A simultaneous q-analogue of finite and symmetrized multiple zeta values

Henrik Bachmann

Nagoya University \& MPIM Bonn

joint work with Y. Takeyama and K. Tasaka
CIRM, Luminy, 26th June 2017
www.henrikbachmann.com

A simultaneous q-analogue of finite and symmetrized multiple zeta values

A simultaneous q-analogue of finite and symmetrized multiple zeta values

A simultaneous q-analogue of finite and symmetrized multiple zeta values

A simultaneous q-analogue of finite and symmetrized multiple zeta values

A simultaneous q-analogue of finite and symmetrized multiple zeta values

Overview

Overview

Overview

$n=p$ prime $\bmod \left(1-\zeta_{p}\right)$ $\zeta_{\mathcal{A}}(\mathbf{k})$

$$
\begin{gathered}
q=\zeta_{n} \\
z_{n}(\mathbf{k}) \in \mathbb{Q}\left(\zeta_{n}\right)
\end{gathered}
$$

Overview

Plan of the talk

(0) MZV \& qMZV

$z_{n}(\mathbf{k}) \quad 1$

Kaneko-Zagier
Conjecture

$\zeta_{\mathcal{S}}(\mathbf{k})$

(0) Introduction - Multiple zeta(-star) values

Definition

For $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1, \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ define the multiple zeta value

$$
\zeta(\mathbf{k})=\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{R}
$$

and the multiple zeta-star value

$$
\zeta^{\star}(\mathbf{k})=\zeta^{\star}\left(k_{1}, \ldots, k_{r}\right)=\sum_{m_{1} \geq \cdots \geq m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{R} .
$$

By r we denote its depth and $\mathrm{wt}(\mathbf{k})=k_{1}+\cdots+k_{r}$ will be called its weight.

- The product of two $\mathrm{MZ}(\mathrm{S}) \mathrm{V}$ can be expressed as a linear combination of $\mathrm{MZ}(\mathrm{S}) \mathrm{V}$ with the same weight (harmonic product). e.g:

$$
\begin{aligned}
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right) & =\zeta\left(k_{1}, k_{2}\right)+\zeta\left(k_{2}, k_{1}\right)+\zeta\left(k_{1}+k_{2}\right), \\
\zeta^{\star}\left(k_{1}\right) \cdot \zeta^{\star}\left(k_{2}\right) & =\zeta^{\star}\left(k_{1}, k_{2}\right)+\zeta^{\star}\left(k_{2}, k_{1}\right)-\zeta^{\star}\left(k_{1}+k_{2}\right) .
\end{aligned}
$$

(0) Introduction- q-analogues of multiple zeta values

Definition

For $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1$ and $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ define the q-multiple zeta value by

$$
\zeta\left(k_{1}, \ldots, k_{r} ; q\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{q^{\left(k_{1}-1\right) m_{1}} \cdots q^{\left(k_{r}-1\right) m_{r}}}{\left[m_{1}\right]_{q}^{k_{1}} \cdots\left[m_{r}\right]_{q}^{k_{r}}} \in \mathbb{Q}[[q]]
$$

where $[m]_{q}=\frac{1-q^{m}}{1-q}=1+q+\cdots+q^{m-1}$.

- They satisfy: $\lim _{q \rightarrow 1} \zeta\left(k_{1}, \ldots, k_{r} ; q\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)$.
- The harmonic product version for these objects reads

$$
\begin{aligned}
\zeta\left(k_{1} ; q\right) \cdot \zeta\left(k_{2} ; q\right)= & \zeta\left(k_{1}, k_{2} ; q\right)+\zeta_{q}\left(k_{2}, k_{1} ; q\right)+\zeta_{q}\left(k_{1}+k_{2} ; q\right) \\
& +(1-q) \zeta_{q}\left(k_{1}+k_{2}-1 ; q\right)
\end{aligned}
$$

- The product structures of ζ, ζ^{\star} and $\zeta(\ldots ; q)$ are all examples of Quasi shuffle products (See M. Hoffmans talk on Friday).

