not an algebra

homomorphism (see (4.1)). Thus we can not expect a validity of the shuffle

product formulas for the q-series
(
zx⊗g

)
◦∆(I(n1, . . . , nr)) (n1, . . . , nr ∈ Z≥1)

which can be naturally regarded as an extension of Gn1,...,nr(τ) to the indices

with ni = 1.

We shall construct in Section 4.1 an algebra homomorphism gx : I1
• →

C[[q]] (Definition 4.3) using certain q-series, and in Section 4.2 we define a

regularised multiple Eisenstein series (see Definition 4.5)

Gx
n1,...,nr

(q) :=
(
zx ⊗ gx

)
◦∆(I(n1, . . . , nr)) ∈ C[[q]] (n1, . . . , nr ∈ Z≥1).

It follows from the definition that the q-series Gx
n1,...,nr

(q) (n1, . . . , nr ∈ Z≥1)

satisfy the shuffle product formulas. We will prove that Gx
n1,...,nr

(q) coin-

cides with the Fourier expansion of Gn1,...,nr(τ) when n1, . . . , nr ≥ 2 and

q = e2π
√−1τ (Theorem 4.6). Then, combining the shuffle product of Gx’s

and the harmonic product of G’s yields the double shuffle relation for mul-

tiple Eisenstein series, which is the second main result of this paper (see

Theorem 4.7 for the detail).

Theorem 1.2. The (restricted) finite double shuffle relations hold for Gx
n1,...,nr

(q)

(n1, . . . , nr ∈ Z≥1).

The organisation of this paper is as follows. In section 2, the Fourier ex-

pansion of the multiple Eisenstein series Gn1,...,nr(τ) is considered. In section

4
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3, we first recall the regularised multiple zeta value and Hopf algebras of

iterated integrals introduced by Goncharov. Then we define the map zx that

assigns regularised multiple zeta value to formal iterated integrals. We also

present the formula expressing ∆(I(n1, . . . , nr)) as a certain algebraic com-

bination of I(k1, . . . , ki)’s, and finally proves Theorem 1.1. Section 4 gives

the definition of the algebra homomorphism gx and proves double shuffle

relations for multiple Eisenstein series. A future problem with the dimension

of the space of Gx’s will be discussed in the end of this section.
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2 The Fourier expansion of multiple Eisen-

stein series

2.1 Multiple Eisenstein series

In this subsection, we define the multiple Eisenstein series and consider its

Fourier expansion.

Recall the computation of the Fourier expansion of Gn1(τ), which is well-

known (see also [7, Section 7]):

Gn1(τ) =
∑

0≺lτ+m

1

(lτ +m)n1
=
∑

m>0

1

mn1
+
∑

l>0

∑

m∈Z

1

(lτ +m)n1

5
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= ζ(n1) +
(−2π

√
−1)n1

(n1 − 1)!

∑

n>0

σn1−1(n)qn,

where σk(n) =
∑

d|n d
k is the divisor function and q = e2π

√−1τ . Here for the

last equality we have used the Lipschitz formula

∑

m∈Z

1

(τ +m)n1
=

(−2π
√
−1)n1

(n1 − 1)!

∑

0<v1

vn1−1
1 qv1 (n1 ≥ 2). (2.1)

When n1 = 2, the above computation (the second equality) can be justified

by using a limit argument which in general is treated in Definition 2.1 below.

We remark that the function Gn1(τ) is a modular form of weight n1 for

SL2(Z) when n1 is even (> 2) (G2(τ) is called the quasimodular form) and a

non-trivial holomorphic function even if n1 is odd.

The following definition enables us to compute the Fourier expansion

of Gn1,...,nr(τ) for integers n1, . . . , nr ≥ 2 and coincides with the iterated

multiple sum (1.1) when the series defining (1.1) converges absolutely, i.e.

n1, . . . , nr−1 ≥ 2 and nr ≥ 3.

Definition 2.1. For integers n1, . . . , nr ≥ 2, we define the holomorphic func-

tion Gn1,...,nr(τ) on the upper half-plane called the multiple Eisenstein series

by

Gn1,...,nr(τ) := lim
L→∞

lim
M→∞

∑

0≺λ1≺···≺λr
λi∈ZLτ+ZM

1

λn1
1 · · ·λnr

r

= lim
L→∞

lim
M→∞

∑

0≺(l1τ+m1)≺···≺(lrτ+mr)
−L≤l1,...,lr≤L

−M≤m1,...,mr≤M

1

(l1τ +m1)n1 · · · (lrτ +mr)nr
,

where we set ZM = {−M,−M+1, . . . ,−1, 0, 1, . . . ,M−1,M} for an integer

M > 0.

The Fourier expansion of Gn1,...,nr(τ) for integers n1, . . . , nr ≥ 2 is ob-

tained by splitting up the sum into 2r terms, which was first done in [7] for

the case r = 2 and in [1] for the general case (they use the opposite con-

vention, so that the λi’s are ordered by λ1 ≻ · · · ≻ λr ≻ 0). To describe

6
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each term we introduce the holomorphic function Gn1,...,nr(w1 · · ·wr; τ) on the

upper half-plane below. For convenience, we express the set P of positive

elements in the lattice Zτ + Z as the disjoint union of two sets

Px := {lτ +m ∈ Zτ + Z | l = 0 ∧m > 0} ,
Py := {lτ +m ∈ Zτ + Z | l > 0} ,

i.e. Px are the lattice points on the positive real axis, Py are the lattice points

in the upper half-plane and P = Px∪Py. We notice that λ1 ≺ λ2 is equivalent

to λ2 − λ1 ∈ P . Let us denote by {x,y}∗ the set of all words consisting of

letters x and y. For integers n1, . . . , nr ≥ 2 and a word w1 · · ·wr ∈ {x,y}∗
(wi ∈ {x,y}) we define

Gn1,...,nr(w1 · · ·wr) = Gn1,...,nr(w1 · · ·wr; τ)

:= lim
L→∞

lim
M→∞

∑

λ1−λ0∈Pw1

...
λr−λr−1∈Pwr

λ1,...,λr∈ZLτ+ZM

1

λn1
1 · · ·λnr

r

,

where λ0 := 0. Note that in the above sum, adjoining elements λi − λi−1 =

(li − li−1)τ + (mi − mi−1), . . . , λj − λj−1 = (lj − lj−1)τ + (mj − mj−1) are

in Px (i.e. wi = · · · = wj = x with i ≤ j) if and only if they satisfy

mi−1 < mi < · · · < mj with li−1 = li = · · · = lj (since (l−l′)τ+(m−m′) ∈ Px

if and only if l = l′ and m < m′), and hence the function Gn1,...,nr(w1 · · ·wr)

is expressible in terms of the following function:

Ψn1,...,nr(τ) =
∑

−∞<m1<···<mr<∞

1

(τ +m1)n1 · · · (τ +mr)nr
,

which was studied thoroughly in [3]. In fact, as is easily seen that the series

defining Ψn1,...,nr(τ) converges absolutely when n1, . . . , nr ≥ 2, we obtain the

7
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following expression:

Gn1,...,nr(w1 · · ·wr)

= ζ(n1, . . . , nt1−1)
∑

0<l1<···<lh

Ψnt1 ,...,nt2−1(l1τ) · · ·Ψnth
,...,nr(lhτ),

(2.2)

where 0 < t1 < · · · < th < r + 1 describe the positions of y’s in the word

w1 · · ·wr, i.e.

w1 · · ·wr = x · · ·x︸ ︷︷ ︸
t1−1

y x · · ·x︸ ︷︷ ︸
t2−t1−1

yx · · ·y x · · ·x︸ ︷︷ ︸
th−th−1−1

y x · · ·x︸ ︷︷ ︸
r−th

,

and ζ(n1, . . . , nt1−1) = 1 when t1 = 1.

As we will use later, we remark that the above expression of words gives

a one-to-one correspondence between words of length r in {x,y}∗ and the

ordered subset of {1, 2, . . . , r}:

w1 · · ·wr ←→ {t1, . . . , th}, (2.3)

where h is the number of y’s in w1 · · ·wr. We remark that in the corre-

spondence the word xr should correspond to the empty set as a subset of

{1, 2, . . . , r}.

Proposition 2.2. For integers n1, . . . , nr ≥ 2, we have

Gn1,...,nr(τ) =
∑

w1,...,wr∈{x,y}
Gn1,...,nr(w1 · · ·wr).

Proof. For λ1, . . . , λr ∈ ZLτ + ZM , the condition 0 ≺ λ1 ≺ · · · ≺ λr is by

definition equivalent to λi − λi−1 ∈ P = Px ∪ Py for all 1 ≤ i ≤ r − 1

(recall λ0 = 0). Since λi− λi−1 can be either in Px or in Py we complete the

proof.

Example. In the case of r = 2, one has for n1 ≥ 2, n2 ≥ 3

Gn1,n2(τ) =
∑

0≺λ1≺λ2
λ1,λ2∈Zτ+Z

λ−n1
1 λ−n2

2 =
∑

λ1−λ0∈P
λ2−λ1∈P

λ1,λ2∈Zτ+Z

λ−n1
1 λ−n2

2

8
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=

( ∑

λ1−λ0∈Px
λ2−λ1∈Px

λ1,λ2∈Zτ+Z

+
∑

λ1−λ0∈Px
λ2−λ1∈Py

λ1,λ2∈Zτ+Z

+
∑

λ1−λ0∈Py

λ2−λ1∈Px
λ1,λ2∈Zτ+Z

+
∑

λ1−λ0∈Py

λ2−λ1∈Py

λ1,λ2∈Zτ+Z

)
λ−n1

1 λ−n2
2

= Gn1,n2(xx) +Gn1,n2(xy) +Gn1,n2(yx) +Gn1,n2(yy).

2.2 Computing the Fourier expansion

In this subsection, we give a Fourier expansion of Gn1,...,nr(w1 · · ·wr).

Let us define the q-series gn1,...,nr(q) for integers n1, . . . , nr ≥ 1 by

gn1,...,nr(q) =
(−2π

√
−1)n1+···+nr

(n1 − 1)! · · · (nr − 1)!

∑

0<u1<···<ur
0<v1,...,vr

vn1−1
1 · · · vnr−1

r qu1v1+···+urvr ,

(2.4)

which divided by (−2π
√
−1)n1+···+nr was studied in [2]. We remark that

since gn1(q) is the generating series of the divisor function σn1−1(n) up to a

scalar factor, the coefficient of qn in the q-series gn1,...,nr(q) can be regarded

as a multiple version of the divisor sum:

σn1,...,nr(n) =
∑

u1v1+···+urvr=n
0<u1<···<ur
v1,...,vr∈N

vn1−1
1 · · · vnr−1

r ,

which is called the multiple divisor sum in [2] with the opposite convention

(but we do not discuss their properties in this paper). We will investigate an

algebraic structure related to the q-series gn1,...,nr(q) in a subsequent paper.

To give the Fourier expansion of Gn1,...,nr(w1, . . . , wr), we need the follow-

ing lemma.

Lemma 2.3. For integers n1, . . . , nr ≥ 2, we have

r∑

q=1

∑

k1+···+kr=n1+···+nr
ki≥ni,kq=1

(
(−1)nq+kq+1+···+kr

r∏

j=1
j ̸=q

(
kj − 1

nj − 1

)

× ζ(kq−1, kq−2, . . . , k1)ζ(kq+1, kq+2, . . . , kr)

)
= 0,

9
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where ζ(n1, . . . , nr) = 1 when r = 0.

Proof. This was shown by using an iterated integral expression of multiple

zeta values in [3, Section 5.5] (his notations T enr,...,n1(z) and Zenr,...,n1 cor-

respond to our Ψn1,...,nr(z) and ζ(n1, . . . , nr), respectively). We remark that

he proved the identities Lemma 2.3 for n1, . . . , nr ≥ 1 with n1, nr ≥ 2.

Proposition 2.4. For integers n1, . . . , nr ≥ 2 and a word w1 · · ·wr ∈ {x,y}∗
with the ordered subset {t1, . . . , th} given by the correspondence (2.3), we set

Ntm = ntm + · · · + ntm+1−1 for m ∈ {1, . . . , h} where th+1 = r + 1. Then the

function Gn1,...,nr(w1 · · ·wr; τ) has the following Fourier expansion:

Gn1,...,nr(w1 · · ·wr) = ζ(n1, . . . , nt1−1)

×
∑

t1≤q1≤t2−1
t2≤q2≤t3−1

...
th≤qh≤r

∑

kt1+···+kt2−1=Nt1
kt2+···+kt3−1=Nt2

...
kth

+···+kr=Nth
kt1 ,kt1+1,...,kr≥2

{
(−1)

∑h
m=1(Ntm+nqm+kqm+1+kqm+2+···+kqm+1−1)

×
( r∏

j=t1
j ̸=q1,...,qh

(
kj − 1

nj − 1

))( h∏

m=1

ζ(kqm−1, . . . , ktm︸ ︷︷ ︸
qm−tm

)ζ(kqm+1, . . . , ktm+1−1︸ ︷︷ ︸
tm+1−qm−1

)

)

× gkq1 ,...,kqh
(q)

}
,

where q = e2π
√−1τ , ζ(n1, . . . , nr) = gn1,...,nr(q) = 1 whenever r = 0 and∏r

j=t1
j ̸=q1,...,qh

(
kj−1
nj−1

)
= 1 when the product is empty, i.e. when {t1, t1+1, . . . , r} =

{q1, . . . , qh}.

Proof. Put N = n1 + · · ·+ nr. Using the partial fraction decomposition

1

(τ +m1)n1 · · · (τ +mr)nr

=
r∑

q=1

∑

k1+···+kr=N
k1,...,kr≥1

(
q−1∏

j=1

(
kj−1
nj−1

)

(mq −mj)kj

)
(−1)N+nq

(τ +mq)kq

(
r∏

j=q+1

(−1)kj
(

kj−1
nj−1

)

(mj −mq)kj

)
,

10
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we obtain

Ψn1,...,nr(τ) =
r∑

q=1

∑

k1+···+kr=N
k1,...,kr≥1

(
(−1)N+nq+kq+1+···+kr

r∏

j=1
j ̸=q

(
kj − 1

nj − 1

)

× ζ(kq−1, kq−2, . . . , k1︸ ︷︷ ︸
q−1

)Ψkq(τ)ζ(kq+1, kq+2, . . . , kr︸ ︷︷ ︸
r−q

)

)
,

(2.5)

where the implied interchange of order of summation is justified because the

binomial coefficient
(

ki−1
ni−1

)
vanishes if k1 = 1 or kr = 1 and by Lemma 2.3

the coefficient of Ψ1(τ) is zero. Using the Lipschitz formula (2.1) we easily

obtain for integers n1, . . . , nr ≥ 2

gn1,...,nr(q) =
∑

0<u1<···<ur

Ψn1(u1τ) . . .Ψnr(urτ). (2.6)

Combining the above formulas with (2.2) we have the desired formula.

We remark that the formula (2.5), which in the case of r = 2 was done

in [7, Proof of Theorem 6], is found in [3, Theorem 3] and holds when

n1, . . . , nr ≥ 1 with n1, nr ≥ 2, but we use only the formula (2.5) for

n1, . . . , nr ≥ 2 in this paper.

We give an example which was carried out in [7]. From (2.2) and (2.6),

it follows

Gn1,n2(xx) = ζ(n1, n2),

Gn1,n2(xy) = ζ(n1)
∑

0<l

Ψn2(lτ) = ζ(n1)gn2(q),

Gn1,n2(yy) =
∑

0<l1<l2

Ψn1(l1τ)Ψn2(l2τ) = gn1,n2(q),

and using (2.5), we have

Gn1,n2(yx) =
∑

0<l

Ψn1,n2(lτ) =
∑

k1+k2=n1+n2
k1,k2≥2

bk1
n1,n2

ζ(k1)gk2(q),
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where for integers n, n′, k > 0 we set

bk
n,n′ = (−1)n

(
k − 1

n− 1

)
+ (−1)k−n′

(
k − 1

n′ − 1

)
. (2.7)

Thus the Fourier expansion of Gn1,n2(τ) is given by

Gn1,n2(τ) = ζ(n1, n2) +
∑

k1+k2=n1+n2
k1,k2≥2

(
δn1,k1 + bk1

n1,n2

)
ζ(k1)gk2(q) + gn1,n2(q),

(2.8)

where δn,k is the Kronecker delta.

3 The relationship between multiple Eisen-

stein series and the Goncharov coproduct

3.1 Regularised multiple zeta values

In this subsection, we recall the regularised multiple zeta value with respect

to the shuffle product defined in [10]. We first recall an iterated integral

expression of the multiple zeta value due to Kontsevich and Drinfel’d, and

then introduce the algebraic setup of multiple zeta values given by Hoffman.

We denote by ω0(t) = dt
t

and ω1(t) = dt
1−t

holomorphic 1-forms on the

smooth manifold P1
C\{0, 1,∞}. For integers n1, . . . , nr−1 ≥ 1 and nr ≥ 2

with N = n1 + · · · + nr, the multiple zeta value ζ(n1, . . . , nr) is expressible

as an iterated integral on the smooth manifold P1
C\{0, 1,∞}:

ζ(n1, . . . , nr) =

∫
· · ·
∫

0<t1<t2<···<tN<1

ωa1(t1) ∧ ωa2(t2) ∧ · · · ∧ ωaN
(tN), (3.1)

where ai = 1 if i ∈ {1, n1 + 1, n1 +n2 + 1, . . . , n1 + · · ·+nr−1 + 1} and ai = 0

otherwise.

Let H = Q⟨e0, e1⟩ be the non-commutative polynomial algebra in two

indeterminates e0 and e1, and H1 := Q + e1H and H0 := Q + e1He0 its

12
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subalgebras. Set

yn := e1e
n−1
0 = e1 e0 · · · e0︸ ︷︷ ︸

n−1

for each positive integer n > 0. It is easily seen that the subalgebra H1 is

freely generated by yn’s (n ≥ 1) as a non-commutative polynomial algebra:

H1 = Q⟨y1, y2, y3, . . .⟩.

We define the shuffle product, a Q-bilinear product on H, inductively by

uw x vw′ = u(w x vw′) + v(uw x w′),

with the initial condition w x 1 = 1 x w = w (1 ∈ Q), where w,w′ ∈ H

and u, v ∈ {e0, e1}. This provides the structures of commutative Q-algebras

for spaces H,H1 and H0 (see [14]), which we denote by Hx,H
1
x and H0

x

respectively. By taking the iterated integral (3.1), with the identification

wi(t)↔ ei (i ∈ {0, 1}), one can define an algebra homomorphism

Z : H0
x −→ R

yn1 · · · ynr 7−→ ζ(n1, . . . , nr) (nr > 1)

with Z(1) = 1, since it is known by K.T. Chen [5] that the iterated integral

(3.1) satisfies the shuffle product formulas. By [10, Proposition 1], there is a

Q-algebra homomorphism

Zx : H1
x → R[T ]

which is uniquely determined by the properties that Zx
∣∣
H0

x
= Z and Zx(e1) =

T . We note that the image of the word yn1 · · · ynr in H1
x under the map Zx is

a polynomial in T whose coefficients are expressed as Q-linear combinations

of multiple zeta values.

Definition 3.1. The regularised multiple zeta value, denoted by ζx(n1, . . . , nr),

is defined as the constant term of Zx(yn1 · · · ynr) in T :

ζx(n1, . . . , nr) := Zx(yn1 · · · ynr)
∣∣
T=0

.
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For example, we have ζx(2, 1) = −2ζ(1, 2) and

ζx(n1, . . . , nr) = ζ(n1, . . . , nr) (nr ≥ 2). (3.2)

3.2 Hopf algebras of iterated integrals

In this subsection, we recall Hopf algebras of formal iterated integrals intro-

duced by Goncahrov.

In his paper [8, Section 2], Goncharov considered a formal version of the

iterated integrals

∫
· · ·
∫

a0<t1<t2<···<tN<aN+1

dt1
t1 − a1

∧ dt2
t2 − a2

∧ · · · ∧ dtN
tN − aN

(ai ∈ C). (3.3)

He proved that the space I•(S) generated by formal iterated integrals carries

a Hopf algebra structure. Let us recall the definition of the space I•(S).

Definition 3.2. Let S be a set. Let us denote by I•(S) the commutative

graded algebra over Q generated by the set

{I(a0; a1, . . . , aN ; aN+1) | N ≥ 0, ai ∈ S}.

The element I(a0; a1, . . . , aN ; aN+1) is homogeneous of degree N and involves

the following relations.

(I1) For any a, b ∈ S, the unit is given by I(a; b) := I(a; ∅; b) = 1.

(I2) The product is given by the shuffle product: for all integers N,N ′ ≥ 0

and ai ∈ S, one has

I(a0; a1, . . . , aN ; aN+N ′+1)I(a0; aN+1, . . . , aN+N ′ ; aN+N ′+1)

=
∑

σ∈Σ(N,N ′)

I(a0; aσ−1(1), . . . , aσ−1(N+N ′); aN+N ′+1),

where Σ(N,N ′) is the set of σ in the symmetric group SN+N ′ such that

σ(1) < · · · < σ(N) and σ(N + 1) < · · · < σ(N +N ′).

