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0© Introduction - Multiple zeta(-star) values

Definition

For k1 ≥ 2 , k2, . . . , kr ≥ 1, k = (k1, . . . , kr) define the multiple zeta value

ζ(k) = ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·m

kr
r

∈ R

and the multiple zeta-star value

ζ?(k) = ζ?(k1, . . . , kr) =
∑

m1≥···≥mr>0

1

mk1
1 · · ·m

kr
r

∈ R .

By r we denote its depth and wt(k) = k1 + · · ·+ kr will be called its weight.

The product of two MZ(S)V can be expressed as a linear combination of MZ(S)V

with the same weight (harmonic product). e.g:

ζ(k1) · ζ(k2) = ζ(k1, k2) + ζ(k2, k1)+ ζ(k1 + k2) ,

ζ?(k1) · ζ?(k2) = ζ?(k1, k2) + ζ?(k2, k1)− ζ?(k1 + k2) .
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0© Introduction -q-analogues of multiple zeta values

Definition

For k1 ≥ 2 , k2, . . . , kr ≥ 1 and k = (k1, . . . , kr) define the q-multiple zeta value

by

ζ(k1, . . . , kr; q) =
∑

m1>···>mr>0

q(k1−1)m1 . . . q(kr−1)mr

[m1]
k1
q · · · [mr]

kr
q

∈ Q[[q]] ,

where [m]q =
1−qm
1−q = 1 + q + · · ·+ qm−1.

They satisfy: lim
q→1

ζ(k1, . . . , kr; q) = ζ(k1, . . . , kr).

The harmonic product version for these objects reads

ζ(k1; q) · ζ(k2; q) =ζ(k1, k2; q) + ζq(k2, k1; q) + ζq(k1 + k2; q)

+(1− q)ζq(k1 + k2 − 1; q) ,

The product structures of ζ , ζ? and ζ(...; q) are all examples of Quasi shuffle

products (See M. Hoffmans talk on Friday).
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1© zn - Definition

Definition

For n ≥ 1 and an index set k = (k1, . . . , kr) with k1, . . . , kr ≥ 1 we define

zn(k; q) = zn(k1, . . . , kr; q) =
∑

n>m1>···>mr>0

q(k1−1)m1 . . . q(kr−1)mr

[m1]
k1
q · · · [mr]

kr
q

and similarly z?n(k; q) by summing over n > m1 ≥ · · · ≥ mr > 0.

Let ζn a primitive n-th root of unity and write for q = ζn

zn(k) := zn(k; ζn) ∈ Q(ζn) .

Remark

Clearly the value zn(k; ζn) ∈ C depends on the choice of ζn. But all the results we will

present in the following are true for all ζn and we therefore just write zn(k).
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1© zn - Depth one

In depth one we have

∞∑
k=1

zn(k)

(
x

1− ζn

)k
=

nx

1− (1 + x)n
+ 1

and therefore in particular zn(k) ∈ (1− ζn)kQ.

zn(1) =
n− 1

2
(1− ζn) , zn(2) = −

n2 − 1

12
(1− ζn)2 ,

zn(3) =
n2 − 1

24
(1− ζn)3 , zn(4) =

(n2 − 1)(n2 − 19)

720
(1− ζn)4 .
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1© zn - Degenerated Bernoulli numbers

Carlitz (1956) introduced the degenerated Bernoulli numbers bk(n) ∈ Q[ 1n ]

∞∑
k=0

bk(n)
xk

k!
=

x

(1 + x
n)
n − 1

.

These numbers can be seen as a degeneration of the Bernoulli numbers

lim
n→∞

bk(n) = Bk ,

∞∑
k=0

Bk
xk

k!
=

x

ex − 1
.

For even k ≥ 2 it is

ζ(k) = −Bk
k!

(−2πi)k

2
.

Similarly we have (for all n, k ≥ 1)

zn(k) = −
bk (n)

k!
(n(1− ζn))k .
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1© zn - Harmonic product

With the same calculation as for q-analogues one checks that for a, b ≥ 1

zn(a) · zn(b) = zn(a, b)+ zn(b, a)+ zn(a+ b)+ (1− ζn)zn(a+ b− 1) .

In particular for a = 1 it is

zn(1) · zn(b) = zn(1, b) + zn(b, 1) + zn(b+ 1) + (1− ζn)zn(b) .