Definition

- For $n \geq 1$ and an index set $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ with $k_{1}, \ldots, k_{r} \geq 1$ we define

$$
z_{n}(\mathbf{k} ; q)=z_{n}\left(k_{1}, \ldots, k_{r} ; q\right)=\sum_{n>m_{1}>\cdots>m_{r}>0} \frac{q^{\left(k_{1}-1\right) m_{1}} \ldots q^{\left(k_{r}-1\right) m_{r}}}{\left[m_{1}\right]_{q}^{k_{1}} \cdots\left[m_{r}\right]_{q}^{k_{r}}}
$$

and similarly $z_{n}^{\star}(\mathbf{k} ; q)$ by summing over $n>m_{1} \geq \cdots \geq m_{r}>0$.

- Let ζ_{n} a primitive n-th root of unity and write for $q=\zeta_{n}$

$$
z_{n}(\mathbf{k}):=z_{n}\left(\mathbf{k} ; \zeta_{n}\right) \in \mathbb{Q}\left(\zeta_{n}\right)
$$

Remark

Clearly the value $z_{n}\left(\mathbf{k} ; \zeta_{n}\right) \in \mathbb{C}$ depends on the choice of ζ_{n}. But all the results we will present in the following are true for all ζ_{n} and we therefore just write $z_{n}(\mathbf{k})$.

(1) z_{n}-Depth one

In depth one we have

$$
\sum_{k=1}^{\infty} z_{n}(k)\left(\frac{x}{1-\zeta_{n}}\right)^{k}=\frac{n x}{1-(1+x)^{n}}+1
$$

and therefore in particular $z_{n}(k) \in\left(1-\zeta_{n}\right)^{k} \mathbb{Q}$.

$$
\begin{aligned}
& z_{n}(1)=\frac{n-1}{2}\left(1-\zeta_{n}\right), \quad z_{n}(2)=-\frac{n^{2}-1}{12}\left(1-\zeta_{n}\right)^{2}, \\
& z_{n}(3)=\frac{n^{2}-1}{24}\left(1-\zeta_{n}\right)^{3}, \quad z_{n}(4)=\frac{\left(n^{2}-1\right)\left(n^{2}-19\right)}{720}\left(1-\zeta_{n}\right)^{4} .
\end{aligned}
$$

(1) z_{n}-Degenerated Bernoulli numbers

Carlitz (1956) introduced the degenerated Bernoulli numbers $b_{k}(n) \in \mathbb{Q}\left[\frac{1}{n}\right]$

$$
\sum_{k=0}^{\infty} b_{k}(n) \frac{x^{k}}{k!}=\frac{x}{\left(1+\frac{x}{n}\right)^{n}-1}
$$

These numbers can be seen as a degeneration of the Bernoulli numbers

$$
\lim _{n \rightarrow \infty} b_{k}(n)=B_{k}, \quad \sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!}=\frac{x}{e^{x}-1}
$$

For even $k \geq 2$ it is

$$
\zeta(k)=-\frac{B_{k}}{k!} \frac{(-2 \pi i)^{k}}{2} .
$$

Similarly we have (for all $n, k \geq 1$)

$$
z_{n}(k)=-\frac{b_{k}(n)}{k!}\left(n\left(1-\zeta_{n}\right)\right)^{k} .
$$

(1) z_{n}-Harmonic product

With the same calculation as for q-analogues one checks that for $a, b \geq 1$
$z_{n}(a) \cdot z_{n}(b)=z_{n}(a, b)+z_{n}(b, a)+z_{n}(a+b)+\left(1-\zeta_{n}\right) z_{n}(a+b-1)$.
In particular for $a=1$ it is

$$
z_{n}(1) \cdot z_{n}(b)=z_{n}(1, b)+z_{n}(b, 1)+z_{n}(b+1)+\left(1-\zeta_{n}\right) z_{n}(b) .
$$