14
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(I3) The path composition formula holds: for any N ≥ 0 and ai, x ∈ S, one

has

I(a0; a1, . . . , aN ; aN+1) =
N∑

k=0

I(a0; a1, . . . , ak; x)I(x; ak+1, . . . , aN ; aN+1).

(I4) For N ≥ 1 and ai, a ∈ S, I(a; a1, . . . , aN ; a) = 0.

We remark that the element I(a0; a1, . . . , aN ; aN+1) is an analogue of the

iterated integral (3.3), since by K.T. Chen [5] iterated integrals satisfy (I1)

to (I4) when the integral converges.

To give a Hopf algebra structure on the Q-algebra I•(S), we define the

coproduct on I•(S) by

∆
(
I(a0; a1, . . . , aN ; aN+1)

)

=
∑

0≤k≤N
i0=0<i1<···<ik<ik+1=N+1

k∏

p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)

⊗ I(a0; ai1 , . . . , aik ; aN+1),

(3.4)

for anyN ≥ 0 and ai ∈ S, and then extending by Q-linearity. This is found in

[8, Eq. (27)], with the factors interchanged, and is used in [4] (see Eq. (2.18))

as a coaction on the space of motivic multiple zeta values which we do not

discuss in this paper.

Proposition 3.3. ([8, Proposition 2.2]) The coproduct ∆ gives I•(S) the

structure of a commutative graded Hopf algebra, where the counit c is deter-

mined by the condition that it kills I>0(S).

We remark that the antipode A of the above Hopf algebra is uniquely and

inductively determined by the definition. For example, since ∆(I(a0; a1; a2)) =

I(a0; a1; a2)⊗ 1 + 1⊗ I(a0; a1; a2) for any a0, a1, a2 ∈ S, we have

A(I(a0; a1; a2)) + I(a0; a1; a2) = 0 = u ◦ c(I(a0; a1; a2)),

where u : Q→ I•(S) is the unit. We do not develop the precise formula for

the antipode A in this paper.
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3.3 Formal iterated integrals and regularised multiple

zeta values

In this subsection, we define the map z described in the introduction. Here-

after, we consider only the Hopf algebra

I• := I•(S) with S = {0, 1}.

Consider the quotient algebra

I1
• := I•/I(0; 0; 1)I•.

It is easy to verify that I(0; 0; 1) is primitive, i.e. ∆(I(0; 0; 1)) = 1⊗I(0; 0; 1)+

I(0; 0; 1)⊗1. Thus the ideal I(0; 0; 1)I• generated by I(0; 0; 1) in the Q-algebra

I• becomes a Hopf ideal, and hence the quotient map I• → I1
• induces a Hopf

algebra structure on the quotient algebra I1
• . Let us denote by

I(a0; a1, . . . , aN ; aN+1) ∈ I1
•

an image of I(a0; a1, . . . , aN ; aN+1) in I1
• and by ∆ the induced coproduct on

I1
• given by the same formula as (3.4) replacing I with I. As a result, we

have the following proposition which we will use later.

Proposition 3.4. The coproduct ∆ : I1
• → I1

• ⊗ I1
• is an algebra homo-

morphism, where the product on I1
• ⊗ I1

• is defined in the standard way by

(w1 ⊗ w2)(w
′
1 ⊗ w′

2) = w1w
′
1 ⊗ w2w

′
2 and the product on each summand I1

• .

We remark that dividing I• by I(0; 0; 1)I• can be viewed as a regulari-

sation for “
∫ 1

0
dt/t = − log(0)” which plays a role as I(0; 0; 1) in the eval-

uation of iterated integrals. For example, one can write I(0; 0, 1, 0; 1) =

−2I(0; 1, 0, 0; 1) in I1
• since it follows I(0; 0, 1, 0; 1) = I(0; 0; 1)I(0; 1, 0; 1) −

2I(0; 1, 0, 0; 1), and this computation corresponds to taking the constant term

of
∫ 1

ε
dt1
t1

∫ t1
ε

dt2
1−t2

∫ t2
ε

dt3
t3

as a polynomial of log(ε) and letting ε→ 0.

By the standard calculation about the shuffle product formulas, we obtain

more identities in the space I1
• (see [4, p.955]).
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1. For n ≥ 1 and a, b ∈ {0, 1}, we have

I(a; 0, . . . , 0︸ ︷︷ ︸
n

; b) = 0. (3.5)

2. For integers n ≥ 0, n1, . . . , nr ≥ 1, we have

I(0; 0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

; 1)

= (−1)n
∑

k1+···+kr=n1+···+nr+n
k1,...,kr≥1

( r∏

j=1

(
kj − 1

nj − 1

))
I(k1, . . . , kr),

(3.6)

where we set

I(n1, . . . , nr) := I(0; 1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

; 1).

In order to define the map zx as a Q-linear map, we give a linear basis of

the space I1
• .

Proposition 3.5. The set of elements {I(n1, . . . , nr) | r ≥ 0, ni ≥ 1} is a

linear basis of the space I1
• .

Proof. Recall the result of Goncharov [8, Proposition 2.1]: for each integer

N ≥ 0 and a0, . . . , aN+1 ∈ {0, 1} one has

I(a0; a1, . . . , aN ; aN+1) = (−1)NI(aN+1; aN , . . . , a1; a0), (3.7)

which essentially follows from (I3) and (I4). Then, we find that the collection

{I(0; a1, . . . , aN ; 1) | N ≥ 0, ai ∈ {0, 1}}

forms a linear basis of the linear space I•, since none of the relations (I1)

to (I4) yield Q-linear relations among them. Combining this with (3.6), we

obtain the desired basis.
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Let zx : I1
• → R be the Q-linear map given by

zx : I1
• −→ R

I(n1, . . . , nr) 7−→ ζx(n1, . . . , nr)

and zx(1) = 1.

Proposition 3.6. The map zx : I1
• → R is an algebra homomorphism.

Proof. By Proposition 3.5, we find that the Q-linear map H1
x → I1

• given by

ea1 · · · eaN
7→ I(0; a1, . . . , aN ; 1) is an isomorphism between Q-algebras. Then

the result follows from the standard fact that the map Zx
∣∣
T=0

: H1
x → R

given by yn1 · · · ynr 7→ ζx(n1, . . . , nr) is an algebra homomorphism.

3.4 Computing the Goncharov coproduct

In this subsection, we express a formula for the Goncharov coproduct ∆ for

I(n1, . . . , nr) as certain algebraic combinations of I(k1, . . . , ki)’s. Although

the formula can be obtained from Propositions 3.7 and 3.9, we do not give a

closed formula for ∆(I(n1, . . . , nr)) in general. We present a closed formula

for only ∆(I(n1, n2, n3)) in the end of this subsection.

To describe the formula, it is convenient to use the algebraic setup. Let

H′ := ⟨e0, e1, e
′
0, e

′
1⟩ be the non-commutative polynomial algebra in four inde-

terminates e0, e1, e
′
0 and e′

1. For integers 0 < i1 < i2 < · · · < ik < N+1 (0 ≤
k ≤ N), the word of length N in H′ marking only letters eai1

, eai2
, . . . , eaik

with a prime symbol is denoted by ei1,...,ik(a1, . . . , aN):

ei1,...,ik(a1, . . . , aN) := ea1 · · · eai1−1

(
k−1∏

p=1

e′
aip
eaip+1

· · · eaip+1−1

)
e′

aik
eaik+1

· · · eaN
,

where the product
∏k−1

p=1 means the concatenation product. Let φ : H′ →
I1

• ⊗ I1
• be the Q-linear map that assigns to each word ei1,...,ik(a1, . . . , aN)
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the right-hand side factor of the equation (3.4) with a0 = 0 and aN+1 = 1:

φ(ei1,...,ik(a1, . . . , aN))

=
k∏

p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)⊗ I(0; ai1 , . . . , aik ; 1),

where we set ai0 = 0 and aik+1
= 1. For example, we have φ(e2,3(a1, . . . , a4)) =

φ(ea1e
′
a2
e′

a3
ea4) = I(0; a1; a2)I(a2; a3)I(a3; a4; 1)⊗ I(0; a2, a3; 1).

In the rest of this subsection, for integers n1, . . . , nr ≥ 1 with N = n1 +

· · ·+ nr, we set

{a1, · · · , aN} = {1, 0, . . . , 0︸ ︷︷ ︸
n1−1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr−1

},

and write ei1,...,ik(n1, . . . , nr) := ei1,...,ik(a1, . . . , aN). Let S1
n1,...,nr

be the set of

positions of 1’s:

S1
n1,...,nr

:= {1, n1 + 1, . . . , n1 + · · ·+ nr−1 + 1}.

Then aj = 1 if j lies in the set S1
n1,...,nr

and aj = 0 otherwise. Using these

notations, one has

∆(I(n1, . . . , nr)) =
N∑

k=0

∑

0<i1<···<ik<N+1

φ(ei1,...,ik(n1, . . . , nr)). (3.8)

To compute (3.8), we split the right-hand side of (3.8) into 2r sums of

certain terms. For this, we need the following correspondence.

For each word w1 · · ·wr of length r in {x,y}∗, we can obtain a unique

ordered subset {j1, . . . , jh} ⊂ S1
n1,...,nr

via the following correspondences:

w1 · · ·wr ←→ {t1, . . . , th} ←→ {j1, . . . , jh} , (3.9)

where the first correspondence is given by the correspondence (2.3) and the

second one is simply given by 1↔ 1, n1 + 1↔ 2, . . . , n1 + · · ·+nr−1 + 1↔ r

(note that the number h corresponds to the number of y’s in w1 · · ·wr). For
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instance, the word yxyxr−3 corresponds to the ordered subset {1, n1 + n2 +

1} ⊂ S1
n1,...,nr

. We note that the word xr corresponds to the empty set as a

subset of S1
n1,...,nr

.

For integers n1, . . . , nr ≥ 1 and a word w1 · · ·wr (wi ∈ {x,y}) with the

ordered subset {j1, . . . , jh} given by the correspondence (3.9), we let

ψn1,...,nr(w1 · · ·wr) :=
N∑

k=h

∑

0<i1<···<ik<N+1
{i1,...,ik}∩S1

n1,...,nr
={j1,...,jh}

φ(ei1,...,ik(n1, . . . , nr)).

(3.10)

Proposition 3.7. For integers n1, . . . , nr ≥ 1, we have

∆
(
I(n1, . . . , nr)

)
=

∑

w1,...,wr∈{x,y}
ψn1,...,nr(w1 · · ·wr).

Proof. For the word ei1,...,ik(n1, . . . , nr), we denote by h the number of e′
1’s

in the prime symbols e′
ai1
, . . . , e′

aik
, i.e. h = dege′

1
(ei1,...,ik(n1, . . . , nr)). Since

aj = 1 if and only if j ∈ S1
n1,...,nr

, we have h = ♯({i1, . . . , ik} ∩ S1
n1,...,nr

). We

notice that h can be chosen from {0, 1, . . . ,min{r, k}} for each k. Then, the

formula (3.8) can be written in the form

(3.8) =
N∑

k=0

min{r,k}∑

h=0

∑

0<i1<···<ik<N+1
♯({i1,...,ik}∩S1

n1,...,nr
)=h

φ(ei1,...,ik(n1, . . . , nr))

=
r∑

h=0

N∑

k=h

∑

0<i1<···<ik<N+1
♯({i1,...,ik}∩S1

n1,...,nr
)=h

φ(ei1,...,ik(n1, . . . , nr)).

By specifying the ordered subset of S1
n1,...,nr

with length h, the above third

sum can be split into the following sums:

(3.8) =
r∑

h=0

N∑

k=h

∑

{j1,...,jh}⊂S1
n1,...,nr

j1<···<jh

∑

0<i1<···<ik<N+1
{i1,...,ik}∩S1

n1,...,nr
={j1,...,jh}

φ(ei1,...,ik(n1, . . . , nr))
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=
r∑

h=0

∑

{j1,...,jh}⊂S1
n1,...,nr

j1<···<jh

N∑

k=h

∑

0<i1<···<ik<N+1
{i1,...,ik}∩S1

n1,...,nr={j1,...,jh}

φ(ei1,...,ik(n1, . . . , nr))

=
r∑

h=0

∑

w1,...,wr∈{x,y}
♯{l|wl=y,1≤l≤r}=h

ψn1,...,nr(w1 · · ·wr)

=
∑

w1,...,wr∈{x,y}
ψn1,...,nr(w1 · · ·wr),

which completes the proof.

We express (3.10) as algebraic combinations of I(k1, . . . , ki)’s. To do this,

we extract possible nonzero terms from the right-hand side of (3.10) by using

(I4). For a positive integer n, we define η0(n) as the sum of all words of degree

n− 1 consisting of e0 and a consecutive e′
0:

η0(n) =
∑

α+k+β=n
α,β≥0
k≥1

eα
0 (e′

0)
k−1eβ

0 .

Proposition 3.8. For integers n1, . . . , nr ≥ 1 and a word w1 · · ·wr of length

r in {x,y}∗ with the ordered subset {t1, . . . , th} given by the correspondence

(2.3), we have

ψn1,...,nr(w1 · · ·wr) =
∑

t1≤q1≤t2−1
t2≤q2≤t3−1

...
th≤qh≤r

φ
(
yn1 · · · ynt1−1

h∏

m=1

(
e′
1 e

ntm−1
0 yntm+1

· · · ynqm−1e1︸ ︷︷ ︸
degree in e1=qm−tm

η0(nqm)ynqm+1 · · · yntm+1−1

))
,

where th+1 = r + 1 and the product
∏h

m=1 means the concatenation product

of words.

Proof. It follows ψn1,...,nr(x
r) = φ(yn1 · · · ynr), so we consider the case h > 0
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which means the number of y’s in w1 · · ·wr is greater than 0. We note that

the sum defining (3.10) runs over all words ca1 · · · caN
(cai
∈ {eai

, e′
ai
}) with k

(h ≤ k ≤ N) prime symbols whose positions of e′
1’s are placed on the ordered

subset {j1, . . . , jh} of S1
n1,...,nr

corresponding to the word w1 · · ·wr via (3.9):

(3.10) =
N∑

k=h

∑

w0,w1,...,wh∈{e0,e1,e′
0}∗

dege′
0
(w0w1···wh)=k−h

deg(w0)=j1−1
deg(e′

1wm)=jm+1−jm (1≤m≤h)
jh+1=N+1

φ
(
w0

h∏

m=1

(
e′
1wm

))
.

We find by (I4) that φ(ei1,...,ik(n1, . . . , nr)) is 0 whenever ai1 = 0 (notice

a0 = 0, a1 = 1). This implies that if the above w0’s degree in the letter e′
0 is

greater than 0, then φ
(
w0

∏h
m=1

(
e′
1wm

))
= 0. For a word w ∈ H′, we also

find φ(w) = 0 if w has a subword of the form e′
0ve

′
0 with v ∈ H (v ̸= ∅),

i.e. w = w1e
′
0ve

′
0w2 for some w1, w2 ∈ H′, because the left-hand side factor

of φ(w) involves I(0; v; 0) which by (I4) is 0. This implies that the above

second sum regarding to wm (1 ≤ m ≤ h) of the form wm = w1e
′
0ve

′
0w2 with

v ∈ {e0, e1}∗ (v ̸= ∅) and w1, w2 ∈ {e0, e1, e
′
0}∗ can be excluded. Thus, the

possible nonzero terms in (3.10), sieved out by (I4), occur if w0 = yn1 · · · ynt1−1

and wm is written in the form

e
ntm−1
0 yntm+1

· · · ynqm−1e1︸ ︷︷ ︸
degree in e1=qm−tm

eα
0 (e′

0)
keβ

0ynqm+1 · · · yntm+1−1 ,

where qm ∈ {tm, tm + 1, . . . , tm+1 − 1}, α, β, k ∈ Z≥0 with α + k + β =

nqm − 1 and {t1, . . . , th} corresponds to the word w1 · · ·wr given by (2.3).

This completes the proof.

Before giving an explicit formula for ψn1,...,nr(w1 · · ·wr), we illustrate an

example for r = 2. It follows ψn1,n2(xx) = φ(e1e
n1−1
0 e1e

n2−1
0 ) = I(n1, n2)⊗ 1.

By (3.5) one can compute

ψn1,n2(xy) =
∑

α+k+β=n2
α,β≥0
k≥1

φ(e1e
n1−1
0 e′

1e
α
0 (e′

0)
k−1eβ

0 ) = I(n1)⊗ I(n2),
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ψn1,n2(yy) =
∑

α1+k1+β1=n1
α1,β1≥0

k1≥1

∑

α2+k2+β2=n2
α2,β2≥0

k2≥1

φ(e′
1e

α1
0 (e′

0)
k1−1eβ1

0 e
′
1e

α2
0 (e′

0)
k2−1eβ2

0 )

= 1⊗ I(n1, n2),

and using (3.7) and (3.6) we have

ψn1,n2(yx) =
∑

α+k+β=n1
α,β≥0
k≥1

φ(e′
1e

α
0 (e′

0)
k−1eβ

0e1e
n2−1
0 ) +

∑

α+k+β=n2
α,β≥0
k≥1

φ(e′
1e

n1−1
0 e1e

α
0 (e′

0)
k−1eβ

0 )

=
∑

k1+k2=n1+n2
k1,k2≥1

bk1
n1,n2

I(k1)⊗ I(k2),

where bk
n,n′ is defined in (2.7). Therefore by Proposition 3.7 we have

∆(I(n1, n2))

= I(n1, n2)⊗ 1 +
∑

k1+k2=n1+n2
k1,k2≥1

(
δn1,k1 + bk1

n1,n2

)
I(k1)⊗ I(k2) + 1⊗ I(n1, n2).

(3.11)

Proposition 3.9. For integers n1, . . . , nr ≥ 2 and a word w1 · · ·wr ∈ {x,y}∗
with the ordered subset {t1, . . . , th} given by the correspondence (2.3), we set

Ntm = ntm + · · · + ntm+1−1 for m ∈ {1, . . . , h} where th+1 = r + 1. Then we

have

ψn1,...,nr(w1 · · ·wr) = (I(n1, . . . , nt1−1)⊗ 1)

×
∑

t1≤q1≤t2−1
t2≤q2≤t3−1

...
th≤qh≤r

∑

kt1+···+kt2−1=Nt1
kt2+···+kt3−1=Nt2

...
kth

+···+kr=Nth
ki≥1

{
(−1)

∑h
m=1(Ntm+nqm+kqm+1+kqm+2+···+kqm+1−1)

×
( r∏

j=t1
j ̸=q1,...,qh

(
kj − 1

nj − 1

))( h∏

m=1

I(kqm−1, . . . , ktm︸ ︷︷ ︸
qm−tm

)I(kqm+1, . . . , ktm+1−1︸ ︷︷ ︸
tm+1−qm−1

)

)
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⊗ I(kq1 , . . . , kqh
)

}
,

where
∏r

j=t1
j ̸=q1,...,qh

(
kj−1
nj−1

)
= 1 when {t1, t1 + 1, . . . , r} = {q1, . . . , qh}.

Proof. This can be verified by applying the identities (3.7), (3.5) and (3.6)

to the formula in Proposition 3.8.

For the future literature, we present an explicit formula for ∆(I(n1, n2, n3))

obtained from Propositions 3.7 and 3.9:

∆(I(n1, n2, n3))

= I(n1, n2, n3)⊗ 1 + I(n1, n2)⊗ I(n3) + I(n1)⊗ I(n2, n3) + 1⊗ I(n1, n2, n3)

+
∑

k1+k2+k3=n1+n2+n3
k1,k2,k3≥1

{(
δn3,k3b

k1
n1,n2

+ δn1,k2b
k1
n2,n3

)
I(k1)⊗ I(k2, k3)

+

(
(−1)n1+k3

(
k2 − 1

n3 − 1

)
+ (−1)n1+n2

(
k2 − 1

n1 − 1

))(
k1 − 1

n2 − 1

)
I(k1, k2)⊗ I(k3)

+

(
(−1)n1+n3+k2

(
k1 − 1

n1 − 1

)(
k2 − 1

n3 − 1

)
+ δk1,n1b

k2
n2,n3

)
I(k1)I(k2)⊗ I(k3)

}
.

3.5 Proof of Theorem 1.1

We now give a proof of Theorem 1.1. Recall the q-series gn1,...,nr(q) defined

in (2.4). Let g : I1
• → C[[q]] be the Q-linear map given by g(I(n1, . . . , nr)) =

gn1,...,nr(q) and g(1) = 1.

Proof of Theorem 1.1. Taking zx⊗g for the explicit formula in Proposition 3.9

and comparing this with Proposition 2.4, we have

(
zx ⊗ g

)(
ψn1,...,nr(w1 · · ·wr)

)
= Gn1,...,nr(w1 · · ·wr).