But since $z_{n}(1)=\frac{n-1}{2}\left(1-\zeta_{n}\right)$ we obtain for $n \neq 3$

$$
\left(1-\zeta_{n}\right) z_{n}(b)=\frac{2}{n-3}\left(z_{n}(1, b)+z_{n}(b, 1)+z_{n}(b+1)\right),
$$

which gives

$$
\begin{aligned}
z_{n}(a) \cdot z_{n}(b)= & z_{n}(a, b)+z_{n}(b, a)+z_{n}(a+b) \\
& +\frac{2}{n-3}\left(z_{n}(1, a+b-1)+z_{n}(a+b-1,1)+z_{n}(a+b)\right) .
\end{aligned}
$$

(1) z_{n} - Harmonic product and z_{n} vs z_{n}^{\star}

Lemma

For $n \gg k$ and all index sets \mathbf{k} and $m \geq 0$ there exists $\alpha_{\mathbf{k}^{\prime}, n} \in \mathbb{Q}$ for index sets \mathbf{k}^{\prime} with

$$
\left(1-\zeta_{n}\right)^{m} z_{n}(\mathbf{k})=\sum_{\mathrm{wt}\left(\mathbf{k}^{\prime}\right)=\mathrm{wt}(\mathbf{k})+m} \alpha_{\mathbf{k}^{\prime}, n} \cdot z_{n}\left(\mathbf{k}^{\prime}\right)
$$

Corollary

- The product $z_{n}\left(\mathbf{k}_{1}\right) \cdot z_{n}\left(\mathbf{k}_{2}\right)$ can be written as a linear combination of $z_{n}\left(\mathbf{k}_{3}\right)$ with $\mathrm{wt}\left(\mathbf{k}_{3}\right)=\mathrm{wt}\left(\mathbf{k}_{1}\right)+\mathrm{wt}\left(\mathbf{k}_{2}\right)$.
- Every z_{n}^{\star} can be written in terms of z_{n} and vice versa.

The second statement in depth 2 follows for example from

$$
z_{n}^{\star}(a, b)=z_{n}(a, b)+z_{n}(a+b)+\left(1-\zeta_{n}\right) z_{n}(a+b-1)
$$

In the following we will just focus on linear relations between z_{n}^{\star}.

(1) z_{n}-Hofiman dual \mathbf{k}^{\vee}

Definition (rough)

Every index set $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ can be written as

$$
\left(k_{1}, \ldots, k_{r}\right)=(\overbrace{1+\cdots+1}^{k_{1}}, \ldots, \overbrace{1+\cdots+1}^{k_{r}}) .
$$

Define the Hoffman dual \mathbf{k}^{\vee} by interchanging, and $\boldsymbol{+}$ in this representation.
Example The Hoffman dual of $\mathbf{k}=(3,2)$ is given by

$$
\mathbf{k}^{\vee}=(3,2)^{\vee}=(1+1+1,1+1)^{\vee}=(1,1,1+1,1)=(1,1,2,1)
$$

(1) z_{n}-Duality

For an index set $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ we define its reverse by $\overline{\mathbf{k}}=\left(k_{r}, \ldots, k_{1}\right)$.

Theorem (B., Takeyama, Tasaka)

For all $n \geq 1$ and all index sets $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ we have

$$
z_{n}^{\star}(\mathbf{k})=(-1)^{\mathrm{wt}(\mathbf{k})+1} z_{n}^{\star}\left(\overline{\mathbf{k}^{\vee}}\right) .
$$

Example: Since $(3,2)^{\vee}=(1,1,2,1)$ it is

$$
z_{n}^{\star}(3,2)=(-1)^{5+1} z_{n}^{\star}(\overline{1,1,2,1})=z_{n}^{\star}(1,2,1,1) .
$$

(1) z_{n}-Linear relations

The duality together with the harmonic product gives a large family of algebraic \& linear relations between z_{n}^{\star} or z_{n}.

Example

Using duality and the harmonic product one can show that

$$
2 z_{n}^{\star}(4,1)+z_{n}^{\star}(3,2)=\frac{\left(n^{4}-1\right)(n+5)}{1440}\left(1-\zeta_{n}\right)^{5}+\frac{n+2}{3}\left(1-\zeta_{n}\right)^{2} z_{n}^{\star}(2,1)
$$

(Of course the right-hand side could also be written as a linear combination of z_{n}^{\star}.)

Observation

For a fixed n and a fixed weight $1 \leq k<n$, all linear relations between $z_{n}^{\star}(\mathbf{k})$ (resp. $z_{n}(\mathbf{k})$) in weight $\mathrm{wt}(\mathbf{k})=k$ seem to follow from the duality and the harmonic product.

- For a fixed n, the $z_{n}(\mathbf{k})$ are elements in $\mathbb{Q}\left(\zeta_{n}\right)$.
- They satisfy various linear relations, which conjecturally can all be described using duality and the harmonic product.
- We also have results on Sum formulas / Ohno-Zagier relations / etc.
- There exist explicit formulas for $z_{n}(k, \ldots, k) \in\left(1-\zeta_{n}\right)^{k+\cdots+k} \cdot \mathbb{Q}$.

We now want to give the connection to finite multiple zeta values.

(2) Finite MZV - Definition

Definition

For an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{N}^{r}$ the finite multiple zeta value are defined by

$$
\zeta_{\mathcal{A}}(\mathbf{k})=\left(\sum_{p>m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \bmod p\right)_{p \text { pime }} \in \mathcal{A},
$$

where \mathcal{A} is given by

$$
\mathcal{A}=\prod_{p \text { prime }} \mathbb{F}_{p} / \underset{p \text { prime }}{\bigoplus} \mathbb{F}_{p}
$$

Also define $\zeta_{\mathcal{A}}^{\star}(\mathbf{k})$ by using $p>m_{1} \geq \cdots \geq m_{r}>0$ in the definition. Denote by $\mathcal{Z}_{\mathcal{A}} \subset \mathcal{A}$ the \mathbb{Q}-vector space spanned by all $\zeta_{\mathcal{A}}(\mathbf{k})$.

- \mathcal{A} and $\mathcal{Z}_{\mathcal{A}}$ are \mathbb{Q}-algebras.
- Satisfy the same harmonic product formula as MZ(S)V.

(2) Finite MZV - Connection to z_{n}

For this part we will focus on $n=p$ prime.

Lemma

For p prime it is $z_{p}(\mathbf{k}) \in \mathbb{Z}\left[\zeta_{p}\right]$.
Proof: This follows from the fact that the q-integer $[m]_{q}$ at $q=\zeta_{p}$ is a cyclotomic unit, when m is coprime with p.

In this case there exists a t with $m \cdot t \equiv 1 \bmod p$ and therefore

$$
\frac{1}{[m]_{\zeta_{p}}}=\frac{1-\zeta_{p}}{1-\zeta_{p}^{m}}=\frac{1-\zeta_{p}^{t m}}{1-\zeta_{p}^{m}}=1+\zeta_{p}^{m}+\cdots+\zeta_{p}^{(t-1) m} \in \mathbb{Z}\left[\zeta_{p}\right]
$$

(2) Finite MZV - Connection to z_{n}

Let $\mathfrak{p}=\left(1-\zeta_{p}\right)$ be the prime ideal of $\mathbb{Z}\left[\zeta_{p}\right]$ generated by $1-\zeta_{p}$.

Lemma

- It holds that $\mathbb{Z}\left[\zeta_{p}\right] / \mathfrak{p}=\mathbb{F}_{p}$.
- For $p>m>0$ we have $[m]_{\zeta_{p}} \equiv m \bmod \mathfrak{p}$.

From this we get

Theorem (B., Takeyama, Tasaka)

For any primitive root of unity ζ_{p}, we have

$$
\left(z_{p}(\mathbf{k}) \quad \bmod \mathfrak{p}\right)_{p}=\zeta_{\mathcal{A}}(\mathbf{k})
$$

and

$$
\left(z_{p}^{\star}\left(\mathbf{k} ; \zeta_{p}\right) \quad \bmod \mathfrak{p}\right)_{p}=\zeta_{\mathcal{A}}^{\star}(\mathbf{k}) .
$$

In particular since $z_{n}(k) \in\left(1-\zeta_{n}\right)^{k} \cdot \mathbb{Q}$ it is $\zeta_{\mathcal{A}}(k)=0$.