Here the second sum (relating to ki) of the formula in Proposition 3.9 differs

from that of the formula in Proposition 2.4, but apparently it is the same

because binomial coefficient terms allow us to take ki ≥ ni for t1 ≤ i ≤ r

without i = q1, . . . , qh, and by Lemma 2.3 it turns out that the coefficient
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of gkq1 ,...,kqh
(q) becomes 0 if kqj

= 1 for some 1 ≤ j ≤ h. With this the

statement follows from Propositions 2.2 and 3.7.

We remark that the binomial coefficients in Proposition 3.9 essentially

arise from the formula (3.6) obtained from the shuffle product (I2), and

the binomial coefficients in Proposition 2.4 are caused by the partial fraction

decomposition. Thus a well-known similarity between the shuffle product (I2)

and the partial fraction decomposition is an only exposition of Theorem 1.1

so far.

4 The algebra of multiple Eisenstein series

4.1 The algebra of the generating series of the multiple

divisor sum

In this subsection, we construct the algebra homomorphism gx : I1
• → C[[q]]

described in the introduction.

We give an expression of the generating function of gn1,...,nr(q) as an iter-

ated multiple sum. We let

g(x1, . . . , xr) =
∑

n1,...,nr≥1

gn1,...,nr(q)

(−2π
√
−1)n1+···+nr

xn1−1
1 · · · xnr−1

r ,

and set

H
(

n1,...,nr

x1,...,xr

)
=

∑

0<u1<···<ur

eu1x1

(
qu1

1− qu1

)n1

· · · eurxr

(
qur

1− qur

)nr

,

where n1, . . . , nr are positive integers and x1, . . . , xr are commutative vari-

ables, i.e. these are elements in the power series ring K[[x1, . . . , xr]], where

K = Q[[q]].

Proposition 4.1. For each integer r > 0 we have

g(x1, . . . , xr) = H
(

1,...,1,1
xr−xr−1,...,x2−x1,x1

)
.
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Proof. When r = 2 this was computed in the proof of Theorem 7 in [7] with

the opposite convention. Its generalisation is easy and omitted.

We easily find that the power seriesH
(

n1,...,nr

x1,...,xr

)
satisfies the harmonic prod-

uct. More precisely, for a set X let us denote by H(X) the non-commutative

polynomial algebra over Q generated by non-commutative symbols
(

n1,...,nr

z1,...,zr

)

indexed by n1, . . . , nr ∈ N and z1, . . . , zr ∈ XZ, where XZ is the set of fi-

nite sums of the elements in X. The concatenation product is given by(
n1,...,nr

z1,...,zr

)
·
(

nr+1,...,nr+s

zr+1,...,zr+s

)
=
(

n1,...,nr,nr+1,...,nr+s

z1,...,zr,zr+1,...,zr+s

)
. As usual, the harmonic product

∗ on H(X) is inductively defined for n, n′ ∈ N, z, z′ ∈ XZ and words w,w′ in

H(X) by

((
n
z

)
· w
)
∗
((

n′

z′
)
· w′)

=
(

n
z

)
·
(
w ∗

((
n′

z′
)
· w′))+

(
n′

z′
)
·
(((

n
z

)
· w
)
∗ w′)+

(
n+n′

z+z′
)
· (w ∗ w′),

with the initial condition w ∗ 1 = 1 ∗ w = w. Then the Q-linear map H

defined by

H : H({xi}∞i=1) −→ R := lim−→K[[x1, . . . , xr]](
n1,...,nr

xi1
,...,xir

)
7−→ H

(
n1,...,nr

xi1
,...,xir

)

becomes an algebra homomorphism of commutative Q-algebras.

It is known by Hoffman [9, Theorem 2.5] that there is an explicit isomor-

phism between algebras with respect to the harmonic product and the shuffle

product. This isomorphism is denoted by exp : Hx(X)→ H∗(X), called the

exponential map (see [9, p.52]), where H◦(X) is the algebra equipped with

the product ◦ = ∗ or x (the shuffle product on H(X) is defined in the same

way as in x on H = Q⟨e0, e1⟩, switching the underlying vector space to

H(X)). As a consequence, we have the following proposition.

Proposition 4.2. The composition map H ◦ exp is an algebra homomor-

phism:

H ◦ exp : Hx({xi}∞i=1)→R.

We use this map to obtain the q-series satisfying the shuffle product for-

mulas.
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Before going to the general case, we illustrate this procedure for r = 2.

We let h(x1, x2) := H ◦ exp
((

1,1
x1,x2

))
= H

(
1,1

x1,x2

)
+ 1

2
H
(

2
x1+x2

)
. By Proposi-

tion 4.2, the harmonic product of H’s gives rise to the shuffle product of

h’s: H
(

1
x1

)
H
(

1
x2

)
= h(x1, x2) + h(x2, x1). Modelling the change of variables

used in Proposition 4.1, set gx(x1, x2) := h(x2−x1, x1) = g(x1, x2)+ 1
2
H
(

2
x2

)
.

Then, we get g(x1)g(x2) = H
(

1
x1

)
H
(

1
x2

)
= gx(x2, x1 + x2) + gx(x1, x1 +

x2), which shows that the coefficients of gx(x1, x2) satisfy the shuffle prod-

uct (I2) (note that the shuffle product formula (I2) gives I(n1)I(n2) =∑
k1+k2=n1+n2

((
k2−1
n1−1

)
+
(

k2−1
n2−1

))
I(k1, k2)).

We remark that the above shuffle relation provides the following relation:

g(x1)g(x2) = g(x2, x1 + x2) + g(x1, x1 + x2) +H
(

2
x1+x2

)
. (4.1)

Since H
(

2
x1+x2

)
̸= 0, this proves that the q-series gn1,n2(q) (n1, n2 ≥ 1) do not

satisfy the shuffle product formulas.

In general, we define h(x1, . . . , xr) as an image of the monomial
(

1,...,1
x1,...,xr

)

under the algebra homomorphism H ◦ exp, which is given by

h(x1, . . . , xr) =
∑

(i1,i2,...,im)

1

i1!i2! · · · im!
H
(

i1,i2,...,im
x′

i1
,x′

i2
,...,x′

im

)
, (4.2)

where the sum runs over all decompositions of the integer r as a sum of

positive integers and the variables are given by x′
i1

= x1 + · · · + xi1 , x
′
i2

=

xi1+1 + · · · + xi1+i2 , . . . , x
′
im = xi1+···+im−1+1 + · · · + xr. It follows that the

power series h(x1, . . . , xr) satisfies the shuffle relation below.

h(x1, . . . , xr)h(xr+1, . . . , xr+s) = h(x1, . . . , xr+s)
∣∣sh(r+s)

r , (4.3)

where sh
(r+s)
r =

∑
σ∈Σ(r,s) σ in the group ring Z[Sr+s] (for the set Σ(r, s),

see (I2)), and the symmetric group Sr acts on K[[x1, . . . , xr]] in the obvious

way by (f
∣∣σ)(x1, . . . , xr) = f(xσ−1(1), . . . , xσ−1(r)) (it defines a right action,

i.e. f
∣∣(στ) = (f

∣∣σ)
∣∣τ) with extending to the group ring Z[Sr] by linearity.

As in the case of r = 2, we set

gx(x1, . . . , xr) := h(xr − xr−1, . . . , x2 − x1, x1). (4.4)
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With the coefficients of (4.4), we define a Q-linear map gx : I1
• → C[[q]] and

prove that the map gx is an algebra homomorphism.

Definition 4.3. We define the Q-linear map gx : I1
• → C[[q]] by

gx(I(n1, . . . , nr)) = gx
n1,...,nr

(q)

and gx(1) = 1, where the q-series gx
n1,...,nr

(q) is given by the coefficient of

xn1−1
1 · · · xnr−1

r in

gx(−2π
√
−1x1, . . . ,−2π

√
−1xr) =

∑

n1,...,nr>0

gx
n1,...,nr

(q)xn1−1
1 · · · xnr−1

r .

Theorem 4.4. The map gx : I1
• → C[[q]] is an algebra homomorphism.

Proof. It is sufficient to show that for any integers r, s ≥ 1 the generating

function gx(x1, . . . , xr+s) satisfies the shuffle relation:

g♯
x(x1, . . . , xr)g

♯
x(xr+1, . . . , xr+s) = g♯

x(x1, . . . xr+s)
∣∣sh(r+s)

r , (4.5)

where the operator ♯ is the change of variables defined by f ♯(x1, . . . , xr) =

f(x1, x1 + x2, . . . , x1 + · · · + xr) (remark that this expression of the shuf-

fle relation is also found in [10, Proof of Proposition 7] with the opposite

convention). For integers r, s ≥ 1, let

ρr,s =

(
1 2 · · · r r + 1 · · · r + s− 1 r + s

r r − 1 · · · 1 r + s · · · r + 2 r + 1

)
∈ Sr+s.

Applying the operator ♯ to both sides of (4.4) we obtain g♯
x(x1, . . . , xr) =

h(xr, . . . , x1) and therefore by (4.3) the left-hand side of (4.5) is reduced to

(LHS) = h(xr, . . . , x1)h(xr+s, . . . , xr+1)

= h(x1, . . . , xr)h(xr+1, . . . , xr+s)
∣∣ρr,s

= h(x1, . . . , xr+s)
∣∣sh(r+s)

r

∣∣ρr,s

= g♯
x(x1, . . . , xr+s)

∣∣τr+s

∣∣sh(r+s)
r

∣∣ρr,s,
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where we set τr =

(
1 2 · · · r

r r − 1 · · · 1

)
∈ Sr. For any σ ∈ Σ(r, s) (recall

(I2)), one easily finds τr+sσρr,s ∈ Σ(r, s), and hence

g♯
x(x1, . . . , xr+s)

∣∣τr+s

∣∣sh(r+s)
r

∣∣ρr,s = g♯
x(x1, . . . , xr+s)

∣∣sh(r+s)
r ,

which completes the proof.

4.2 The double shuffle relation for regularised multiple

Eisenstein series

In this subsection, we prove the double shuffle relations for regularised mul-

tiple Eisenstein series (Theorem 1.2).

The regularised multiple Eisenstein series Gx
n1,...,nr

(q) is defined as follows.

Definition 4.5. For integers n1, . . . , nr ≥ 1 we define the q-series Gx
n1,...,nr

(q)

by

Gx
n1,...,nr

(q) =
(
zx ⊗ gx

)
◦∆(I(n1, . . . , nr)).

We remark that one can easily deduce that our Gx
n1,n2

(q) coincides with

Kaneko’s double Eisenstein series [11].

We begin by showing a connection with the multiple Eisenstein series

Gn1,...,nr(τ), which can be regarded as an analogue of (3.2).

Theorem 4.6. For integers n1, . . . , nr ≥ 2, with q = e2π
√−1τ we have

Gx
n1,...,nr

(q) = Gn1,...,nr(τ).

Proof. As in the proof of Theorem 1.1, it suffices to show that for each word

w1 · · ·wr of length r in {x,y}∗ and integers n1, . . . , nr ≥ 2, we have

(
zx ⊗ gx

)
(ψn1,...,nr(w1 · · ·wr)) = Gn1,...,nr(w1 · · ·wr).

This immediately follows from the next identity: for integers n1, . . . , nr ≥ 2

gx
n1,...,nr

(q) = gn1,...,nr(q).
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Combining (4.4) with (4.2), we have

gx(x1, . . . , xr) =
∑

(i1,i2,...,im)

1

i1!i2! · · · , im!
H
(

i1,i2,...,im
x′′

i1
,x′′

i2
,...,x′′

im

)
,

where (i1, . . . , im) runs over all decompositions of the integer r as a sum

of positive integers and x′′
i1

= xr − xr−i1 , x
′′
i2

= xr−i1 − xr−i1−i2 , . . . , x
′′
im =

xr−i1−···−im−1 . When m < r (i.e. ij > 1 for some j ∈ {1, 2, . . . ,m}), there is

no contribution to gx
n1,...,nr

(q) with n1, . . . , nr ≥ 2 from the coefficients of the

power series H
(

i1,i2,...,im
x′′

i1
,x′′

i2
,...,x′′

im

)
because it lies in K[[xr, xr−i1 , . . . , xr−i1−···−im−1 ]].

Thus the contribution to gx
n1,...,nr

(q) with n1, . . . , nr ≥ 2 is only the coeffi-

cient of xn1−1
1 · · · xnr−1

r /(−2π
√
−1)n1+···+nr in H

(
1,...,1,1

xr−xr−1,...,x2−x1,x1

)
, which by

Proposition 4.1 is gn1,...,nr(q). This completes the proof.

Let us give the precise statement of Theorem 1.2. The harmonic product

∗ on H1 is defined inductively by

yn1w ∗ yn2w
′ = yn1(w ∗ yn2w

′) + yn2(yn1w ∗ w′) + yn1+n2(w ∗ w′),

and w ∗ 1 = 1 ∗w = w for yn1 , yn2 ∈ H1 and words w,w′ in H1, together with

Q-bilinearity. For each word w ∈ H1, the dual element of w is denoted by

cw ∈ (H1)∨ = Hom(H1,Q) such that cw(v) is 1 if w = v and 0 otherwise. If

w is the empty word ∅, cw kills H1
>0 and cw(1) = 1. With this we define the

Q-bilinear map har : I1
• × I1

• → I1
• by

har(I(w1), I(w2)) =
∑

w∈{y1,y2,y3,...}∗

cw(w1 ∗ w2)I(w)

for words w1, w2 ∈ H1, where we identify I(w) = I(n1, . . . , nr) for w =

yn1 · · · ynr .

Theorem 4.7. For any words w1, w2 in {y2, y3, y4, . . .}∗, one has

(
zx ⊗ gx

)
◦∆
(
har(I(w1), I(w2))− I(w1)I(w2)

)
= 0.

Proof. Consider the following holomorphic function on the upper half-plane:
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for integers L,M

G(L,M)
n1,...,nr

(τ) =
∑

0≺λ1≺···≺λr
λi∈ZLτ+ZM

1

λn1
1 · · ·λnr

r

.

Write G
(L,M)
w (τ) = G

(L,M)
n1,...,nr(τ) for each word w = yn1 · · · ynr . By definition,

it follows that these functions satisfy the harmonic product: for any words

w1, w2 ∈ H1, one has

G(L,M)
w1

(τ)G(L,M)
w2

(τ) =
∑

w∈{y1,y2,y3,...}∗

cw(w1 ∗ w2)G
(L,M)
w (τ). (4.6)

Since the harmonic product ∗ preserves the space H2 := Q⟨y2, y3, y4, . . .⟩,
taking limL→∞ limM→∞ for both sides of (4.6), one has for words w1, w2 ∈ H2

Gw1(τ)Gw2(τ) =
∑

w∈{y2,y3,y4,...}∗

cw(w1 ∗ w2)Gw(τ).

Then the result follows from Theorem 4.6 and the fact that the map
(
zx ⊗

gx
)
◦∆ : I1

• → C[[q]] is an algebra homomorphism (Propositions 3.4, 3.6 and

Theorem 4.4).

The first example of Q-linear relations among Gx’s is

Gx
4 (q)− 4Gx

1,3(q) = 0, (4.7)

which comes from har(I(2), I(2)) − I(2)2. The following is the table of the

number of linearly independent relations provided by Theorem 4.7 (we will

see that Theorem 4.7 is not enough to capture all relations when N ≥ 5).

N 0 1 2 3 4 5 6 7 8 9 10

♯rel. 0 0 0 0 1 1 3 5 11 19 37

4.3 Further problems

We end this paper by mentioning the dimension of the space ofGx’s. For con-

venience, we use a normalisation for all objects: for a sequence {γn1,...,nr} in-
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dexed by positive integers n1, . . . , nr, write γ̃n1,...,nr = γn1,...,nr/(−2π
√
−1)n1+···+nr .

As usual, we call n1 + · · · + nr the weight and γn1,...,nr admissible if nr ≥ 2.

Let EN (resp. Q(N)) be the Q-vector space spanned by all admissible G̃x’s

(resp. g̃x’s) of weight N (resp. less than or equal to N). Set E0 = Q(0) = Q.

It is not difficult to deduce that each Q-linear relation among G̃x’s of the

form
∑
awG̃

x
w (q) = 0 (aw ∈ Q) gives rise to a Q-linear relation among g̃x’s

modulo lower weight of the form
∑
awg̃

x
w (q) ≡ 0 (mod Q(N−1)), where the

both sums run over admissible indices of weight N . For instance, the relation

(4.7) provides the relation −1
6
g̃x
2 (q)+ g̃x

4 (q)−4g̃x
1,3(q) = 0, where we actually

have used the known relations ζ̃(2) = −1/24 and ζ̃(1, 3) = ζ̃(4) = 1/1440.

Thus we obtain the surjective map, which is an algebra homomorphism,

from the graded Q-algebra E :=
⊕

N≥0 EN (taking the formal direct sum) to

the graded Q-algebra
⊕

N≥0Q(N)
/
Q(N−1) given by G̃x

n1,...,nr
(q) 7→ g̃x

n1,...,nr
(q)

(mod Q(N−1)). From this, we have

dimQQ(N)
/
Q(N−1) ≤ dimQ EN .

The second author performed numerical experiments of the dimension of the

above vector spaces up toN = 7. The list of (upper bounds of) the dimension

is given as follows.

N 2 3 4 5 6 7

dimQ EN 1 2 3 ≤6 ≤10 ≤18

dimQQ(N)/Q(N−1) 1 2 3 6 10 18

Interestingly, the above sequences coincide with the table [2, Table 5] (up

to N = 7) which is the list of the dimension of the space spanned by all

admissible g̃’s modulo lower weight (they denote g̃n1,...,nr(q) by [nr, . . . , n1]

and indicate that the above sequence is given by the sequence {d′
N}N≥2 de-

fined by d′
N = 2d′

N−2 + 2d′
N−3 for N ≥ 5 with the initial values d′

2 = 1, d′
3 =

2, d′
4 = 3). It is also interesting to note that the Q-algebra E contains the

ring Q[G̃x
2 , G̃

x
4 , G̃

x
6 ] of quasimodular forms for SL2(Z) over Q, which is closed

under the derivative d = qd/dq (see [13]). It would be very interesting to

consider whether the Q-algebra E is closed under the derivative, because by

expressing dG̃x as Q-linear combinations of G̃x’s and taking the constant

term as an element in C[[q]] one obtains Q-linear relations among multiple
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zeta values. For this, one can show that for N ≥ 1 we have

dG̃x
N(q) = 2N

(
G̃x

N+2(q)−
N∑

i=1

G̃x
i,N+2−i(q)

)
,

which was first proved by Kaneko [11]. We hope to discuss these problems

in a future publication.
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129), Birkhäuser, Basel (1995), 165–172.

[14] C. Reutenauer, Free Lie algebras. Oxford Science Publications, Oxford,

(1993).

[15] K. Tasaka, On a conjecture for representations of integers as sums of

squares and double shuffle relations, Ramanujan J., 33(1) (2014), 1–21.

[16] H. Yuan, J. Zhao, Double Shuffle Relations of Double Zeta Values and

Double Eisenstein Series of Level N , preprint, arXiv:1401.6699.

34

159



Appendix B. The double shuffle relations for multiple Eisenstein series

160



Appendix C

The algebra of bi-brackets and
regularized multiple Eisenstein series

161



The algebra of bi-brackets and
regularized multiple Eisenstein series

Henrik Bachmann
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Abstract

We study the algebra of certain q-series, called bi-brackets, whose coefficients are
given by weighted sums over partitions. These series incorporate the theory of modular
forms for the full modular group as well as the theory of multiple zeta values (MZV) due
to their appearance in the Fourier expansion of regularized multiple Eisenstein series.
Using the conjugation of partitions we obtain linear relations between bi-brackets,
called the partition relations, which yield naturally two different ways of expressing the
product of two bi-brackets similar to the stuffle and shuffle product of multiple zeta
values. Bi-brackets are generalizations of the generating functions of multiple divisor
sums, called brackets, [s1, . . . , sl] studied in [BK]. We use the algebraic structure
of bi-brackets to define further q-series [s1, . . . , sl]� and [s1, . . . , sl]∗ which satisfy the
shuffle and stuffle product formulas of MZV by using results about quasi-shuffle algebras
introduced by Hoffman. In [BT] regularized multiple Eisenstein series G� were defined,
by using an explicit connection to the coproduct on formal iterated integrals. These
satisfy the shuffle product formula. Applying the same concept for the coproduct on
quasi-shuffle algebras enables us to define multiple Eisenstein series G∗ satisfying the
stuffle product. We show that both G� and G∗ are given by linear combinations of
products of MZV and bi-brackets. Comparing these two regularized multiple Eisenstein
series enables us to obtain finite double shuffle relations for multiple Eisenstein series
in low weights which extend the relations proven in [BT].
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1 Introduction
Multiple zeta values are natural generalizations of the Riemann zeta values that are
defined for integers s1 > 1 and si ≥ 1 for i > 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1
ns1

1 . . . nsll
.