(2) Finite MZV - Linear relations from z_{n}

We saw before that for all p

$$
2 z_{p}^{\star}(4,1)+z_{p}^{\star}(3,2)=\frac{\left(p^{4}-1\right)(p+5)}{1440}\left(1-\zeta_{p}\right)^{5}+\frac{p+2}{3}\left(1-\zeta_{p}\right)^{2} z_{p}^{\star}(2,1)
$$

The right-hand side vanishes for $p>5$ in $\mathbb{Z}\left[\zeta_{p}\right] / \mathfrak{p}$ and therefore we obtain the relation

$$
2 \zeta_{\mathcal{A}}^{\star}(4,1)+\zeta_{\mathcal{A}}^{\star}(3,2)=0
$$

(2) Finite MZV - Duality

Similar to the z_{n} the finite MZV also satisfy the duality relation

Theorem (Hoffman)

For all index sets \mathbf{k} it is

$$
\zeta_{\mathcal{A}}^{\star}(\mathbf{k})=-\zeta_{\mathcal{A}}^{\star}\left(\mathbf{k}^{\vee}\right) .
$$

This follows from

$$
z_{n}^{\star}(\mathbf{k})=(-1)^{\mathrm{wt}(\mathbf{k})+1} z_{n}^{\star}\left(\overline{\mathbf{k}^{\vee}}\right)
$$

and the easy to check relation $\zeta_{\mathcal{A}}^{\star}(\mathbf{k})=(-1)^{\mathrm{wt}(\mathbf{k})} \zeta_{\mathcal{A}}^{\star}(\overline{\mathbf{k}})$.

(3) Symmetrized MZV - Regularized multiple zeta values

Definition

For $k_{1}, \ldots, k_{r} \geq 1$ denote by $R_{k_{1}, \ldots, k_{r}}(T) \in \mathbb{R}[T]$ the regularized multiple zeta values, which are uniquely determined by

- $R_{1}(T)=T$,
- For $k_{1} \geq 2$ it is $R_{k_{1}, \ldots, k_{r}}(T)=\zeta\left(k_{1}, \ldots, k_{r}\right)$,
- Their product can be expressed by the harmonic product formula.

Example: Since $R_{1}(T) \cdot R_{2}(T)=R_{1,2}(T)+R_{2,1}(T)+R_{3}(T)$ it is

$$
R_{1,2}(T)=\zeta(2) T-\zeta(2,1)-\zeta(3)
$$

(3) Symmetrized MZV - Definition

Definition

For an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{N}^{r}$ define the symmetrized multiple zeta values by

$$
\zeta_{\mathcal{S}}(\mathbf{k})=\sum_{a=0}^{r}(-1)^{k_{1}+\cdots+k_{a}} R_{k_{a}, k_{a-1}, \ldots, k_{1}}(T) R_{k_{a+1}, k_{a+2}, \ldots, k_{r}}(T)
$$

and

$$
\zeta_{\mathcal{S}}^{\star}(\mathbf{k})=\zeta_{\mathcal{S}}^{\star}\left(k_{1}, \ldots, k_{r}\right)=\sum_{\substack{\square \text { is either a comma ',' } \\ \text { or a plus '+' }}} \zeta_{\mathcal{S}}\left(k_{1} \square \cdots \square k_{r}\right)
$$

- One can check that the definition of $\zeta_{\mathcal{S}}$ is independent of T.
- In depth $r=1$ it is

$$
\zeta_{\mathcal{S}}(k)=R_{k}(T)+(-1)^{k} R_{k}(T)=\left\{\begin{array}{ll}
2 \zeta(k) & , k \text { is even } \\
0 & , k \text { is odd }
\end{array} .\right.
$$

(3) Symmetrized MZV - Connection to z_{n} in depth one

- Now we want to give the connection of z_{n} to the symmetrized multiple zeta values.
- For this part we will fix the primitive n-th root of unity $\zeta_{n}=e^{\frac{2 \pi i}{n}}$.

We saw earlier that in depth one we have for all $k, n \geq 1$

$$
z_{n}(k)=-\frac{b_{k}(n)}{k!}\left(n\left(1-\zeta_{n}\right)\right)^{k}
$$

Notice that

$$
\lim _{n \rightarrow \infty} n\left(1-\zeta_{n}\right)=\lim _{n \rightarrow \infty} n\left(-\frac{2 \pi i}{n}-\frac{1}{2}\left(\frac{2 \pi i}{n}\right)^{2}-\ldots\right)=-2 \pi i
$$

With $\lim _{n \rightarrow \infty} b_{k}(n)=B_{k}$ and $\zeta(k)=-\frac{B_{k}}{k!} \frac{(-2 \pi i)^{k}}{2}$ for even k we obtain

$$
\lim _{n \rightarrow \infty} z_{n}(k)= \begin{cases}-\pi i & (k=1) \\ 2 \zeta(k) & (k \geq 2, k \text { is even }) \\ 0 & (k \geq 3, k \text { is odd })\end{cases}
$$

In particular $\operatorname{Re}\left(\lim _{n \rightarrow \infty} z_{n}(k)\right)=\zeta_{\mathcal{S}}(k)$.

(3) Symmetrized MZV - Limit $n \rightarrow \infty$ and $\xi(\mathbf{k})$

Theorem (B., Takeyama, Tasaka)

For any index set $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ the limit $\lim _{n \rightarrow \infty} z_{n}\left(\mathbf{k} ; e^{\frac{2 \pi i}{n}}\right)$ exists and we set

$$
\xi(\mathbf{k}):=\lim _{n \rightarrow \infty} z_{n}\left(\mathbf{k} ; e^{\frac{2 \pi i}{n}}\right) \in \mathbb{C}
$$

and

$$
\xi^{\star}(\mathbf{k}):=\lim _{n \rightarrow \infty} z_{n}^{\star}\left(\mathbf{k} ; e^{\frac{2 \pi i}{n}}\right) \in \mathbb{C} .
$$

As we saw before in depth one it is

$$
\xi(k)= \begin{cases}-\pi i & (k=1) \\ 2 \zeta(k) & (k \geq 2, k \text { is even }) \\ 0 & (k \geq 3, k \text { is odd })\end{cases}
$$

(3) Symmetrized MZV - Limit $n \rightarrow \infty$ and $\xi(\mathbf{k})$

Theorem (B., Takeyama, Tasaka)

For any index set $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ we have

$$
\xi(\mathbf{k})=\sum_{a=0}^{r}(-1)^{k_{1}+\cdots+k_{a}} R_{k_{a}, k_{a-1}, \ldots, k_{1}}\left(\frac{\pi i}{2}\right) R_{k_{a+1}, k_{a+2}, \ldots, k_{r}}\left(-\frac{\pi i}{2}\right)
$$

From this explicit expression we obtain

Theorem (B., Takeyama, Tasaka)

For any index set $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ we have

$$
\operatorname{Re}(\xi(\mathbf{k})) \equiv \zeta_{\mathcal{S}}(\mathbf{k}) \quad \bmod \zeta(2) \mathcal{Z}
$$

There are similar statements for $\xi^{\star}(\mathbf{k}):=\lim _{n \rightarrow \infty} z_{n}^{\star}\left(\mathbf{k} ; e^{\frac{2 \pi i}{n}}\right)$ and $\zeta_{\mathcal{S}}^{\star}$.