Because of its occurrence in various fields of mathematics and physics these real num-
bers are of particular interest. The Q-vector space of all multiple zeta values of weight
k is then given by

MZk :=
〈
ζ(s1, . . . , sl)

∣∣ s1 + · · ·+ sl = k and l > 0
〉
Q
.

It is well known that the product of two multiple zeta values can be written as a linear
combination of multiple zeta values of the same weight by using the stuffle or shuffle
relations. Thus they generate a Q-algebra MZ. There are several connections of
these numbers to modular forms for the full modular group. Some of them are treated
in [GKZ], where connections of double zeta values and modular forms are described.
One of them is given by double Eisenstein series Gs1,s2 ∈ C[[q]] which are the length
two version of classical Eisenstein series and which are given by a double sum over
ordered lattice points. These functions have a Fourier expansion given by sums of
products of MZV and certain q-series with the double zeta value ζ(s1, s2) as their
constant term. In [Ba] the author treated the multiple case and calculated the Fourier
expansion of multiple Eisenstein series (MES) Gs1,...,sl ∈ C[[q]]. The result of [Ba] was
that the Fourier expansion of MES is again a linear combination of MZV and q-series
[s1, . . . , sl] ∈ Q[[q]], called brackets, with the corresponding MZV as the constant term.
For example it is

G3,2,2(τ) =ζ(3, 2, 2) +
(54

5 ζ(2, 3) + 51
5 ζ(3, 2)

)
(2πi)2[2] + 16

3 ζ(2, 2)(2πi)3[3]

+ 3ζ(3)(2πi)4[2, 2] + 4ζ(2)(2πi)5[3, 2] + (2πi)7[3, 2, 2] .

It turned out that the q-series [s1, . . . , sl], whose coefficients an are given by weighted
sums over partitions of n, are, independently to their appearance in the Fourier expan-
sion of MES, very interesting objects and therefore they were studied on their own in
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[BK]. There the authors studied the algebraic structure of the spaceMD spanned by
these brackets and we will refine, generalize and use some of the results in this note.

Due to convergence issues the MES are just defined for s1, . . . , sl ≥ 2 and therefore
there are a lot more MZV than MES. A natural question was therefore the following

Question 1. What is a "good" definition of a "regularized" multiple Eisenstein series,
such that for each multiple zeta value ζ(s1, . . . , sl) with s1 > 1,s2, . . . , sl ≥ 1 there is a
multiple Eisenstein series

Gregs1,...,sl = ζ(s1, . . . , sl) +
∑

n>0
anq

n ∈ C[[q]]

with this multiple zeta values as the constant term in its Fourier expansion and which
equals the original multiple Eisenstein series in the case s1, . . . , sl ≥ 2?

By "good" we mean that these multiple Eisenstein series should have the same, or at
least as much as possible, algebraic structure as multiple zeta values, i.e. they should
fulfill the shuffle or/and the stuffle product. In [BT] the authors addressed this question
and they define (shuffle) regularized MES G�s1,...,sl , defined for all s1, . . . , sl ∈ N, which
coincide with the Gs1,...,sl in the case s1, . . . , sl ≥ 2 and which fulfill the shuffle product.
In their construction the authors consider certain q-series similar to the brackets which
also fulfill the shuffle product.

In this note we want to consider a more general class of q-series which we call
bi-brackets. We will see that the q-series appearing in the construction in [BT] are
linear combination of bi-brackets. Furthermore we will address the above question with
respect to the stuffle product and we will construct another (stuffle) regularized type
of MES, denoted by G∗s1,...,sl , satisfying the stuffle product formula. The bi-brackets
will also appear there and we will be able to write G� and G∗ as sums of products of
MZV and bi-brackets which then enables us to compare these two types of regularized
MES.

Even when one is not interested in the question of extending the definition of MES
we want to emphasize the reader that these q-series are interesting by their own rights,
since they give a q-analogue of multiple zeta values with a nice algebraic structure.
These q-analogues have two ways to write the product of two such series similar to the
shuffle and the stuffle product for MZV. For s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0 these q-series,
which we call bi-brackets, are given by
[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur1
1
r1! . . .

urll
r1! ·

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)! · q
u1v1+···+ulvl ∈ Q[[q]] .

In the first section we will interpret this sum as a weighted sum over partitions of a
natural number n. The conjugation of partitions will give us linear relations between
the bi-brackets which we therefore call the partition relation. We use this relation to
prove a stuffle and shuffle analogue of the product of two bi-brackets and obtain for

3

Appendix C. The algebra of bi-brackets and regularized multiple Eisenstein series

164



example
[
2, 3
0, 0

]
+
[
3, 2
0, 0

]
+
[
5
0

]
− 1

12

[
3
0

]
=
[
2
0

]
·
[
3
0

]
=
[
2, 3
0, 0

]
+ 3

[
3, 2
0, 0

]
+ 6

[
4, 1
0, 0

]
− 3

[
4
0

]
+ 3

[
4
1

]
.

Compare this with the "real" stuffle and shuffle product of multiple zeta values

ζ(2, 3) + ζ(3, 2) + ζ(5) = ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

Using the algebraic structure of the space of bi-brackets we define a shuffle [s1, . . . , sl]�
and stuffle [s1, . . . , sl]∗ version of the ordinary brackets as certain linear combination
of bi-brackets. These objects fulfill the same shuffle and stuffle products as multiple
zeta values. Both constructions use the theory of quasi-shuffle algebras developed by
Hoffman in [H]. We end the introduction by summarizing the results of this paper
on bi-brackets and regularized multiple Eisenstein series in the following two vaguely
formulated theorems:

Theorem A. i) The space BD spanned by all bi-brackets
[s1,...,sl
r1,...,rl

]
forms aQ-algebra

with the space of (quasi-)modular forms and the space MD of brackets as sub-
algebras. There are two ways to express the product as a linear combination of
bi-brackets which yields a large family of linear relations.

ii) There are two subalgebrasMD� ⊂ BD andMD∗ ⊂ MD spanned by elements
[s1, . . . , sl]� and [s1, . . . , sl]∗ which fulfill the shuffle and stuffle products, respec-
tively, and which are in the length one case given by the bracket [s1].

For example we have similarly to the relation between MZV above

[2, 3]∗ + [3, 2]∗ + [5] = [2] · [3] = [2, 3]� + 3[3, 2]� + 6[4, 1]� .

Denote byMZB ⊂ C[[q]] the space of all formal power series in q which can be written
as a linear combination of products of MZV, powers of (−2πi) and bi-brackets.

Theorem B. i) The shuffle regularized multiple Eisenstein series G�s1,...,sl ∈ C[[q]]
defined in [BT] can be written as a linear combination of products of MZV, powers
of (−2πi) and shuffle brackets [r1, . . . , rm]�, i.e. they are elements of the space
MZB.

ii) For all s1, . . . , sl ∈ N andM ∈ N there are q-series G∗,Ms1,...,sl ∈ C[[q]] (see Definition
6.12) which fulfill the stuffle product. If the limit G∗s1,...,sl := limM→∞G∗,Ms1,...,sl
exists it will be an element in MZB which still fulfills the stuffle product. In
that case the q-series G∗s1,...,sl will be called stuffle regularized multiple Eisenstein
series.

iii) For s1, . . . , sl ≥ 2 both regularized multiple Eisenstein series equal the classical
multiple Eisenstein series, i.e. we have

Gs1,...,sl = G�s1,...,sl = G∗s1,...,sl .

4
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Content of this paper: In section 2 we will introduce bi-brackets and their
generating series. We will show that there are a natural linear relations between bi-
brackets, called the partition relations. In section 3 we prove that the algebra of bi-
brackets has the structure of a quasi-shuffle algebra in the sense of [H]. The partition
relation will yield another way of multiplying two bi-brackets which differs from the
quasi-shuffle product and which therefore yields linear relations similar to the double
shuffle relations of MZV. The connection to modular forms and the derivatives of bi-
brackets will be subject of section 4. We will see that relations between bi-brackets
can be used to prove relations between modular forms and vice versa. Section 5 will be
devoted to the definition of the brackets [s1, . . . , sl]� and [s1, . . . , sl]∗. For this we will
recall the algebraic setup of Hoffman in this section. Finally in section 4 we will recall
the results of [BT] and the definition of the shuffle regularized MES G�. After this we
will define the stuffle regularized MES G∗,M and G∗ by using a similar approach as in
the definition of G�. We end section 4 by comparing these two regularized MES in
low weights.
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2 Bi-brackets and their generating series
As motivated in the introduction we want to study the following q-series:

Definition 2.1. For r1, . . . , rl ≥ 0, s1, . . . , sl > 0 and we define the following q-series
[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur1
1
r1! . . .

urll
r1! ·

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)! · q
u1v1+···+ulvl ∈ Q[[q]]

which we call bi-brackets of weight r1 + · · ·+rk+s1 + · · ·+sl, upper weight s1 + · · ·+sl,
lower weight r1 + · · ·+ rl and length l. By BD we denote the Q-vector space spanned
by all bi-brackets and 1.

The factorial factors in the definition will become clear when considering their
generating functions and the connection to multiple zeta values. For r1 = · · · = rl = 0

5
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the bi-brackets are just the brackets
[
s1, . . . , sl
0, . . . , 0

]
= [s1, . . . , sl]

as defined and studied in [BK]. The space spanned by all brackets form a differential
Q-algebraMD with the differential given by dq = q ddq . We will see that the bi-brackets
are also closed under the multiplication of formal power series and therefore BD is a
Q-algebra with subalgebraMD (see Theorem 3.6).
Definition 2.2. For the generating function of the bi-brackets we write

∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣ :=
∑

s1,...,sl>0
r1,...,rl>0

[
s1 , . . . , sl

r1 − 1 , . . . , rl − 1

]
Xs1−1

1 . . . Xsl−1
l · Y r1−1

1 . . . Y rl−1
l .

These are elements in the ring BDgen = lim−→j
BD[[X1, . . . , Xj , Y1, . . . , Yj ]] of all gener-

ating series of bi-brackets.
To derive relations between bi-brackets we will prove functional equations for their

generating functions. The key fact for this is that there are two different ways of
expressing these given by the following Theorem.
Theorem 2.3. For n ∈ N set

En(X) := enX and Ln(X) := eXqn

1− eXqn ∈ Q[[q,X]] .

Then for all l ≥ 1 we have the following two different expressions for the generating
functions:

∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣ =
∑

u1>···>ul>0

l∏

j=1
Euj (Yj)Luj (Xj)

=
∑

u1>···>ul>0

l∏

j=1
Euj (Xl+1−j −Xl+2−j)Luj (Y1 + · · ·+ Yl−j+1)

(with Xl+1 := 0). In particular the partition relations holds:
∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣
P=
∣∣∣∣∣
Y1 + · · ·+ Yl, . . . , Y1 + Y2, Y1
Xl, Xl−1 −Xl, . . . , X1 −X2

∣∣∣∣∣ . (2.1)

Proof. First rewrite the generating function as
∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣ =
∑

s1,...,sl>0
r1,...,rl>0
u1>···>ul>0
v1,...,vl>0

l∏

j=1

u
rj−1
j

(rj − 1)!
v
sj−1
j

(sj − 1)!q
ujvjX

sj−1
j Y

rj−1
j

=
∑

u1>···>ul>0
v1,...,vl>0

l∏

j=1
evjXjeujYjqujvj

6
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The first statement follows directly by using the geometric series because

∑

v>0
evXquv = eXqu

1− eXqu = Lu(X)

For the second statement set uj = u′1 + · · · + u′l−j+1 and v′j = v1 + · · · + vl−j+1 (i.e.
vj = v′l−j+1 − v′l−j+2 and vl+1 := 0) for 1 ≤ j ≤ l. This gives

qu1v1+···+ulvl = q(u′1+···+u′l)v1+(u′1+···+u′l−1)v2+···+u′1vl

= q(v1+···+vl)u′1+···+v1u′l = qv
′
1u
′
1+···+v′lu′l

and the summation over u1 > · · · > ul > 0 and v1, . . . , vl > 0 changes to a summation
over u′1, . . . , u′l > 0 and v′1 > · · · > v′l > 0 and therefore we obtain

∑

u1>···>ul>0
v1,...,vl>0

l∏

j=1
evjXjeujYjqujvj =

∑

v′1>···>v′l>0
u′1,...,u

′
l>0

l∏

j=1
e(v′l−j+1−v′l−j+2)Xje(u′1+···+u′l−j+1)Yjqv

′
ju
′
j

=
∑

v′1>···>v′l>0

l∏

j=1
ev
′
j(Xl−j+1−Xl−j+2)Lv′j (Y1 + · · ·+ Yl−j+1)

which is exactly the representation of the generating function.

Compare the relation (2.1) to the conjugation (2.2) of partitions given at the end
of this section.

Remark 2.4. i) The bi-brackets and their generating series also give examples of
what is called a bimould by Ecalle in [E]. In his language the equation (2.1) states
that the bimould of generating series of bi-brackets is swap invariant.

ii) In [Zu] the author studied a variation of the bi-brackets, namely the series

Z

[
s1, . . . , sl
r1, . . . , rl

]
=

∑

m1,...,ml>0
d1,...,dl>0

mr1−1
1 ds1−1

1 . . .mrl−1
l dsl−1

l q(m1+···+ml)d1+···+mldl

(r1 − 1)!(s1 − 1)! . . . (rl − 1)!(sl − 1)! ,

which he calls multiple q-zeta brackets. These can be written in terms of bi-
brackets and vice versa. For this model the equation (2.1), which in [Zu] is called
duality, has the nice form

Z

[
s1, . . . , sl
r1, . . . , rl

]
= Z

[
sl, . . . , s1
rl, . . . , r1

]
.

7
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Corollary 2.5. (Partition relation in length one and two) For r, r1, r2 ≥ 0 and s, s1, s2 >
0 we have the following relations in length one and two

[
s

r

]
=
[
r + 1
s− 1

]
,

[
s1, s2
r1, r2

]
=

∑

0≤j≤r1
0≤k≤s2−1

(−1)k
(
s1 − 1 + k

k

)(
r2 + j

j

)[
r2 + j + 1 , r1 − j + 1
s2 − 1− k , s1 − 1 + k

]
.

Proof. In the smallest cases the Theorem 2.3 gives
∣∣∣∣∣
X

Y

∣∣∣∣∣ =
∣∣∣∣∣
Y

X

∣∣∣∣∣ and
∣∣∣∣∣
X1, X2
Y1, Y2

∣∣∣∣∣ =
∣∣∣∣∣
Y1 + Y2, Y1
X2, X1 −X2

∣∣∣∣∣ .

The statement follows by considering the coefficients ofXs−1Y r andXs1−1
1 Xs2−1

2 Y r1Y r2

in these equations.

Example 2.6. i) Some examples for the length two case:
[
1, 1
1, 1

]
=
[
2, 2
0, 0

]
+ 2

[
3, 1
0, 0

]
,

[
3, 3
0, 0

]
= 6

[
1, 1
0, 4

]
− 3

[
1, 1
1, 3

]
+
[
1, 1
2, 2

]
,

[
2, 2
1, 1

]
= −2

[
2, 2
0, 2

]
+
[
2, 2
1, 1

]
− 4

[
3, 1
0, 2

]
+ 2

[
3, 1
1, 1

]
,

[
1, 2
2, 3

]
= −

[
4, 3
0, 1

]
+
[
4, 3
1, 0

]
− 4

[
5, 2
0, 1

]
+ 4

[
5, 2
1, 0

]
− 10

[
6, 1
0, 1

]
+ 10

[
6, 1
1, 0

]
.

ii) Another family of relations which can be obtained by the partition relation is
[

{1}n
{0}j−1, 1, {0}n−j

]
=

n−j+1∑

k=1
[{1}k−1, 2, {1}n−k]

for 1 ≤ j ≤ n. For example:
[
1
1

]
= [2] ,

[
1, 1, 1
0, 1, 0

]
= [1, 2, 1] + [2, 1, 1] .

Remark 2.7. We end the discussion on bi-brackets and their generating series by
interpreting the coefficients of the bi-brackets as weighted sums over partitions which
gives an natural explanation for the partition relation (2.1). By a partition of a natural
number n with l parts we denote a representation of n as a sum of l distinct natural
numbers, i.e. 15 = 4 + 4 + 3 + 2 + 1 + 1 is a partition of 15 with the 4 parts given by
4, 3, 2, 1. We identify such a partition with a tuple (u, v) ∈ Nl ×Nl where the uj ’s are
the l distinct numbers in the partition and the vj ’s count their appearance in the sum.

8
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The above partition of 15 is therefore given by the tuple (u, v) = ((4, 3, 2, 1), (2, 1, 1, 2)).
By Pl(n) we denote all partitions of n with l parts and hence we set

Pl(n) :=
{

(u, v) ∈ Nl ×Nl | n = u1v1 + · · ·+ ulvl and u1 > · · · > ul > 0
}

On the set Pl(n) one has an involution given by the conjugation ρ of partitions which
can be obtained by reflecting the corresponding Young diagram across the main diago-
nal. On the set Pl(n) the conjugation ρ is explicitly given by ρ((u, v)) = (u′, v′) where

((4, 3, 2, 1), (2, 1, 1, 2)) = ρ
−−−−−−−→ = ((6, 4, 3, 2), (1, 1, 1, 1))

Figure 1: The conjugation of the partition 15 = 4 + 4 + 3 + 2 + 1 + 1 is
given by ρ(((4, 3, 2, 1), (2, 1, 1, 2))) = ((6, 4, 3, 2), (1, 1, 1, 1)) which can be
seen by reflection the corresponding Young diagram at the main diagonal.

u′j = v1 + · · ·+ vl−j+1 and v′j = ul−j+1 − ul−j+2 with ul+1 := 0, i.e.

ρ :
(
u1, . . . , ul
v1, . . . , vl

)
7−→

(
v1 + · · ·+ vl, . . . , v1 + v2, v1
ul, ul−1 − ul, . . . , u1 − u2

)
. (2.2)

By the definition of the bi-brackets its clear that with the above notation they can be
written as
[
s1, . . . , sl
r1, . . . , rl

]
:= 1
r1!(s1 − 1)! . . . rl!(sl − 1)!

∑

n>0


 ∑

(u,v)∈Pl(n)
ur1

1 v
s1−1
1 . . . urll v

sl−1
l


 qn .

The coefficients are given by a sum over all elements in Pl(n) and therefore it is invariant
under the action of ρ. As an example consider [2, 2] and apply ρ to the sum then we
obtain

[2, 2] =
∑

n>0


 ∑

(u,v)∈P2(n)
v1 · v2


 qn =

∑

n>0


 ∑

ρ((u,v))=(u′,v′)∈P2(n)
u′2 · (u′1 − u′2)


 qn

=
∑

n>0


 ∑

(u′,v′)∈P2(n)
u′2 · u′1


 qn −

∑

n>0


 ∑

(u′,v′)∈P2(n)
u′22


 qn =

[
1, 1
1, 1

]
− 2

[
1, 1
0, 2

]
.

(2.3)

This is exactly the relation one obtains by using the partition relation. Another trivial
connection to partitions is given by the following: The coefficients of the brackets of
the form [{1}l] count the number of partitions of length l. Summing over all length
one therefore obtains the generating functions of all partitions:

∑

l>0
[{1}l] =

∑

n>0
p(n)qn =

∞∏

k=1

1
1− qk .

9
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3 The algebra of bi-brackets
The partition relations give relations in a fixed length. To obtain relations with mixed
length we need to consider the algebra structure on the space BD. For this we first
consider the product of bi-brackets in length one and then use the algebraic setup of
quasi-shuffle algebras for the arbitrary length case.

Lemma 3.1. Let Bk be the k-th Bernoulli number, then we get for all n ∈ N

Ln(X) · Ln(Y ) =
∑

k>0

Bk
k! (X − Y )k−1Ln(X) +

∑

k>0

Bk
k! (Y −X)k−1Ln(Y )

+ Ln(X)− Ln(Y )
X − Y .

Proof. By direct computations one obtains

L(X) · L(Y ) = 1
eX−Y − 1L(X) + 1

eY−X − 1L(Y ) .

The statement follows then by the definition of the Bernoulli numbers

X

eX − 1 =
∑

n≥0

Bn
n! X

n .