(3) Symmetrized MZV - Linear relations

We have seen before that for all n

$$
2 z_{n}^{\star}(4,1)+z_{n}^{\star}(3,2)=\frac{\left(n^{4}-1\right)(n+5)}{1440}\left(1-\zeta_{n}\right)^{5}+\frac{n+2}{3}\left(1-\zeta_{n}\right)^{2} z_{n}^{\star}(2,1)
$$

Taking the limit $n \rightarrow \infty$ we obtain

$$
2 \xi_{n}^{\star}(4,1)+\xi_{n}^{\star}(3,2)=\frac{(-2 \pi i)^{5}}{1440}
$$

and in particular

$$
2 \zeta_{\mathcal{S}}^{\star}(4,1)+\zeta_{\mathcal{S}}^{\star}(3,2) \equiv 0 \quad \bmod \zeta(2) \mathcal{Z}
$$

(3) Symmetrized MZV - Duality

From $z_{n}^{\star}(\mathbf{k})=(-1)^{\mathrm{wt}(\mathbf{k})+1} z_{n}^{\star}\left(\overline{\mathbf{k}^{\mathrm{v}}}\right)$ we also obtain duality for ξ^{\star} and $\zeta_{\mathcal{\mathcal { S }}}^{\star}$

Theorem (B., Takeyama, Tasaka)

For any index \mathbf{k}, the following relations hold.

- $\xi^{\star}\left(\mathbf{k}^{\vee}\right)=-\overline{\xi^{\star}(\mathbf{k})}$.
- $\xi^{\star}(\overline{\mathbf{k}})=(-1)^{\mathrm{wt}(\mathbf{k})} \overline{\xi^{\star}(\mathbf{k})}$,

Here the bar on the right-hand sides denotes complex conjugation.
Taking the real part gives:

Theorem (B., Takeyama, Tasaka)

For any index \mathbf{k} we have

$$
\zeta_{\mathcal{S}}^{\star}(\mathbf{k}) \equiv-\zeta_{\mathcal{S}}^{\star}\left(\mathbf{k}^{\vee}\right) \quad \text { and } \quad \zeta_{\mathcal{S}}^{\star}(\mathbf{k}) \equiv(-1)^{\mathrm{wt}(\mathbf{k})} \zeta_{\mathcal{S}}^{\star}(\overline{\mathbf{k}}) \bmod \zeta(2) \mathcal{Z}
$$

(4) Z(k) \& Kaneko-Zagier Conjecture-Motivation

So far we considered z_{n} for a fixed n.

Observation

For a fixed weight k, the number of linear relations between $z_{n}(\mathbf{k})$ with $\mathrm{wt}(\mathbf{k})=k$ seem to be the same for all $n \gg k$.

We therefore want to introduce now a "global object" $Z(\mathbf{k})$.

(4) Z(k) \& Kaneko-Zagier Conjecture - Definition

We will now collect for all prime p the values z_{p} and define for this

$$
\mathcal{A}^{\mathrm{cyc}}=\left(\prod_{p: \text { prime }} \mathbb{Z}\left[\zeta_{p}\right] /(p)\right) /\left(\bigoplus_{p: \text { prime }} \mathbb{Z}\left[\zeta_{p}\right] /(p)\right)
$$

- $\mathcal{A}^{\text {cyc }}$ is a \mathbb{Q}-algebra.
- It is independet of the choice of ζ_{p}, since $\mathbb{Z}\left[\zeta_{p}\right]=\mathbb{Z}\left[\zeta_{p}^{\prime}\right]$ for any other p-th primitive root of unity ζ_{p}^{\prime}.

Definition

For an index $\mathbf{k} \in \mathbb{N}^{r}$ we define

$$
Z(\mathbf{k})=\left(z_{p}(\mathbf{k}) \quad \bmod p\right)_{p} \in \mathcal{A}^{\mathrm{cyc}}
$$

and

$$
Z^{\star}(\mathbf{k})=\left(z_{p}^{\star}(\mathbf{k}) \quad \bmod p\right)_{p} \in \mathcal{A}^{\mathrm{cyc}}
$$

(4) $Z(\mathbf{k})$ \& Kaneko-Zagier Conjecture-Linear relations \& Dimension

Let $\mathcal{Z}_{k}^{\text {cyc }}$ be the \mathbb{Q}-vector space spanned by all $Z(\mathbf{k})$ of weight k.

Proposition

- The product $Z\left(\mathbf{k}_{1}\right) \cdot Z\left(\mathbf{k}_{2}\right)$ can be written as a linear combination of $Z\left(\mathbf{k}_{3}\right)$ with $\mathrm{wt}\left(\mathbf{k}_{3}\right)=\mathrm{wt}\left(\mathbf{k}_{1}\right)+\mathrm{wt}\left(\mathbf{k}_{2}\right)$.
- For any index \mathbf{k} we also have the duality

$$
Z^{\star}(\mathbf{k})=(-1)^{\mathrm{wt}(\mathbf{k})+1} Z^{\star}\left(\overline{\mathbf{k}^{\vee}}\right)
$$

Combining this with the product gives again a large family of linear relations and we obtain the following upper bounds for the dimensions:

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13
$\operatorname{dim}_{\mathbb{Q}} \mathcal{Z}_{k}^{\text {cyc }} \leq$	1	1	1	2	2	4	5	8	12	17	27	38	57	84

(4) $Z(\mathbf{k})$ \& Kaneko-Zagier Conjecture-Again FMZ

Since $(p)=\left(1-\zeta_{p}\right)^{p-1}$ we have a projection $\varphi: \mathcal{A}^{\text {cyc }} \rightarrow \mathcal{A}$ sending $\left(a_{p}\right.$ $\bmod (p))_{p} \in \mathcal{A}^{\text {cyc }}$ to $\left(a_{p} \bmod \mathfrak{p}\right)_{p} \in \mathcal{A}$.

This give a \mathbb{Q}-algebra homomorphism

$$
\begin{aligned}
\varphi_{\mathcal{A}}: \mathcal{Z}^{\mathrm{cyc}} & \longrightarrow \mathcal{Z}_{\mathcal{A}} \\
Z(\mathbf{k}) & \longmapsto \zeta_{\mathcal{A}}(\mathbf{k}) .
\end{aligned}
$$

The ideal $\operatorname{ker} \varphi_{\mathcal{A}}$ can be written as follows.

Proposition

We have $\operatorname{ker} \varphi_{\mathcal{A}}=\left(1-\zeta_{p}\right) \mathcal{A}^{\text {cyc }} \cap \mathcal{Z}^{\text {cyc }}$.

(4) Z(k) \& Kaneko-Zagier Conjecture-Conjecture

We saw that relations between $z_{n}(\mathbf{k})$ gives relations between $\zeta_{\mathcal{A}}(\mathbf{k})$ and $\zeta_{\mathcal{S}}(\mathbf{k})$ $\bmod \zeta(2) \mathcal{Z}$.
This supports the following conjecture:

Conjecture (Kaneko-Zagier)

The map $\varphi_{K Z}$, defined by

$$
\begin{aligned}
\varphi_{K Z}: \mathcal{Z}_{\mathcal{A}} & \longrightarrow \mathcal{Z} / \zeta(2) \mathcal{Z} \\
\zeta_{\mathcal{A}}(\mathbf{k}) & \longrightarrow \zeta_{\mathcal{S}}(\mathbf{k}) \bmod \zeta(2) \mathcal{Z}
\end{aligned}
$$

is a \mathbb{Q}-algebra isomorphism.

(4) Z(k) \& Kaneko-Zagier Conjecture-Refinement

Conjecture

- The map $\varphi_{\mathbb{R}}: \mathcal{Z}^{\text {cyc }} \rightarrow \mathcal{Z} / \zeta(2) \mathcal{Z}$ that sends $Z(\mathbf{k})$ to $\operatorname{Re}(\xi(\mathbf{k}))$ is a \mathbb{Q}-algebra homomorphism.
- It holds $\operatorname{ker} \varphi_{\mathcal{A}} \stackrel{?}{=} \operatorname{ker} \varphi_{\mathbb{R}}$.

This Conjecture would imply the Kaneko-Zagier conjecture. We expect the following commutative diagram:

Thank you for your attention!