Lemma 3.2. The product of two generating functions in length one can be written as
i) ("Stuffle product for bi-brackets")

∣∣∣∣∣
X1
Y1

∣∣∣∣∣ ·
∣∣∣∣∣
X2
Y2

∣∣∣∣∣ =
∣∣∣∣∣
X1, X2
Y1, Y2

∣∣∣∣∣+
∣∣∣∣∣
X2, X1
Y2, Y1

∣∣∣∣∣+
1

X1 −X2

(∣∣∣∣∣
X1

Y1 + Y2

∣∣∣∣∣−
∣∣∣∣∣
X2

Y1 + Y2

∣∣∣∣∣

)

+
∞∑

k=1

Bk
k! (X1 −X2)k−1

(∣∣∣∣∣
X1

Y1 + Y2

∣∣∣∣∣+ (−1)k−1
∣∣∣∣∣
X2

Y1 + Y2

∣∣∣∣∣

)
.

ii) ("Shuffle product for bi-brackets")
∣∣∣∣∣
X1
Y1

∣∣∣∣∣ ·
∣∣∣∣∣
X2
Y2

∣∣∣∣∣ =
∣∣∣∣∣
X1 +X2, X1
Y2 , Y1 − Y2

∣∣∣∣∣+
∣∣∣∣∣
X1 +X2, X2
Y1, Y2 − Y1

∣∣∣∣∣+
1

Y1 − Y2

(∣∣∣∣∣
X1 +X2

Y1

∣∣∣∣∣−
∣∣∣∣∣
X1 +X2

Y2

∣∣∣∣∣

)

+
∞∑

k=1

Bk
k! (Y1 − Y2)k−1

(∣∣∣∣∣
X1 +X2

Y1

∣∣∣∣∣+ (−1)k−1
∣∣∣∣∣
X1 +X2

Y2

∣∣∣∣∣

)

Proof. We prove i) and ii) by using the two different ways of writing the generating
functions given by Theorem 2.3.
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i) By direct calculation it is
∣∣∣∣∣
X1
Y1

∣∣∣∣∣·
∣∣∣∣∣
X2
Y2

∣∣∣∣∣ =
∣∣∣∣∣
X1, X2
Y1, Y2

∣∣∣∣∣+
∣∣∣∣∣
X2, X1
Y2, Y1

∣∣∣∣∣+
∑

n>0
En(Y1 + Y2)Ln(X1)Ln(X2) .

Applying the Lemma 3.1 to the last term yields the statement.
ii) The partition relation in length one and two (P ) in (2.1) states

∣∣∣∣∣
X1
Y1

∣∣∣∣∣
P=
∣∣∣∣∣
Y1
X1

∣∣∣∣∣ ,
∣∣∣∣∣
X1, X2
Y1, Y2

∣∣∣∣∣
P=
∣∣∣∣∣
Y1 + Y2, Y1
X2, X1 −X2

∣∣∣∣∣ ,

and together with i) we obtain
∣∣∣∣∣
X1
Y1

∣∣∣∣∣ ·
∣∣∣∣∣
X2
Y2

∣∣∣∣∣
P=
∣∣∣∣∣
Y1
X1

∣∣∣∣∣ ·
∣∣∣∣∣
Y2
X2

∣∣∣∣∣
i)=
∣∣∣∣∣
Y1, Y2
X1, X2

∣∣∣∣∣+
∣∣∣∣∣
Y2, Y1
X2, X1

∣∣∣∣∣+
1

Y1 − Y2

(∣∣∣∣∣
Y1

X1 +X2

∣∣∣∣∣−
∣∣∣∣∣

Y2
X1 +X2

∣∣∣∣∣

)

+
∞∑

k=1

Bk
k! (Y1 − Y2)k−1

(∣∣∣∣∣
Y1

X1 +X2

∣∣∣∣∣+ (−1)k−1
∣∣∣∣∣

Y2
X1 +X2

∣∣∣∣∣

)

P=
∣∣∣∣∣
X1 +X2, X1
Y2 , Y1 − Y2

∣∣∣∣∣+
∣∣∣∣∣
X1 +X2, X2
Y1, Y2 − Y1

∣∣∣∣∣+
1

Y1 − Y2

(∣∣∣∣∣
X1 +X2

Y1

∣∣∣∣∣−
∣∣∣∣∣
X1 +X2

Y2

∣∣∣∣∣

)

+
∞∑

k=1

Bk
k! (Y1 − Y2)k−1

(∣∣∣∣∣
X1 +X2

Y1

∣∣∣∣∣+ (−1)k−1
∣∣∣∣∣
X1 +X2

Y2

∣∣∣∣∣

)
.

Proposition 3.3. For s1, s2 > 0 and r1, r2 ≥ 0 we have the following two expressions
for the product of two bi-brackets of length one:

i) ("Stuffle product for bi-brackets")
[
s1
r1

]
·
[
s2
r2

]
=
[
s1, s2
r1, r2

]
+
[
s2, s1
r2, r1

]
+
(
r1 + r2
r1

)[
s1 + s2
r1 + r2

]

+
(
r1 + r2
r1

)
s1∑

j=1

(−1)s2−1Bs1+s2−j
(s1 + s2 − j)!

(
s1 + s2 − j − 1

s1 − j

)[
j

r1 + r2

]

+
(
r1 + r2
r1

)
s2∑

j=1

(−1)s1−1Bs1+s2−j
(s1 + s2 − j)!

(
s1 + s2 − j − 1

s2 − j

)[
j

r1 + r2

]

11
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ii) ("Shuffle product for bi-brackets")
[
s1
r1

]
·
[
s2
r2

]
=

∑

1≤j≤s1
0≤k≤r2

(
s1 + s2 − j − 1

s1 − j

)(
r1 + r2 − k

r1

)
(−1)r2−k

[
s1 + s2 − j, j
k, r1 + r2 − k

]

+
∑

1≤j≤s2
0≤k≤r1

(
s1 + s2 − j − 1

s1 − 1

)(
r1 + r2 − k
r1 − k

)
(−1)r1−k

[
s1 + s2 − j, j
k, r1 + r2 − k

]

+
(
s1 + s2 − 2
s1 − 1

)[
s1 + s2 − 1
r1 + r2 + 1

]

+
(
s1 + s2 − 2
s1 − 1

)
r1∑

j=0

(−1)r2Br1+r2−j+1
(r1 + r2 − j + 1)!

(
r1 + r2 − j
r1 − j

)[
s1 + s2 − 1

j

]

+
(
s1 + s2 − 2
s1 − 1

)
r2∑

j=0

(−1)r1Br1+r2−j+1
(r1 + r2 − j + 1)!

(
r1 + r2 − j
r2 − j

)[
s1 + s2 − 1

j

]

Proof. i) By Lemma 3.2 it is

∣∣∣∣∣
X1
Y1

∣∣∣∣∣ ·
∣∣∣∣∣
X2
Y2

∣∣∣∣∣ =
∣∣∣∣∣
X1, X2
Y1, Y2

∣∣∣∣∣+
∣∣∣∣∣
X2, X1
Y2, Y1

∣∣∣∣∣
︸ ︷︷ ︸

=:T1

+ 1
X1 −X2

(∣∣∣∣∣
X1

Y1 + Y2

∣∣∣∣∣−
∣∣∣∣∣
X2

Y1 + Y2

∣∣∣∣∣

)

︸ ︷︷ ︸
=:T2

+
∞∑

k=1

Bk
k! (X1 −X2)k−1

(∣∣∣∣∣
X1

Y1 + Y2

∣∣∣∣∣+ (−1)k−1
∣∣∣∣∣
X2

Y1 + Y2

∣∣∣∣∣

)

︸ ︷︷ ︸
=:T3

.

We are going to calculate the coefficient of Xs1−Xs2−1
2 Y r1

1 Y r2
2 in this equation.

Clearly
[s1,s2
r1,r2

]
+
[s2,s1
r2,r1

]
is the coefficient of T1 and by the use of

∑

s>0
cs
Xs−1

1 −Xs−1
2

X1 −X2
=
∑

s>0
cs

s−2∑

j=0
Xs−2−j

1 Xj
2 =

∑

a,b>0
ca+bX

a−1
1 Xb−1

2

one obtains

T2 = 1
X1 −X2

(∣∣∣∣∣
X1

Y1 + Y2

∣∣∣∣∣−
∣∣∣∣∣
X2

Y1 + Y2

∣∣∣∣∣

)
=

∑

s1,s2,r>0

[
s1 + s2
r − 1

]
Xs1−1

1 Xs2−1
2 (Y1 + Y2)r−1

=
∑

s1,s2>0
r1,r2>0

(
r1 + r2 − 2
r1 − 1

)[
s1 + s2

r1 + r2 − 2

]
Xs1−1

1 Xs2−1
2 Y r1−1

1 Y r2−1
2 .

With a bit more tedious but similar calculation one shows that the remaining
terms are the coefficients of T3.
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ii) This statement follows by a similar calculation as in i).

We now want to recall the algebraic setting of Hoffman for quasi-shuffle products
and give the necessary notations for the rest of the paper.
Definition 3.4. Let A (the alphabet) be a countable set of letters, QA the Q-vector
space generated by these letters and Q〈A〉 the noncommutative polynomial algebra
over Q generated by words with letters in A. For a commutative and associative
product � on QA, a, b ∈ A and w, v ∈ Q〈A〉 we define on Q〈A〉 recursively a product
by 1� w = w � 1 = w and

aw � bv := a(w � bv) + b(aw � v) + (a � b)(w � v) . (3.1)
By a result of Hoffman ([H]) (Q〈A〉,�) is a commutative Q-algebra which is called a
quasi-shuffle algebra.
Notation 3.5. Let us now recall some basic notations for the shuffle and the stuffle
product which are the easiest examples of quasi-shuffle products. Since we will deal with
the shuffle product for different alphabets simultaneously we will use some additional
notations for this. For the alphabet Axy := {x, y} set H = Q〈Axy〉 and H1 = 1 ·Q+Hy,
with 1 beeing the empty word. It is easy to see that H1 is generated by the elements
zj = xj−1y with j ∈ N, i.e. H1 = Q〈Az〉 with Az := {z1, z2, . . . }. By |w| we denote the
the weight of a word w ∈ H which is given by the number of letters (in the alphabet
Axy) of w. On H1 we have the following two products with respect to the alphabet
Az which we call the index-shuffle, denoted by � with � ≡ 0, and the stuffle product,
denoted by ∗ with zj � zi = zj+i, i.e. we have for a, b ∈ N and w, v ∈ H1:

zaw� zbv = za(w� zbv) + zb(zaw� v) ,
zaw ∗ zbv = za(w ∗ zbv) + zb(zaw ∗ v) + za+b(w ∗ v) .

(3.2)

By (H1
z,�) and (H1

z, ∗) we denote the corresponding Q-algebras, where the subscript z
indicates that we consider the quasi-shuffle with respect to the alphabet Az. We can
also define the shuffle product on H1 with respect to the alphabet Axy, which we call
the shuffle product, and by (H1

xy,�) we denote the corresponding Q-algebra.
We now want to find a � and a suitable alphabet such that we can view the algebra

of bi-brackets as a quasi-shuffle algebra. For a, b ∈ N define the numbers λja,b ∈ Q for
1 ≤ j ≤ a as

λja,b = (−1)b−1
(
a+ b− j − 1

a− j

)
Ba+b−j

(a+ b− j)! .

For the alphabet Abi
z := {zs,r | s, r ∈ Z , s ≥ 1 , r ≥ 0} we define on QAbi

z the product

zs1,r1 � zs2,r2 =
(
r1 + r2
r1

)
s1∑

j=1
λjs1,s2zj,r1+r2 +

(
r1 + r2
r1

)
s2∑

j=1
λjs2,s1zj,r1+r2

+
(
r1 + r2
r1

)
zs1+s2,r1+r2

13
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and on Q〈Abi
z 〉 the quasi-shuffle product

zs1,r1w � zs2,r2v = zs1,r1(w � zs2,r2v) + zs2,r2(zs1,r1w � v) + (zs1,r1 � zs2,r2)(w � v) .

Theorem 3.6. i) The product � on QAbi
z is associative and therefore (Q〈Abi

z 〉,�)
is a quasi-shuffle Algebra.

ii) The map
[.] : (Q〈Abi

z 〉,�)→ (BD, ·) given by

w = zs1,r1 . . . zsl,rl 7−→ [w] =
[
s1, . . . , sl
r1, . . . , rl

]

fulfills [w � v] = [w] · [v] and therefore BD is a Q-algebra.

Proof. Using Proposition 2.3 in [BK] it is easy to see that
[
s1, . . . , sl
r1, . . . , rl

]
=

∑

u1>···>ul>0

ur1
1
r1! L̃is1(qu1) . . . u

rl
l

r1! L̃isl(qul) , (3.3)

where L̃is(x) = Li1−s(x)
(s−1)! . Due to Lemma 3.1 (see also Lemma 2.5 in [BK]) we have

L̃ia(z) · L̃ib(z) =
a∑

j=1
λja,bL̃ij(z) +

b∑

j=1
λjb,aL̃ij(z) + L̃ia+b(z) ,

This proves the first statement and the second statement follows directly by the defi-
nition of �.

Remark 3.7. As we saw in the proof of Proposition 3.2 for the product of two length
one bi-brackets, the shuffle product of bi-brackets is obtained by applying the partition
relation, the stuffle product and again the partition relation. This of course works for
arbitrary lengths and yields a natural way to obtain the shuffle product for bi-brackets.
To make this precise denote by P : Q〈Abi

z 〉 → Q〈Abi
z 〉 the linearly extended map which

sends a word w = zs1,r1 . . . zsl,rl to the linear combination of words corresponding to
the partition relation. Using this convention the shuffle product for brackets can be
written in Q〈Abi

z 〉 for two words u, v ∈ Q〈Abi
z 〉 as P (P (u) � P (v)), i.e. the stuffle and

shuffle product for bi-brackets can be written as

[u] · [v] st= [u� v] , [u] · [v] sh= [P (P (u) � P (v))] . (3.4)

Remark 3.8. As mentioned in the introduction the bi-brackets can be seen as a q-
analogue of MZV: Define for k ∈ N the map Q[[q]]→ R∪ {∞} by Zk(f) = limq→1(1−
q)kf(q), which was introduced and discussed in [BK] for the subspace MD ⊂ Q[[q]].
On the bi-brackets this map is given by the following: Assume that s1 > r1 + 1 and
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sj ≥ rj + 1 for j = 2, . . . , l, then, using the description (3.3) (see eg. Proposition 1 in
[Zu]), we obtain

Zs1+···+sl

[
s1, . . . , sl
r1, . . . , rl

]
= 1
r1! . . . rl!

ζ(s1 − r1, . . . , sl − rl) .

Even though we don’t want to discuss this issue in this note it is worth mentioning
that an other motivation for considering the bi-brackets was to describe the kernel of
the map Zk on the space grW

k MD. This connection will be subject of upcoming works.
Applying the map Zk to the equation (3.4) one obtains the stuffle and shuffle product
formula for MZV (See [Zu]). Finally we want mention that there are several other
different types of q-analogues which also have a stuffle and shuffle like structure (See
for example [MMEF] and [Zh] for a nice overview).

4 Derivatives and modular forms
In this section we want to discuss derivatives of bi-brackets with respect to the differ-
ential operator q ddq and their connections to modular forms. For this we first introduce
the following notations:

Definition 4.1. On BD we have the increasing filtrations FilW• given by the upper
weight,FilD• give by the lower weight and FilL• given by the length, i.e., we have for
A ⊆ BD

FilWk (A) :=
〈
[
s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣ 0 ≤ l ≤ k , s1 + · · ·+ sl ≤ k
〉
Q

FilDk (A) :=
〈
[
s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣ 0 ≤ l ≤ k , r1 + · · ·+ rl ≤ k
〉
Q

FilLl (A) :=
〈
[
s1, . . . , st
r1, . . . , rt

]
∈ A

∣∣ t ≤ l 〉
Q
.

If we consider the length and weight filtration at the same time we use the short
notation FilW,L

k,l := FilWk FilLl and similar for the other filtrations.

Proposition 4.2. Let dq := q ddq then we have

dq
[
s1, . . . , sl
r1, . . . , rl

]
=

l∑

j=1

(
sj(rj + 1)

[
s1 , . . . , sj−1 , sj + 1 , sj+1, . . . , sl
r1 , . . . , rj−1 , rj + 1 , rj+1 , . . . , rl

])

and therefore dq
(
FilW,D,L

k,d,l (BD)
)
⊂ FilW,D,L

k+1,d+1,l(BD).

15
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Proof. This is an easy consequence of the definition of bi-brackets and the fact that
dq
∑
n>0 anq

n = ∑
n>0 nanq

n. Another way to see this is by the fact that the operator
dq on the generating series of bi-brackets can be written as

dq
∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣ =
l∑

j=1

∂

∂Xj

∂

∂Yj

∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣ ,

which follows from

dq En(Y )Ln(X) = dq
enY eXqn

(1− eXqn) = nenY eXqn

(1− eXqn)2 = ∂

∂X

∂

∂Y
En(Y )Ln(X) .

Proposition 4.2 suggests that the bi-brackets can be somehow viewed as partial
derivatives of the brackets with total differential dq. In this part we want to give some
explicit results on the following conjecture which was inspired by numerical experiments
and which, with the above interpretation, states that the space MD is closed under
partial derivatives.

Conjecture 4.3. The algebra BD of bi-brackets is a subalgebra of MD and in par-
ticular we have

FilW,D,L
k,d,l (BD) ⊂ FilW,L

k+d,l+d(MD) .

Proposition 4.4. For l = 1 the conjecture 4.3 is true.

Proof. In [BK] the authors proved that dqMD ⊂ MD. Due to Proposition 4.2 we
therefore have

[s
r

] ∈MD, i.e. the Conjecture is true for the length one case.

Remark 4.5. In [BK2] it will be shown that up to weight k ≤ 7 every bi-bracket can
be written in terms of brackets, by giving upper bounds for the number of algebra
generators of bi-brackets.

For lower weight d = 1 Proposition 4.4 is given explicitly by the following reformu-
lation of Proposition 3.3 in [BK].

Proposition 4.6. For all k ≥ 1 it is
[
k

1

]
= [k] · [1]−

∑

a+b=k+1
[a, b]− [k, 1] + [k]

= [k + 1] + 1
2[k]−

∑

a+b=k+1
a>1

[a, b] +
k−1∑

j=2

Bk−j+1
(k − j + 1)! [j]−

1
2δk,1[1] ∈ FilW,L

k+1,2(MD)
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Proof. The functions Ln(X) in the generating function fullfil the following differential
equation.

∂

∂X
Ln(X) = Ln(X)2 + Ln(X) .

Therefore we get

∂

∂Y

∣∣∣∣∣
X

Y

∣∣∣∣∣ =
∑

n>0
enXLn(Y )2 +

∑

n>0
enXLn(Y ) =

∑

n>0
enXLn(Y )2 +

∣∣∣∣∣
X

Y

∣∣∣∣∣ .

The first term also appears in the product of two generating functions:
∣∣∣∣∣
X

Y

∣∣∣∣∣ ·
∣∣∣∣∣
0
Y

∣∣∣∣∣ =
∑

n1>n2>0
en1XLn1(Y )Ln2(Y ) +

∑

n2>n1>0
en1XLn1(Y )Ln2(Y ) +

∑

n>0
enXLn(Y )2

=
∣∣∣∣∣
Y, Y

X, 0

∣∣∣∣∣+
∣∣∣∣∣
Y, Y

0, X

∣∣∣∣∣+
∑

n>0
enXLn(Y )2 =

∣∣∣∣∣
X,X

Y, 0

∣∣∣∣∣+
∣∣∣∣∣
X, 0
Y, 0

∣∣∣∣∣+
∑

n>0
enXLn(Y )2 .

And therefore we obtain

∂

∂Y

∣∣∣∣∣
X

Y

∣∣∣∣∣ =
∣∣∣∣∣
X

Y

∣∣∣∣∣ ·
∣∣∣∣∣
0
Y

∣∣∣∣∣−
∣∣∣∣∣
X,X

Y, 0

∣∣∣∣∣−
∣∣∣∣∣
X, 0
Y, 0

∣∣∣∣∣+
∣∣∣∣∣
X

Y

∣∣∣∣∣ , (4.1)

which gives the first expression by considering the coefficient of Xk−1 in this equa-
tion. The second statement follows from the explicit stuffle product for bi-brackets in
Proposition 3.3:

[k] · [1] = [k, 1] + [1, k] + [k + 1] +
k∑

j=2

Bk−j+1
(k − j + 1)! [j]− δk,1[1] .

There it not much known so far for the length two and arbitrary weight case of the
Conjecture 4.3. Using the shuffle brackets we will prove (see Proposition 5.9 ) that for
all s1, s2 ≥ 1 it is

[
s1, s2
1, 0

]
,

[
s1, s2
0, 1

]
∈ FilW,L

s1+s2+1,3(MD)

It would be interesting to know whether the approach in the proof of proposition 5.9
also works for higher lengths, or higher lower weight.

One motivation of considering (bi-)brackets is to build a connection between mul-
tiple zeta values and modular forms. In the following we will show how to use the
double shuffle structure on the space of bi-brackets described above to prove relations
between modular forms. On the other hand we use results of modular forms to prove
relations between bi-brackets. For k ∈ N denote by

G̃k = ζ(k)
(−2πi)k + 1

(k − 1)!
∑

n>0
σk−1(n)qn = ζ(k)

(−2πi)k + [k] .
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the Eisenstein series of weight k. For even k = 2n due to Euler we have ζ(2n) =
(−1)n−1B2n(2π)2n

2(2n)! and therefore G̃2n = −1
2
B2n
(2n)! + [2n] =: β2n + [2n] ∈ FilW2n(MD), for

example
G̃2 = − 1

24 + [2] , G̃4 = 1
1440 + [4] , G̃6 = − 1

60480 + [6] .

Proposition 4.7. i) The ring of modular forms M(Γ1) for Γ1 = SL2(Z) and the
ring of quasi-modular forms M̃(Γ1) are graded subalgebras ofMD.

ii) The Q-algebra of quasi-modular forms M̃k(Γ1) is closed under the derivation dq
and therefore it is a subalgebra of the graded differential algebra (MD,dq).

iii) We have the following inclusions of Q-algebras

Mk(Γ1) ⊂ M̃(Γ1) ⊂ qMZ ⊂MD ⊂ BD .

Proof. Let Mk(Γ1) (resp. M̃k(Γ1)) be the space of (quasi-)modular forms of weight
k for Γ1. Then the first claim follows directly from the well-known facts M(Γ1) =⊕
k>1M(Γ1)k = Q[G̃4, G̃6] and M̃(Γ1) = ⊕

k>1 M̃(Γ1)k = Q[G̃2, G̃4, G̃6]. The second
claim is a well known fact in the theory of quasi-modular forms and a proof can be
found in [Za] p. 49. It suffices to show that the derivatives of the generators are given
by

dq G̃2 = dq[2] = 5G̃4 − 2G̃2
2 , dq G̃4 = 15G̃6 − 8G̃2G̃4 ,

dq G̃6 = 20G̃8 − 12G̃2G̃6 = 120
7 G̃2

4 − 12G̃2G̃6 ,

which can be easily shown by the double shuffle relations of bi-brackets.

It is a well-known fact from the theory of modular forms that G̃2
4 = 7

6G̃8 because
the space of weight 8 modular forms for SL2(Z) is one dimensional. We therefore have

1
720[4] + [4] · [4] = 7

6[8] .

Using the explicit stuffle product we get

[4] · [4] = 2[4, 4] + [8] + 1
360[4]− 1

1512[2] ,

which then gives the following relation in FilW8 (MD):

[8] = 1
40[4]− 1

252[2] + 12[4, 4] . (4.2)

The identity (4.2) can also be proven by using the double shuffle relations, i.e.
G̃2

4 = 7
6G8 can be proven since it is equivalent to it. One can check that

1
40[4]− 1

252[2] + 12[4, 4]− [8] = −4([3] st· [5]− [3] sh· [5]) + 3([4] st· [4]− [4] sh· [4]) ,
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where the right hand side is clearly zero. This purely combinatorial approach to prove
this kind of relation is similar to the one in [S].

Let us now use the theory of modular forms to obtain relations between bi-brackets.
It is a well-known fact (see [Za] 5.2) that for two modular forms f and g of weight k
and l the nth-Rankin-Cohen Bracket, where n ≥ 0, given by

(f, g)n =
∑

a,b,≥0
a+b=n

(−1)a
(
k + n− 1

b

)(
l + n− 1

a

)
daq f dbq g

is a modular form of weight k + l + 2n. In the the case n > 0 this is a cusp form. For
f = G̃k = βk + [k] and g = G̃l = βl + [l] we obtain by using daq

[k
0
]

= (k+a−1)!a!
(k−1)!

[k+a
a

]
,

that
(G̃k, G̃l)n = δn,0βkβl + γnk,l · C2n

k,l ,

with γnk,l = (k−1+n)!
(k−1)! ·

(l−1+n)!
(l−1)! and

C2n
k,l = βk

[
l + n

n

]
+ (−1)nβl

[
k + n

n

]
+

∑

a,b,≥0
a+b=n

(−1)a
[
k + a

a

][
l + b

b

]
.

For all n ≥ 1 and all even k, l ≥ 4 the function C2n
k,l ∈ Sk is therefore a cusp form

of weight k + l + 2n. This yields a source for relations between bi-brackets since the
dimension of Sk is smaller than the possible different C2n

k,l . For example in weight 12
we have dimS12 = 1 and we have the two expressions ∆ = 12 · 5!2 ·C4

4,4 = 5! · 7! ·C2
4,6,

with ∆ = q
∏
n≥0(1− qn)24 being the unique normalized cusp form in this weight. This

yields the following relations between bi-brackets

7
[
5
1

]
·
[
6
0

]
− 7

[
4
0

]
·
[
7
1

]
+ 4

[
4
0

]
·
[
6
2

]
− 2

[
5
1

]
·
[
5
1

]
= 7

1440

[
7
1

]
− 1

360

[
6
2

]
+ 1

8640

[
5
1

]
.

5 The spaces MD∗ and MD�
In [H] it is shown, that every quasi-shuffle Algebra (Q〈A〉,�) is isomorphic to the shuffle
Algebra (Q〈A〉,�). To make this precise define for a composition i1 + · · · + im = n,
where i1, . . . , im > 0, of a natural number n and a word w = a1a2 . . . an the following
element in Q〈A〉:

(i1, . . . , im){w} := (a1 � · · · � ai1)(ai1+1 � · · · � ai1+i2) . . . (ai1+···+im−1+1 � · · · � an) ,
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where the product is given by the composition of words and � is the product on QA
belonging to �. With this define the following two maps

exp�(w) =
∑

1≤m≤n
i1+···+im=n

1
i1! . . . im! (i1, . . . , im){w} ,

log�(w) =
∑

1≤m≤n
i1+···+im=n

(−1)n−m
i1 . . . im

(i1, . . . , im){w} .

Proposition 5.1. ([H],Thm. 2.5) The map exp� is an algebra isomorphism from
(Q〈A〉,�) to (Q〈A〉,�) with the inverse given by log�.

In other words this enables one to give an isomorphism between two arbitrary quasi-
shuffle algebras on the same alphabets. We will use this now to define a stuffle version
for the brackets and later on the generating series of bi-brackets to define the shuffle
brackets.

Notice that for the brackets, i.e. bi-brackets with r1 = · · · = rl = 0, we also
obtain an homomorphism [.] : (H1

z,�) → (MD, ·) since we can view Az as a subset
of Abi

z . To define the stuffle brackets [s1, . . . , sl]∗, which fulfill the stuffle product, we
use the above proposition to deform the quasi-shuffle product � of the brackets into
the stuffle product ∗, i.e. we use the following compositions of maps to get a algebra
homomorphism from (H1

z, ∗) toMD.

(H1
z, ∗)

[... ]∗ //

log∗
��

(MD, ·)

(H1
z,�) exp�

// (H1
z,�)

[... ]

OO

Definition 5.2. Define for s1, . . . , sl ∈ N the stuffle bracket [s1, . . . , sl]∗ as the image
of zs1 . . . zsl under the above map, i.e

[s1, . . . , sl]∗ = [exp�(log∗(zs1 . . . zsl))] .

By MD∗ (resp. qMZ∗) we denote the spaces spanned by all (resp. all with s1 ≥ 1)
stuffle brackets and 1.

Remember that the quasi-shuffle product � for brackets was induced by the follow-
ing map on QA

zs1 � zs2 =
s1∑

j=1
λjs1,s2zj +

s2∑

j=1
λjs2,s1zj + zs1+s2 =: zs1+s2 +

∑

j≥1
γjs1,s2zj ,
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where we define the γjs1,s2 just for simplicity of the following formulas. Since log∗(zs1zs2) =
zs1zs2−1

2zs1+s2 and exp�(zs1zs2) = zs1zs2+1
2zs1+s2+1

2
∑
j γ

j
s1,s2zj we obtain exp�(log∗(zs1zs2)) =

zs1zs2 + 1
2
∑
j γ

j
s1,s2zj , i.e.

[s1, s2]∗ = [s1, s2] + 1
2

s1∑

j=1
λjs1,s2 [j] + 1

2

s2∑

j=1
λjs2,s1 [j] .

Similarly one computes the length three case and obtains

[s1, s2, s3]∗ =[s1, s2, s3] + 1
2
∑

j≥0
γjs1,s2 [j, s3] + 1

2
∑

j≥0
γjs2,s3 [s1, j]−

1
12
∑

j≥0
γjs1+s2,s3 [j]

− 1
4
∑

j≥0
γjs1,s2+s3 [j] + 1

6
∑

j≥0
γjs1,s2 [j + s3] + 1

6
∑

j1,j2≥0
γj1s1,s2γ

j2
s3,j1 [j2] .

Example 5.3. For example we have [1] · [2, 1]∗ = [1, 2, 1]∗ + 2[2, 1, 1]∗ + [3, 1]∗ + [2, 2]∗
with

[2, 1]∗ = [2, 1]− 1
4[2], [3, 1]∗ = [3, 1] + 1

24[2]− 1
4[3], [2, 2]∗ = [2, 2]− 1

12[2] ,

[2, 1, 1]∗ = [2, 1, 1]− 3
4[2, 1] + 11

144[2]− 1
24[3] ,

[1, 2, 1]∗ = [1, 2, 1]− 1
4[1, 2]− 1

4[2, 1] + 1
72[2] + 1

12[3] .

By construction we have the following

Proposition 5.4. Up to lower weight the stuffle brackets equal the brackets and
therefore

dim
(
grW
k (qMZ)

)
= dim

(
grW
k (qMZ∗)

)
.

Proof. This follow directly from the fact that � and ∗ on H1
z are equal up to lower

weights.

In Remark 6.6 we will see that the stuffle brackets can be used to define stuffle
regularized the multiple Eisenstein series. However as we will see, even though this
version is easy to write down, this will not yield the "best" definition and we will use a
more complicated construction.

We now want to define a q-series which is an element in BD and which fulfills
the "real" shuffle product of multiple zeta values. For e1, . . . , el ≥ 1 we generalize the
generating function of bi-brackets to the following

∣∣∣∣∣
X1, ... , Xl
Y1, ... , Yl
e1, ... , el

∣∣∣∣∣ =
∑

u1>···>ul>0

l∏

j=1
Euj (Yj)Luj (Xj)ej . (5.1)
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So in particular for e1 = · · · = el = 1 these are the generating functions of the bi-
brackets. To show that the coefficients of these series are in BD for arbitrary ej we
need to define the differential operator DYe1,...,el := DY1,e1DY2,e2 . . . DYl,el with

DYj ,e =
e−1∏

k=1

(
1
k

(
∂

∂Yl−j+1
− ∂

∂Yl−j+2

)
− 1

)
.

where we set ∂
∂Yl+1

= 0.

Proposition 5.5. The coefficients of (5.1) are in BD and it is

DYe1,...,el

∣∣∣∣∣
X1, . . . , Xl

Y1, . . . , Yl

∣∣∣∣∣ =

∣∣∣∣∣∣

Y1+···+Yl, ... , Y1
Xl, Xl−1−Xl, ... , X1−X2

e1, ... , el

∣∣∣∣∣∣
.

Proof. By ∂
∂XLn(X) = Ln(X)2 + Ln(X) one inductively obtains

Ln(Y )e+1 =
(1
e

∂

∂Y
− 1

)
Ln(Y )e =

e−1∏

k=1

(1
k

∂

∂Y
− 1

)
Ln(Y ) ,

from which the statement follows after a suitable change of variables.

Notice that in the case e1 = · · · = el = 1 this is exactly the partition relation. We
now want to define the shuffle brackets [s1, . . . , sl]� by using the following well-known
fact :

Lemma 5.6. Let A be an algebra spanned by elements as1,...,sl with s1, . . . , sl ∈ N,
let H(X1, . . . , Xl) = ∑

sj as1,...,slX
s1−1
1 . . . Xsl−1

1 be the generating functions of these
elements and define for f ∈ Q[[X1, . . . , Xl]]

f ](X1, . . . , Xl) = f(X1 + · · ·+Xl, X2 + · · ·+Xl, . . . , Xl) .

Then the following two statements are equivalent
i) The map (H1

xy,�) → A given by zs1 . . . zsj 7→ as1,...,sl is an algebra homomor-
phism.

ii) For all r, s ∈ N it is

H](X1, . . . , Xr) ·H](Xr+1, . . . , Xr+s) = H](X1, . . . , Xr+s)|sh(r+s)
r

,

where sh(r+s)
r = ∑

σ∈Σ(r,s) σ in the group ring Z[Sr+s] and the symmetric group
Sr acts on Q[[X1, . . . , Xr]] by (f

∣∣σ)(X1, . . . , Xr) = f(Xσ−1(1), . . . , Xσ−1(r)) .

Proof. This can be proven by induction over l together with Proposition 8 in [I].
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Theorem 5.7. For s1, . . . , sl ∈ N define [s1, . . . , sl]� ∈ BD as the coefficients of the
following generating function

H�(X1, . . . , Xl) =
∑

s1,...,sl≥1
[s1, . . . , sl]�Xs1−1

1 . . . Xsl−1
l

:=
∑

1≤m≤l
i1+···+im=l

1
i1! . . . im!D

Y
i1,...,im

∣∣∣∣∣
X1, Xim+1, Xim−1+im+1, . . . , Xi2+···+im+1

Y1, . . . , Yl

∣∣∣∣∣∣∣Y=0
.

Then we have the following two statements
i) The [s1, . . . , sl]� fulfill the shuffle product, i.e.

H]
�

(X1, . . . , Xr) ·H]
�

(Xr+1, . . . , Xr+s) = H]
�

(X1, . . . , Xr+s)|sh(r+s)
r

.

ii) For s1 ≥ 1, s2, . . . , sl ≥ 2 we have [s1, . . . , sl]� = [s1, . . . , sl].

Proof. The first part of the proof is basically the same as in the discussion in section
4.1 in [BT] but with a reverse order and some changes in the notation. Consider the
alphabet A =

{(y
n

) | n ∈ N , y ∈ YZ
}
, where YZ is the set of finite sums of the elements

in Y = {Y1, Y2, . . . }. We denote a word in these letters by
(y1,...,yl
n1,...,nl

)
. For two letters

a, b ∈ A define a�b ∈ A as the component-wise sum. With this we can equip Q〈A〉 with
the quasi-shuffle product � (3.1) and therefore obtain a quasi-shuffle algebra (Q〈A〉,�).
It is easy to see that the map (Q〈A〉,�)→ BDgen given by

(y1,...,yl
n1,...,nl

) 7−→
∣∣∣∣∣

0, ... , 0
y1, ... , yl
n1, ... , nr

∣∣∣∣∣

is an algebra homomorphism. Using now Proposition 5.1 the series h defined by the
exponential map

h(X1, . . . , Xr) =
∑

1≤m≤n
i1+···+im=n

1
i1! . . . im!

∣∣∣∣∣∣

0, ... , 0
Y1, ... , Ym
i1, ... , im

∣∣∣∣∣∣
,

where Yj = Xi1+···+ij−1 +· · ·+Xi1+···+ij withX0 := 0, fulfills the (index-)shuffle product
i.e.

h(X1, . . . , Xr) · h(Xr+1, . . . , Xr+s) = h(X1, . . . , Xr+s)|sh(r+s)
r

.

We now setH�(X1, . . . , Xl) := h(Xl, Xl−1−Xl, . . . , X1−X2) and by the same argument
as in Theorem 4.3 in [BT] it is

H]
�

(X1, . . . , Xr) ·H]
�

(Xr+1, . . . , Xr+s) = H]
�

(X1, . . . , Xr+s)|sh(r+s)
r

.

Combining the definition of h and H� we observe that H�(X1, . . . , Xr) equals

∑

1≤m≤n
i1+···+im=n

1
i1! . . . im!

∣∣∣∣∣∣

0, ... , 0
Xr−i1+1, Xr−i1−i2+1−Xr−i1+1, ... , X1−Xr−i1−···−im−1+1

i1, ... , im

∣∣∣∣∣∣
.
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We now apply Proposition 5.5 to this and obtain i) of the Theorem. To prove ii) one
checks that the only summand on the right hand side, where all variables X2, . . . , Xl

appear, is the one with i1 = · · · = im = 1 which is exactly [s1, . . . , sl]Xs1−1 . . . Xsl−1
l .

Therefore the shuffle bracket [s1, . . . , sl]� where s2, . . . , sl ≥ 2 is given by the bracket
[s1, . . . , sl].

For low length we obtain the following examples:

Corollary 5.8. It is [s1]� = [s1] and for l = 2, 3, 4 the [s1, . . . , sl]�are given by

i) [s1, s2]� = [s1, s2] + δs2,1 ·
1
2

([
s1
1

]
− [s1]

)
,

ii) [s1, s2, s3]� = [s1, s2, s3] + δs3,1 ·
1
2

([
s1, s2
0, 1

]
− [s1, s2]

)

+ δs2,1 ·
1
2

([
s1, s3
1, 0

]
−
[
s1, s3
0, 1

]
− [s1, s3]

)

+ δs2·s3,1 ·
1
6

([
s1
2

]
− 3

2

[
s1
1

]
+ [s1]

)
,

iii) [s1, s2, s3, s4]� = [s1, s2, s3, s4] + δs4,1 ·
1
2

([
s1, s2, s3

0, 0, 1

]
− [s1, s2, s3]

)

+δs3,1 ·
1
2

([
s1, s2, s4

0, 1, 0

]
−
[
s1, s2, s4

0, 0, 1

]
+ [s1, s2, s4]

)

+δs2,1 ·
1
2

([
s1, s3, s4

1, 0, 0

]
−
[
s1, s3, s4

0, 1, 0

]
+ [s1, s3, s4]

)

+δs2·s4,1 ·
1
4

([
s1, s3
1, 1

]
− 2

[
s1, s3
0, 2

]
−
[
s1, s3
1, 0

]
+ [s1, s3]

)

+δs3·s4,1 ·
1
6

([
s1, s2
0, 2

]
− 3

2

[
s1, s2
0, 1

]
+ [s1, s2]

)

+δs2·s3,1 ·
1
6

([
s1, s4
0, 2

]
−
[
s1, s4
1, 1

]
+ 3

2

[
s1, s4
0, 1

]
+
[
s1, s4
2, 0

]
− 3

2

[
s1, s4
1, 0

]
+ [s1, s4]

)

+δs2·s3·s4,1 ·
1
24

([
s1
3

]
− 2

[
s1
2

]
+ 11

6

[
s1
1

]
− [s1]

)
.

Proof. This follows by calculating the coefficients of the series G� in Theorem 5.7.

Proposition 5.9. For all s1, s2 ≥ 1 it is
[
s1, s2
1, 0

]
,

[
s1, s2
0, 1

]
∈ FilW,L

s1+s2+1,3(MD)
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Proof. First notice that from
[s1,s2

1,0
] ∈ MD by the stuffle product for bi-brackets[s1

1
] · [s2] one deduces

[s2,s1
0,1
] ∈MD. Since the shuffle brackets fulfill the shuffle product

we have

[s1, s2]� · [1] = 2[s1, s2, 1]� + 2[s1, 1, s2]� + 2[1, s1, s2]� +
∑

a,b,c≥2
νa,b,c[a, b, c]�

for some νa,b,c ∈ Q. By Proposition 5.8 the brackets [s1, s2]�, [1, s1, s2]� and [a, b, c]�
with a, b, c ≥ 2 are elements ofMD, i.e. 2[s1, s2, 1]� + 2[s1, 1, s2]� ∈ MD. Using the
explicit formula for the length three shuffle brackets it is easy so check that

2[s1, s2, 1]� + 2[s1, 1, s2]� =





[s1,s2
1,0
]
, s2 > 1,

2
[s1,1

0,1
]
, s2 = 1 .

mod MD ,

which proves the statement.

Finally we give some numerical results on the dimension of the space spanned by
the shuffle brackets [s1, . . . , sl]�. Denote byMD� the Q-vector space spanned by all
[s1, . . . , sl]� and 1 and qMZ� spanned by those where s1 > 1. By the use of the
computer the author was able to give lower bounds for the dimension of grW

k (MD�)
for k ≤ 10 by using a fast implementation of the bi-brackets in Pari GP

k 0 1 2 3 4 5 6 7 8 9 10

dim
(
grW

k (qMZ�)
)
≥ 1 0 1 2 3 6 10 18 32 56 100

Table 1: Lower bounds for dim
(
grW
k (qMZ�)

)
.

We observe that these numbers coincide with the conjectured dimension for grW
k (qMZ)

given in [BK].

Remark 5.10. In the case of multiple zeta values the shuffle product is an easy con-
sequence of the expression as an iterated integral. It is therefore a natural question
whether there is also some kind of iterated integral expression from which the shuf-
fle product follows. This was done for other q-analogue models of MZV in [Zh] and
[MMEF] by the use of iterated Jackson integrals.

6 Multiple Eisenstein series G, G� and G∗

In [BT] the authors defined regularized multiple Eisenstein series via the use of the
coproduct structure on the space of formal iterated integrals. We will recall the basic
facts in the following. It is important to notice that in [BT] the authors used a different
order of the indices for multiple zeta values and multiple Eisenstein series. Here we
will use the original order as in the paper [GKZ] and and work [Ba].
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Definition 6.1. For integers s1 ≥ 3 and s2, . . . , sl ≥ 2, we define the multiple Eisen-
stein series Gs1,...,sl(τ) on H by

Gs1,...,sl(τ) =
∑

λ1�···�λl�0
λi∈Λτ

1
λs1

1 . . . λsll
,

where λi ∈ Zτ +Z are lattice points and the order � on Zτ +Z is given by

m1τ + n1 � m2τ + n2 :⇔ (m1 > m2 ∨ (m1 = m2 ∧ n1 > n2)) .

Remark 6.2. It is easy to see that these are holomorphic functions in the upper half
plane and that they fulfill the stuffle product, i.e. it is for example

G3(τ) ·G4(τ) = G3,4(τ) +G4,3(τ) +G7(τ) .

The condition s1 ≥ 3 is necessary for absolutely convergence of the sum. By choosing
a specific way of summation we can also restrict this condition to get a definition of
Gs1,...,sl(τ) with s1 = 2 which also satisfies the stuffle product (see [BT] Definition 2.1).

Recall that we denote byMZB ⊂ C[[q]] the space spanned by all q-series given by
products of MZV, powers of (−2πi) and bi-brackets. In [Ba] the Fourier expansion of
multiple Eisenstein series was calculated. In particular the results in [Ba] show that
we can consider Gs1,...,sl to be an element inMZB by setting q = e2πiτ . For example

G3,2(τ) = ζ(3, 2) + 3ζ(3)g2(q) + 2ζ(2)g3(q) + g3,2(q) ∈MZB ,

where for all s1, . . . , sl ≥ 1 we write gs1,...,sl(q) = (−2πi)s1+···+sl [s1, . . . , sl]. We will
also use the following notation

g�s1,...,sl(q) = (−2πi)s1+···+sl [s1, . . . , sl]� ,

g
(s1,...,sl
r1,...,rl

)
(q) = (−2πi)s1+r1+···+sl+rl

[
s1, . . . , sl
r1, . . . , rl

]
.

Later we will suppress the dependence of q and τ and just write gs1,...,sl instead of
gs1,...,sl(q) and similar for the other functions considered above.

Following Goncharov ([G]) the authors in [BT] consider the algebra I generated by
the elements I(a0; a1, . . . , aN ; aN+1), where ai ∈ {0, 1}, N ≥ 0, with the product given
by the shuffle product � together with relations coming from real iterated integrals
(see [G] Section 2 and [BT] Section 3 for details but with a different order). This space
has the structure of a Hopf algebra with the coproduct given by

∆G (I(a0; a1, . . . , aN ; aN+1)) :=
∑(

I(a0; ai1 , . . . , aik ; aN+1)⊗
k∏

p=0
I(aip ; aip+1, . . . , aip+1−1; aip+1)

)
,

(6.1)

26

187



where the sum runs over all i0 = 0 < i1 < · · · < ik < ik+1 = N + 1 with 0 ≤ k ≤ N .
The triple (I,�,∆G) is a commutative graded Hopf algebra over Q ([G] Proposition
2.2). For integers n ≥ 0, s1, . . . , sr ≥ 1, we set

In(s1, . . . , sr) := I(1; 0, 0, . . . , 1︸ ︷︷ ︸
s1

, . . . , 0, 0, . . . , 1︸ ︷︷ ︸
sr

, 0, . . . , 0︸ ︷︷ ︸
n

; 1).

In particular, we write I(s1, . . . , sr) to denote I0(s1, . . . , sr). The quotient space I1 =
I/I(0; 0; 1)I also has the structure of a Hopf algebra with the same coproduct and
due to Proposition 3.2 in [BT] the elements I(s1, . . . , sl) form a basis of I1, i.e. as a
Q-algebra the space I1 is isomorphic to (H1

xy,�) by sending I(s1, . . . , sl) to zs1 . . . zsl .
In the following we therefore consider H1

xy as a Hopf algebra with the above coproduct.

Proposition 6.3. [IKZ](shuffle & stuffle regularized MZV) There exist algebra ho-
momorphisms Z� : (H1

xy,�) → MZ and Z∗ : (H1
z, ∗) → MZ with ζ�(s1, . . . , sl) =

Z�(zs1 . . . zsl) and ζ(s1, . . . , sl)∗ = Z�(zs1 . . . zsl) such that

ζ∗(s1, . . . , sl) = ζ�(s1, . . . , sl) = ζ(s1, . . . , sl)

for sl ≥ 2 and s2, . . . , sl ≥ 1. They are uniquely determined by Z�(z1) = Z∗(z1) = 0.

Proof. This follows from the results of section 2 in [IKZ].

We now recall the definition of G� from [BT].

Definition 6.4. For integers s1, . . . , sl ≥ 1, define the q-series G�s1,...,sl(q) ∈ MZB,
called (shuffle) regularized multiple Eisenstein series, as

G�s1,...,sl(q) := m
(
(g� ⊗ Z�) ◦∆G

(
zs1 . . . zsl

))
,

where g� : (H1
xy,�)→ C[[q]] is the algebra homomorphism defined by g�(zs1 . . . zsl) =

g�s1,...,sl(q) and m denotes the multiplication given by m : a⊗ b 7→ a · b.

We can view G� as an algebra homomorphism G� : (H1
xy,�) →MZB such that

the following diagram commutes

(H1
xy,�) ∆G //

G�

��

(H1
xy,�)⊗ (H1

xy,�)

Z�⊗ g�

��
MZB MZ⊗C[[q]]m

oo

Summarizing the results of [BT] we have

Theorem 6.5. [BT] For all s1, . . . , sl ≥ 1 and q = e2πiτ with τ ∈ H the regularized
multiple Eisenstein series G�s1,...,sl(q) have the following properties:

i) They are holomorphic functions on the upper half plane having a Fourier expan-
sion with the regularized multiple zeta values as the constant term.
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ii) They fulfill the shuffle product, i.e. we have an algebra homomorphism (H1
xy,�)→

MZB by sending the generators zs1 . . . zsl to G�s1,...,sl(q).
iii) For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G�s1,...,sl(q) = Gs1,...,sl(q)

and therefore they fulfill the stuffle product (see Remark 6.2) in these cases.

Theorem 6.5 provides a large family of linear relations between the G�, since one
can write the product G�s1,...,sl(q) ·G�r1,...,rm(q) in two different ways whenever one has
s1, . . . , sl, r1, . . . , rm ≥ 2 by using the stuffle and shuffle product formula. We will call
these relations the restricted double shuffle relations, since they are just a subset of all
(finite) double shuffle relations of MZV, where the indices sj and ri are additionally
allowed to be 1 whenever j < l and i < m. We compare the number of both relations
at the end of this paper.

Numerical experiments suggest (see the dimension discussion at the end of [BT]),
that there are additional relations between the G� coming from the double shuffle
relations, where some indices are also allowed to be 1. It is therefore interesting to
understand the exact failure of the stuffle product for the regularized multiple Eisen-
stein G� which seems not to be covered best possible by the Theorem 6.5. In the
following we want to sketch a possible approach to answer this question. The basic
idea is to define stuffle regularized multiple Eisenstein series G∗s1,...,sl which equals the
shuffle regularized ones in most of the cases. For this we need the following: For an
arbitrary quasi-shuffle algebra Q〈A〉 define on the following coproduct for a word w

∆H(w) =
∑

uv=w
u⊗ v .

Then it is known due to Hoffman ([H]) that the space (Q〈A〉,�,∆H) has the structure
of a bialgebra. With this we try to mimic the definition of theG� and use the coproduct
structure on the space (H1

z, ∗,∆H) to define G∗, i.e. we consider the following diagram

(H1
z, ∗)

∆H //

G∗

��

(H1
z, ∗)⊗ (H1

z, ∗)
g∗⊗Z∗
��

C[[q]] C[[q]]⊗MZm
oo

with a suitable choice of an algebra homomorphism g∗ : (H1
z, ∗)→ C[[q]].

Remark 6.6. One naive way to define g∗ would be to define it on the generator
w = zsl . . . zsl by (−2πi)s1+···+sl [s1, . . . , sl]∗ which would yield stuffle regularized the
multiple Eisenstein series which coincide with the G� in the length one case. But
already in length two this differs from the original multiple Eisenstein series even when
all sj ≥ 2 for example it is

G3,2(τ) = G�3,2(τ) = ζ(3, 2) + 3ζ(3)g2(q) + 2ζ(2)g3(q) + g3,2(q)
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but the naive approach would give ζ(3, 2) + 2ζ(2)g3(q) + g2,3(q). Even though these
are similar this seems not to be the definition we want and we need to find an alterna-
tive definition for g∗ in the following such that G∗ coincide with the original multiple
Eisenstein series.

Motivated by the calculation of the Fourier expansion of multiple Eisenstein series
described in [Ba] and [BT] we consider the following construction.

Construction 6.7. Given a Q-algebra (A, ·) and a family of homomorphism

{w 7→ fw(m)}m∈N

from (H1
z, ∗) to (A, ·), we define for w ∈ H1

z and M ∈ N

Fw(M) :=
∑

1≤k≤l(w)
w1...wk=w

M>m1>···>mk>0

fw1(m1) . . . fwk(mk) ∈ A ,

where l(w) denotes the length of the word w and w1 . . . wk = w is a decomposition of
w into k words in H1

z.

Proposition 6.8. For allM ∈ N the map from (H1
z, ∗) to (A, ·) defined by w 7→ Fw(M)

is an algebra homomorphism, i.e. {w 7→ Fw(m)}m∈N is again a family of homomor-
phism as in the Construction 6.7.

Proof. We use the coproduct structure on
(
H1
z, ∗,∆H

)
to prove the statement by

induction over M . It is Fw(1) = 0 which clearly fulfills the stuffle product. For the
induction step one checks that Fw(M + 1) = ∑

uv=w Fu(M)fv(M) which is exactly
the image of w under (F (M) ⊗ f(M)) ◦ ∆H , i.e. it fulfills the stuffle product by the
induction hypothesis.

For a word w = zs1 . . . zsl ∈ H1 we also write in the following fs1,...,sl(m) := fw(m)
and similarly Fs1,...,sl(M) := Fw(M).

Example 6.9. Let fw(m) be as in the construction. In small lengths the Fw are given
by

Fs1(M) =
∑

M>m1>0
fs1(m1) ,

Fs1,s2(M) =
∑

M>m1>0
fs1,s2(m1) +

∑

M>m1>m2>0
fs1(m1)fs2(m2)
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and one can check directly by the use of the stuffle product for the fw that

Fs1(M) · Fs2(M) =
∑

M>m1>0
fs1(m1) ·

∑

M>m2>0
fs2(m2)

=
∑

M>m1>m2>0
fs1(m1)fs2(m2) +

∑

M>m2>m1>0
fs2(m2)fs1(m1) +

∑

M>m1>0
fs1(m1)fs2(m1)

=
∑

M>m1>m2>0
fs1(m1)fs2(m2) +

∑

M>m2>m1>0
fs2(m2)fs1(m1)

+
∑

M>m1>0
(fs1,s2(m1) + fs2,s1(m1) + fs1+s2(m1))

= Fs1,s2(M) + Fs2,s1(M) + Fs1+s2(M) .

Let us now give an explicit example for maps fw in which we are interested. For
this we need to define the following

Definition 6.10. For integers s1, . . . , sl ≥ 1 with s1, sl ≥ 2 we define a holomorphic
function Ψs1,...,sl(z) on C−Z called the multitangent function by

Ψs1,...,sl(z) =
∑

n1>···>nl
nj∈Z

1
(z + n1)s1 · · · (z + nl)sl

.

When l = 1 we refer to Ψs1(z) as the monotangent function.

In [Bo] the author uses the notation T en1,...,nr(z) which corresponds to our Ψn1,...,nr(z)
and showed that the series defining Ψn1,...,nr(z) converges absolutely when n1, . . . , nr ≥
2. These functions fulfill (for the cases they are defined) the stuffle product. The mul-
titangent functions appear in the calculation of the Fourier expansion of the multiple
Eisenstein series Gs1,...,sl (see [Ba], [BT]), for example in length two it is

Gs1,s2(τ) = ζ(s1, s2)+ζ(s1)
∑

m1>0
Ψs2(m1τ)+

∑

m1>0
Ψs1,s2(m1τ)+

∑

m1>m2>0
Ψs1(m1τ)Ψs2(m2τ) .

One nice result of [Bo] is a regularization of the multitangent function to get a definition
of Ψs1,...,sl(z) for all s1, . . . , sl ∈ N. We will use this result together with the above
construction to recover the Fourier expansion of the multiple Eisenstein series.

Theorem 6.11. ([Bo]) For all s1, . . . , sl ∈ N there exist holomorphic functions Ψs1,...,sl
on H with the following properties

i) Setting q = e2πiτ for τ ∈ H the map w 7→ Ψw(τ) defines an algebra homomorphism
from (H1

z, ∗) to (C[[q]], ·).
ii) In the case s1, sl ≥ 2 the Ψs1,...,sl are given by the multitangent functions in

Definition 6.10.
iii) The monotangents functions have the q-expansion given by

Ψ1(τ) = π

tan(πτ) = (−2πi)
(

1
2 +

∑

n>0
qn
)
, Ψk(τ) = (−2πi)k

(k − 1)!
∑

n>0
nk−1qn for k ≥ 2.
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iv) (Reduction into monotangent function) Every Ψs1,...,sl(τ) can be written as a
MZ-linear combination of monotangent functions. There are explicit εs1,...,sl

i,k ∈
MZ s.th.

Ψs1,...,sl(τ) = δs1,...,sl +
l∑

i=1

si∑

k=1
εs1,...,sl
i,k Ψk(τ) ,

where δs1,...,sl = (πi)l
l! if s1 = · · · = sl = 1 and l even and δs1,...,sl = 0 otherwise.

For s1 > 1 and sl > 1 the sum on the right starts at k = 2, i.e. there are no Ψ1(τ)
appearing and therefore there is no constant term in the q-expansion.

Proof. This is just a summary of the results in Section 6 and 7 of [Bo]. The last
statement is given by Theorem 6 there.

Due to iv) in the Theorem the calculation of the Fourier expansion of multiple
Eisenstein series, where ordered sums of multitangent functions appear, reduces to
ordered sums of monotangent functions. The connection of these sums to the brackets,
i.e. to the functions g, is given by the following fact which can be seen by using iii) of
the above Theorem. For n1, . . . , nr ≥ 2 it is

gs1,...,sr(q) =
∑

m1>···>ml>0
Ψs1(m1τ) . . .Ψsl(mlτ) .

For w ∈ H1
z we now use the Construction 6.7 with A = C[[q]] and the family of

homomorphism {w 7→ Ψw(nτ)}n∈N to define

g∗,M (w) := (−2πi)|w|
∑

1≤k≤l(w)
w1...wk=w

∑

M>m1>···>mk>0
Ψw1(m1τ) . . .Ψwk(mkτ) .

From Proposition 6.8 and the Theorem 6.11 it follows that for allM ∈ N the map g∗,M

is an algebra homomorphism from (H1
z, ∗) to C[[q]].

Definition 6.12. For integers s1, . . . , sl ≥ 1 and M ∈ N, we define the q-series
G∗,Ms1,...,sr(q) ∈ C[[q]] as the image of the word w = zs1 . . . zsl ∈ H1

z under the algebra
homomorphism (Z∗ ⊗ g∗,M ) ◦∆H :

G∗,Ms1,...,sl(τ) := m
(
(g∗,M ⊗ Z∗) ◦∆H

(
w
)) ∈ C[[q]] .

For s1, . . . , sl ≥ 2 it is easy to see that the limit

G∗s1,...,sl(τ) := lim
M→∞

G∗,Ms1,...,sl(τ)

exists and that we have

Proposition 6.13. For s1, . . . , sj ≥ 2 we have Gs1,...,sl = G∗s1,...,sl = G�s1,...,sl .

Proof. This follows since the construction above was exactly the one which appears
in the calculation of the Fourier expansion of multiple Eisenstein series. See [Ba] and
[BT] for details.
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We now want to discuss whether the limit of G∗,Ms1,...,sl(τ) as M →∞ exists for more
general s1, . . . , sl ∈ N. Since it is a finite sum of ordered sums of multitangent functions
we can, by Theorem 6.11 iv), restrict to the case of ordered sums of monotangent
functions and powers of π, i.e. we want to determine when the limit of

∑

M>m1>···>ml>0
f1(mτ) . . . fl(mτ)

with fj(τ) = Ψs(τ) for some s ∈ N or fj(τ) = 1 exists. One easily checks that
this exactly the case when f1(τ) has no constant term, i.e. f1(τ) 6= Ψ1(τ) and
f1(τ) 6= 1. We deduce that therefore the limit of G∗,Ms1,...,sl(τ) as M → ∞ exists when
all Ψs1,...,sl ,Ψs1,...,sl−1 , . . . ,Ψs1 have no constant term. Even though the Theorem 6.11
iv) just justifies this for the case all sj ≥ 2 we see, by using the explicit reductions
to monotangents given in [Bo], that for low weights in fact the Ψ1,...,1(τ) are the only
multitangent functions with constant term. This question remains open but seems to
be crucial in order to get a definition of G∗ for all admissible indices.

Remark 6.14. That Ψ1,...,1(τ) are the only multitangent functions with a constant
term is also expected by the author of [Bo]. Since there is no proof of this statement
so far, we just use this here in low length, where the explicit formulas for the Ψ are
known.

The functions g
(s1,...,sl
r1,...,rl

)
, i.e. the bi-brackets, will appear in G∗s1,...,sl every time there

is a j < l with sj = 1 as we will see in the following examples:

Example 6.15. i) We are going to calculate G∗2,1,2. For this we use the Table 1 and
6 at the end of [Bo] where one can find that Ψ2,1,2(z) = Ψ1,2(z) = Ψ2,1(z) = 0,
therefore it is

G∗,M2,1,2(τ) = ζ(2, 1, 2)∗ +
∑

0<m1<M

Ψ2(m1τ) · ζ(1, 2)∗ +
∑

M>m1>m2>0
Ψ2(m1τ)Ψ1(m2τ) · ζ(2)∗

+
∑

M>m1>m2>m3>0
Ψ2(m1τ)Ψ1(m2τ)Ψ2(m3τ) .

Taking the limit M →∞ and using the explicit forms of Ψk (k ≥ 1), ζ(2, 1, 2)∗ =
ζ(2, 1, 2), ζ(2)∗ = ζ(2) and ζ(1, 2)∗ = −ζ(2, 1)− ζ(3) = −2ζ(2, 1) we obtain

G∗2,1,2 = lim
M→∞

G∗,M2,1,2

= ζ(2, 1, 2)− 2ζ(2, 1)g2 + ζ(2)
(
g2,1 + 1

2g
(2
1
)− (−2πi)

2 g2

)

+ g2,1,2 + 1
2
(
g
(2,2
0,1
)− g(2,21,0

)− (−2πi)g2,2
)

= ζ(2, 1, 2)− 2ζ(1, 2)g�2 + ζ(2)g�2,1 + g�2,1,2

= G�2,1,2 .
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Similarly one can prove that G�2,1 = G∗2,1, G�2,2,1 = G∗2,2,1 and G�4,1 = G∗4,1 from
which we obtain the following stuffle product in weight 5:

G�2 ·G�2,1 = G�2,1,2 + 2G�2,2,1 +G�4,1 +G�2,3 . (6.2)

ii) There are G∗s1,...,sl that differ from G�s1,...,sl . For example it is

G∗2,1,1 = ζ(2, 1, 1)− 13
2 ζ(2)g2 − (−2πi)g2,1 + 1

2g
(2,1
1,0
)− 3

8(−2πi)g
(2
1
)

+ 1
4g
(2
2
)

+ g2,1,1 ,

G�2,1,1 = ζ(2, 1, 1)− 4ζ(2)g2 − (−2πi)g2,1 + 1
2g
(2,1
1,0
)− 3

12(−2πi)g
(2
1
)

+ 1
6g
(2
2
)

+ g2,1,1 .

G�2,1,1 −G∗2,1,1 = 5
2g2 + 1

8(−2πi)g
(2
1
)− 1

12g
(2
2
) 6= 0

It is still an open question for which indices s1, . . . , sl we have G�s1,...,sl = G∗s1,...,sl .
The author wants to address this question in upcoming projects.

We end this paper by a comparison of different version of the double shuffle relations.
For this we write for words u, v ∈ H1, ds(u, v) = u� v − u ∗ v ∈ H1, where the � is
again the shuffle product with respect to the alphabet {x, y} and ∗ the stuffle product
with respect to the alphabet {z1, z2, . . . }. Write H0 for the algebra of all admissible
words, i.e. H0 = 1 ·Q+ xHy, and set H2 = Q〈{z2, z3, . . . }〉 to be the span of all words
in H1 with no z1 occurring, i.e. the words for which the multiple Eisenstein series G
exists.

With this we define the numbers edsk (extended double shuffle relations of weight
k), fdsk (finite double shuffle relations of weight k) and rdsk (restricted finite double
shuffle relations of weight k) by

edsk := dimQ

〈
ds(u, v) ∈ H1 | |u|+ |v| = k, u ∈ H0, v ∈ H0 ∪ {y}〉

Q
,

fdsk := dimQ

〈
ds(u, v) ∈ H1 | |u|+ |v| = k, u, v ∈ H0〉

Q
,

rdsk := dimQ

〈
ds(u, v) ∈ H1 | |u|+ |v| = k, u, v ∈ H2〉

Q
.

For the number of admissible generators of weight k which equals 2k−2 for k > 1, i.e.
words in H0, we write genk. By Theorem 6.5 we know that the number of relations
between the G� of weight k is at least rdsk. But these relations don’t suffice to give
all relations between (shuffle) regularized multiple Eisenstein series since some of the
finite double shuffle relations which are not restricted are also fulfilled. The numbers
dk ∑

k≥0
dkX

k = 1
1−X2 −X3 ,

are the conjectured dimensions forMZk. Since it is also conjectured that edsk is the
number of all relations between MZV of weight k one expects that dk = genk − edsk,
which so far is not known. It was observed in [BT] that up to weight 7 the dimension
of

Ek =
〈
G�s1,...,sl(q) | k = s1 + · · ·+ sl, l ≥ 0, s1, . . . , sl−1 ≥ 1, sl ≥ 2

〉
Q
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seems to be the same as the dimension of grW
k (qMZ). The following table gives an

overview of these numbers up to weight 14.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

edsk 0 0 1 3 6 14 29 60 123 249 503 1012 2032 4075

fdsk 0 0 0 1 2 7 16 40 92 200 429 902 1865 3832

rdsk 0 0 0 1 1 3 5 11 19 37 65 120 209 372

genk 0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

dk
?= genk − edsk 0 1 1 1 2 2 3 4 5 7 9 12 16 21

dim Ek ≥ 0 1 2 3 6 10 18 ? ? ? ? ? ? ?

Table 2: Comparison of the number of extended-, finite-, and restricted-
double shuffle relations.

The last line give lower bounds of the dimension of the space Ek spanned by all
admissible shuffle regularized multiple Eisenstein series of weight k which are for k ≤ 5
exact since we derived all relations up to this weight.
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A short note on a conjecture of Okounkov

about a q-analogue of multiple zeta values

Henrik Bachmann, Ulf Kühn

October 12, 2015

Abstract

In [Ok] Okounkov studies a speci�c q-analogue of multiple zeta values and
makes some conjectures on their algebraic structure. In this note we want
to compare Okounkovs q-analogues to the generating function for multiple
divisor sums de�ned in [BK].

1 Introduction

Multiple zeta values are natural generalizations of the Riemann zeta values that
are de�ned for integers s1 > 1 and si ≥ 1 for i > 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1

ns1
1 . . . nsl

l

.

Because of its occurence in various �elds of mathematics and physics these real
numbers are of particular interest. In [Ok] Okounkov discusses a conjectural
connection from enumerative geometry of some Hilbert schemes to a speci�c q-
analogue Z(s1, ..., sl) of the multiple zeta-values. He denotes by qMZV the Q-
algebra generated by these. In this short note we want to discuss the connection
of these q-multiple zeta values to the algebraMD of generating functions for mul-
tiple divisor sums [s1, .., sl] de�ned by the authors in [BK]. More precisely we
have

Theorem 1.1. LetMD] = 〈 [s1, ..., sl] ∈MD |si > 1∀ i or s1 = ∅ 〉Q.
i) The sub vector spaceMD] is in fact a sub algebra ofMD.

ii) We have qMZV = MD], in particular the Q-vector space generated by the
Z(s1, ..., sl) is closed under multiplication.
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iii) We have q d
dq
Z(k) ∈ qMZV for all k ≥ 2.

The �rst two statements are merely a reformulation results implictly contained
in [BK]. The third is direct consequence of some explicit formula given in [BK].
It gives some evidence to the conjecture of Okunkov, that the operator d is a
derivation on qMZV.
Acknowledgements: We thank J. Zhao for pointing out some minor mistakes in
the �rst version of this notes.

2 q-analogues of multiple zeta values

In the following we �x a subset S ⊂ N, which we consider as the support for index
entries, i.e. we assume s1, . . . , sl ∈ S. For each s ∈ S we let Qs(t) ∈ Q[t] be a
polynomial with Qs(0) = 0 and Qs(1) 6= 0. We set Q = {Qs(t)}s∈S. A sum of the
form

ZQ(s1, . . . , sl) :=
∑

n1>···>nl>0

l∏

j=1

Qsj(q
nj)

(1− qnj)sj
(2.1)

with polynomials Qs as before, de�nes a q-analogue of a multiple zeta-value of
weight k = s1 + · · · + sl and length l. Observe only because of Qs1(0) = 0 this
de�nes an element of Q[[q]]. This notion is due to the identity

lim
q→1

(1− q)kZQ(s1, . . . , sl) =
∑

n1>···>nl>0

l∏

j=1

lim
q→1

(
Qsj(q

nj)
(1− q)sj
(1− qnj)sj

)

= Qs1(1) . . . Qsl(1) · ζ(s1, . . . , sl) .

Here we used that lim
q→1

(1− q)s/(1− qn)s = 1/ns and with the same arguments as

in [BK] Proposition 6.4, the above identity can be justi�ed for all (s1, ..., sl) with
s1 > 1. Related de�nition for q-analogues of multiple zeta values are given in [Br],
[Ta], [Zu] and [OOZ]. It is convenient to de�ne ZQ(∅) = 1 and then we denote the
vector space spanned by all these elements by

Z(Q,S) :=
〈
ZQ(s1, . . . , sl)

∣∣ l ≥ 0 and s1, . . . , sl ∈ S
〉
Q
. (2.2)

Note by the above convention we have that Q is contained in this space.

Lemma 2.1. If for each r, s ∈ S there exists numbers λj(r, s) ∈ Q such that

Qr(t) ·Qs(t) =
∑

j∈S
1≤j≤r+s

λj(r, s)(1− t)r+s−jQj(t) , (2.3)

then the vector space Z(Q,S) is a Q-algebra,

2
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Proof. We have to show that ZQ(s1, . . . , sl) · ZQ(r1, . . . , rm) ∈ Z(Q,S) and illus-
trate this in the l = m = 1 case because the higher length case will be clear after
this. Suppose there is a representation of the form (2.3) then it is

ZQ(r) · ZQ(s) =
∑

n1>0

Qr(q
n1)

(1− qn1)r
·
∑

n2>0

Qs(q
n2)

(1− qn2)s

=
∑

n1>n2>0

· · ·+
∑

n2>n1>0

· · ·+
∑

n1=n2=n>0

Qr(q
n)Qs(q

n)

(1− qn)r+s

= ZQ(r, s) + ZQ(s, r) +
∑

j∈S′
λjZQ(j) ∈ Z(S,Q) .

We give three examples of q-analogues of multiple zeta values, which are currently
considered by di�erent authors where just the second and the third will be of
interest in the rest of this note.

0) The polynomials QT
s (t) = ts−1 are considered in [Ta] and sums of the form

(2.1) with s1 > 1 and s2, . . . , sl ≥ 1 are studied there.

i) In [BK] the authors choose QE
s (t) = 1

(s−1)!tPs−1(t), where the Ps(t) are the
eulerian polynomials de�ned by

tPs−1(t)

(1− t)s =
∞∑

d=1

ds−1td

for s ≥ 0. With this de�ne for all s1, . . . , sl ∈ N

[s1, ..., sl] :=
∑

n1>...>nl>0

l∏

j=1

QE
sj
(qnj)

(1− qnj)sj
.

and set
MD = Z({QE

s (t))}s,N) .
These brackets are generating functions for multiple divisor sums and they
occur in the Fourier expansion of multiple Eisenstein series.

ii) Okounkov chooses the following polynomials in [Ok]

QO
s (t) =

{
t
s
2 s = 2, 4, 6, . . .

t
s−1
2 (1 + t) s = 3, 5, 7, . . . .

3
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and de�nes for s1, . . . , sl ∈ S = N>1

Z(s) =
∑

n1>···>nl>0

l∏

j=0

QO
sj
(qnj)

(1− qnj)sj
.

We write for the space of the Okounkov q-multiple zetas

qMZV = Z({QO
s (t)}s,N>1) .

Proposition 2.2. For the polynomials above we have

i) for r, s ∈ N and QE
j (t) =

1
(s−1)!tPs−1(t)

QE
r (t) ·QE

s (t) =
r∑

j=1

λjr,s(1− t)r+s−jQE
j (t)+

s∑

j=1

λjs,r(1− t)r+s−jQE
j (t)+Q

E
r+s(t) ,

where the coe�cient λja,b ∈ Q for 1 ≤ j ≤ a is given by

λja,b = (−1)b−1
(
a+ b− j − 1

a− j

)
Ba+b−j

(a+ b− j)! .

ii) for r, s ∈ N>1 it is

QO
r (t) ·QO

s (t) =

{
QO

r+s(X) , r, s even or r + s odd

4QO
r+s(t) + (1− t)2QO

r+s−2(t) , r, s odd .

In particular, because of Lemma 2.1, the vector spaces MD and qMZV are Q-
algebras.

Proof. In [BK] the claim i) is proven. The cases in ii) are checked easily.

Corollary 2.3. MD] = Z(
{
QE

s

}
s
,N>1) is a sub algebra ofMD.

Proof. Using Proposition 2.2 it is easy to see that it su�ces to show that

λ1a,b + λ1b,a =
(
(−1)a−1 + (−1)b−1

)(a+ b− 2

a− 1

)
Ba+b−1

(a+ b− 1)!

vanishes for a, b > 1. This term clearly vanishes when a and b have di�erent parity.
In the other case a+ b− 1 is odd and greater than 1, as a, b > 1. It is well known
that in this case Ba+b−1 = 0, from which we deduce that λ1a,b + λ1b,a = 0.

4
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Theorem 2.4. Let Z(Q,N>1) be any family of q-analogues of multiple zeta values
as in (2.2), where each Qs(t) ∈ Q is a polynomial with degree at most s− 1, then

Z(Q,N>1) =MD] .

and therefore all such families of q-analogues of multiple zeta values are Q-sub
algebras ofMD. In particular qMZV =MD].

Proof. To proof the �rst equality it is su�cient to show that for each s > 1 there
are numbers λj ∈ Q with 2 ≤ j ≤ s such that

Qs(t)

(1− t)s =
s∑

j=2

λj
QE

j (t)

(1− t)j .

The space of polynomials with at most degree s − 1 and no constant term has
dimension s − 1. For 2 ≤ j ≤ s the polynomials (1 − t)s−jQ′j(t) are all linear
independent since Q′(1) 6= 1 and therefore such λj exist. The second statement
follows directly from the de�nition of qMZV.

The following proposition allows one to write an arbitrary element in Z(Q,N>1)
as an linear combination of [s1, . . . , sl] ∈MD].

Proposition 2.5. Assume k ≥ 2. For 1 ≤ i, j ≤ k−1 de�ne the numbers bki,j ∈ Q
by

k−1∑

j=1

bki,j
j!
tj :=

(
t+ k − 1− i

k − 1

)
.

With this it is for 1 ≤ i ≤ k − 1 and QE
j (t) =

1
(j−1)!tPj(t)

ti =
k∑

j=2

bki,j−1(1− t)k−jQE
j (t) .

Proof. We want to show that

ti

(1− t)k =
k−1∑

j=1

bki,j
j!

tPj(t)

(1− t)j+1

By the de�nition of the Eulerian Polynomials it is

k−1∑

j=1

bki,j
j!

tPj(t)

(1− t)j+1
=

k−1∑

j=1

bki,j
j!

∑

d>0

djtd

=
∑

d>0

(
k−1∑

j=1

bki,j
j
dj

)
td

=
∑

d>0

(
d− i+ k − 1

k − 1

)
td

5
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The claim now follows directly from the easy to prove formula

1

(1− t)k =
∑

n≥0

(
n+ k − 1

k − 1

)
tn .

We give some examples how to write elements in qMZV as linear combinations of
elements inMD. From the proposition we deduce for the length one case for all
k > 0

Z(2k) =
2k∑

j=2

b2kk,j−1[j] and Z(2k + 1) =
2k+1∑

j=2

(
b2k+1
k,j−1 + b2k+1

k+1,j−1
)
[j] .

Clearly this also su�ces to give linear combinations in higher length.

Example 2.6. We give some examples

Z(2) = [2] , Z(3) = 2[3] ,

Z(4) = [4]− 1

6
[2] , Z(5) = 2[5]− 1

6
[3] ,

Z(6) = [6]− 1

4
[4] +

1

30
[2] , Z(7) = 2[7]− 1

3
[5] +

1

45
[3] ,

Z(2, 2) = [2, 2] , Z(2, 4) = [2, 4]− 1

6
[2, 2] .

The q-expansion of modular forms are well known to give rise to q-analogues of
Riemann zeta values. Let us denote by MQ = Q[G4, G6] and M̃Q = Q[G2, G4, G6]
the ring of modular and quasi-modular forms, where the Eisenstein series G2, G4

and G6 are given by

G2 = −
1

24
+ [2] , G4 =

1

1440
+ [4] , G6 = −

1

60480
+ [6] .

We clearly have the following inclusions of Q-algebras

MQ ⊂ M̃Q ⊂ qMZV ⊂MD .

where the second inclusion follows from

G2 = −
1

24
+ Z(2) ,

G4 =
1

1440
+ Z(2) +

1

6
Z(4) ,

G6 = −
1

60480
+ Z(6) +

1

4
Z(4) +

1

120
Z(2) .

6
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In the theory of modular forms the operator d := q d
dq

plays an important role and

it is a well known fact that M̃Q is closed under d. In [BK] the authors showed the
following

Theorem 2.7. The operator d is a derivation onMD that is compatible with the
�ltrations onMD given by the weight and the length.

In [Ok] the following conjecture is stated by Okounkov

Conjecture 2.8. The operator d is a derivation on qMZV.

For the derivative of a length one generating series of multiple divisor sums we
have several identies. These will be used to make the following result which gives
some evidence for the conjecture above.

Proposition 2.9. It is dZ(k) ∈ qMZV for all k ≥ 2.

Proof. In [BK] Theorem 3.5 the authors prove the following representation of the
derivative d[k − 2]

(
k − 2

s1 − 1

)
d[k − 2]

k − 2
= [s1] · [s2]− [s1, s2]− [s2, s1]

+

(
k − 2

s1 − 1

)
[k − 1]−

∑

a+b=k
a>s1

((
a− 1

s1 − 1

)
+

(
a− 1

s2 − 1

)
− δa,s2

)
[a, b] .

where s1, s2 > 0 can be choosen arbitrary such that k = s1 + s2. First divide both
sides by

(
k−2
s1−1
)
(k−2)−1. Whenever k ≥ 4 all elements on the right of the resulting

equation belong toMD] except for the term with [k− 1, 1]. By direct calculation
one obtains that for s1 = 1 and s2 = k − 1 the coe�cient of [k − 1, 1] is −(k − 2)
and for s2 = 2 and s2 = k−2 it is −2(k−2) and therefore d[k−2] can be expressed
as an element inMD].

Since d is a derivation it satis�es the Leibniz rule. Therefore the above proposition
allows us to derive further identites, e.g.

dZ(k, ..., k), d (Z(k1, k2) + Z(k2, k1)) ∈ qMZV .
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Example 2.10. Some examples of representations of dZ(s) in qMZV.

dZ(2) = 3Z(4) + Z(2)− Z(2, 2) ,
dZ(3) = 5Z(5) + Z(3)− 4Z(3, 2)− 6Z(2, 3) ,

dZ(4) = 10Z(6) + 2Z(4) + 4Z(4, 2)− 8Z(2, 4)− 6Z(3, 3) ,

dZ(2, 2) = −6Z(6)− 12Z(2, 2, 2)− 15Z(4, 2) + 3Z(2, 4) + 9Z(3, 3) ,

dZ(3, 3) = 4Z(8)− 12Z(2, 3, 3)− 10Z(3, 2, 3)− 8Z(3, 3, 2)

+ Z(3, 5)− Z(5, 3) + 8Z(6, 2) + 3Z(3, 3) ,

dZ(2, 2, 2) = −24Z(2, 2, 2, 2) + 9Z(2, 3, 3) + 9Z(3, 2, 3) + 6Z(3, 3, 2)

− 15Z(4, 2, 2)− 15Z(2, 4, 2) + 3Z(2, 2, 4)− 6Z(2, 6) + 6Z(5, 3)− 6Z(6, 2) .

At the end we give some conjectured representations of dZ(s) in qMZV coming
from numerical experiments and which where checked for the �rst 200 coe�cients
but which should be also provable by using the results in [BK].

dZ(2, 3) = 2Z(7)− 16Z(2, 2, 3)− 4Z(2, 3, 2)− 8Z(3, 2, 2)

− 15Z(4, 3)− 4Z(3, 4) + 4Z(5, 2) + 5Z(2, 5) + Z(3, 2)− Z(2, 3) ,
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Multiplen Eisensteinreihen, die einen Zusammenhang
zwischen Multiplen Zeta-Werten und Modulformen liefern. Multiple Zeta-Werte sind Ve-
rallgemeinerungen der Riemansschen Zeta-Werte, die eine Vielzahl von Q-linearen Rela-
tionen erfüllen. In ähnlicher Weise sind die von Gangl, Kaneko und Zagier eingeführten
Multiplen Eisensteinreihen Verallgemeinerungen der klassischen Eisensteinreihen. Multiple
Eisensteinreihen besitzen eine Fourierentwicklung bestehend aus Produkten von Multiplen
Zeta-Werten und bestimmten q-Reihen, die als Brackets bezeichnet werden.
Aus Konvergenzgründen gibt es mehr Multiple Zeta-Werte als Multiple Eisensteinreihen.
Das Ziel dieser Arbeit war es daher, die bisher bekannte Definition durch eine geeignete
Regularisierung Multipler Eisensteinreihen zu erweitern. Dafür wird die Fourierentwick-
lung dieser Reihen genauer untersucht und insbesondere die Algebra Struktur der dort
auftretenden Brackets betrachtet.
Es wird gezeigt, dass die Algebra-Struktur dieser Brackets ähnlich ist zu der von Multiplen
Zeta-Werten und dass der Raum aller Brackets abgeschlossen ist under dem Operator q d

dq
.

Ähnlich zu den Multiplen Zeta-Werten erfüllen diese q-Reihen auch viele Q-lineare Rela-
tionen. Diese Relationen können auf eine rein kombinatorische Art beschrieben werden,
indem die Brackets zu sogenannten Bi-Brackets verallgemeinert werden.
Es wird gezeigt, dass die Fourierentwicklung Multipler Eisensteinreihen eine direkte Verbindung
zu dem Koprodukt von formalen Iterierten Integralen besitzt. Mit Hilfe der Algebra Struk-
tur der Bi-Brackets und diesem Zusammenhang werden zwei Arten von regularisierten
Multiplen Eisensteinreihen angegeben.
Während der Untersuchung der Brackets stellt sich außerdem heraus, dass diese q-Reihen
auch als q-Analogs von Multiplen zeta-Werten betrachtet werden können. Dies liefert,
neben den Multiplen Eisensteinreihen, eine weitere direkte Verbindung von Modulformen
zu Multiplen Zeta-Werten.
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Abstract

This thesis studies a specific connection of multiple zeta values and modular forms given
by multiple Eisenstein series. Multiple zeta values are real numbers being natural general-
izations of the Riemann zeta values fulfilling a large class of Q-linear relations. In a similar
way multiple Eisenstein series are a generalizations of classical Eisenstein series studied
by Gangl, Kaneko and Zagier. These functions have a Fourier expansions that consists of
products of multiple zeta values and certain q-series, called brackets.
Due to convergence reasons there are more multiple zeta values than multiple Eisenstein
series. The goal of this thesis was to give an extended definition of regularized multiple
Eisenstein series by studying the Fourier expansion of multiple Eisenstein series and in
particular the algebraic structure of the brackets.
It is shown that the space of brackets have a similar algebraic structure as the space of
multiple zeta values and that it is closed under the differential operator q d

dq
. Similar to

multiple zeta values the brackets fulfill a lot of Q-linear relations. These linear relations
can be described in a combinatorial way by extending the space of brackets to a larger
class of q-series called bi-brackets.
Using this algebraic structure together with a connection of the coproduct of formal iterated
intgegrals to the Fourier expansion of multiple Eisenstein series, we define two types of
regularized multiple Eisenstein series.
Besides their appearance in the Fourier expansion, the brackets can also be seen as a q-
analogue of multiple zeta values. This gives another direct connection of modular forms to
multiple zeta values, since the space of modular forms is contained in the space of brackets.
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