But since zn(1) =
n−1
2 (1− ζn) we obtain for n 6= 3

(1− ζn)zn(b) =
2

n− 3
(zn(1, b) + zn(b, 1) + zn(b+ 1)) ,

which gives

zn(a) · zn(b) =zn(a, b) + zn(b, a) + zn(a+ b)

+
2

n− 3
(zn(1, a+ b− 1) + zn(a+ b− 1, 1) + zn(a+ b)) .
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1© zn - Harmonic product and zn vs z?n

Lemma

For n� k and all index sets k andm ≥ 0 there exists αk′,n ∈ Q for index sets k′

with

(1− ζn)mzn(k) =
∑

wt(k′)=wt(k)+m

αk′,n · zn(k′) .

Corollary

The product zn(k1) · zn(k2) can be written as a linear combination of zn(k3)
with wt(k3) = wt(k1) + wt(k2).

Every z?n can be written in terms of zn and vice versa.

The second statement in depth 2 follows for example from

z?n(a, b) = zn(a, b) + zn(a+ b) + (1− ζn)zn(a+ b− 1) .

In the following we will just focus on linear relations between z?n.
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1© zn - Hoffman dual k∨

Definition (rough)

Every index set k = (k1, . . . , kr) can be written as

(k1, . . . , kr) = (

k1︷ ︸︸ ︷
1 + · · ·+ 1, . . . ,

kr︷ ︸︸ ︷
1 + · · ·+ 1) .

Define the Hoffman dual k∨ by interchanging , and + in this representation.

Example The Hoffman dual of k = (3, 2) is given by

k∨ = (3, 2)∨ = (1 + 1 + 1, 1 + 1)∨ = (1, 1, 1 + 1, 1) = (1, 1, 2, 1) .
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1© zn - Duality

For an index set k = (k1, . . . , kr) we define its reverse by k = (kr, . . . , k1).

Theorem (B., Takeyama, Tasaka)

For all n ≥ 1 and all index sets k = (k1, . . . , kr) we have

z?n(k) = (−1)wt(k)+1z?n(k
∨) .

Example: Since (3, 2)∨ = (1, 1, 2, 1) it is

z?n(3, 2) = (−1)5+1z?n(1, 1, 2, 1) = z?n(1, 2, 1, 1) .

10 / 31



1© zn - Linear relations

The duality together with the harmonic product gives a large family of algebraic &

linear relations between z?n or zn.

Example

Using duality and the harmonic product one can show that

2z?n(4, 1) + z?n(3, 2) =
(n4 − 1)(n+ 5)

1440
(1− ζn)5 +

n+ 2

3
(1− ζn)2z?n(2, 1)

(Of course the right-hand side could also be written as a linear combination of z?n.)

Observation

For a fixed n and a fixed weight 1 ≤ k < n, all linear relations between z?n(k) (resp.

zn(k)) in weight wt(k) = k seem to follow from the duality and the harmonic product.
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1© zn - Summary

For a fixed n, the zn(k) are elements inQ(ζn).

They satisfy various linear relations, which conjecturally can all be described using

duality and the harmonic product.

We also have results on Sum formulas / Ohno-Zagier relations / etc.

There exist explicit formulas for zn(k, . . . , k) ∈ (1− ζn)k+···+k ·Q.

We now want to give the connection to finite multiple zeta values.
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2© Finite MZV - Definition

Definition

For an index k = (k1, . . . , kr) ∈ Nr the finite multiple zeta value are defined by

ζA(k) =

 ∑
p>m1>···>mr>0

1

mk1
1 · · ·m

kr
r

mod p


p prime

∈ A ,

whereA is given by

A =

∏
p prime

Fp�⊕
p prime

Fp
.

Also define ζ?A(k) by using p > m1 ≥ · · · ≥ mr > 0 in the definition.

Denote byZA ⊂ A theQ-vector space spanned by all ζA(k).

A andZA areQ-algebras.

Satisfy the same harmonic product formula as MZ(S)V.
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2© Finite MZV - Connection to zn

For this part we will focus on n = p prime.

Lemma

For p prime it is zp(k) ∈ Z[ζp].

Proof: This follows from the fact that the q-integer [m]q at q = ζp is a cyclotomic unit,

whenm is coprime with p.

In this case there exists a t withm · t ≡ 1 mod p and therefore

1

[m]ζp
=

1− ζp
1− ζmp

=
1− ζtmp
1− ζmp

= 1 + ζmp + · · ·+ ζ(t−1)mp ∈ Z[ζp] .
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2© Finite MZV - Connection to zn

Let p = (1− ζp) be the prime ideal of Z[ζp] generated by 1− ζp.

Lemma

It holds that Z[ζp]/p = Fp .

For p > m > 0 we have [m]ζp ≡ m mod p.

From this we get

Theorem (B., Takeyama, Tasaka)

For any primitive root of unity ζp, we have

(zp(k) mod p)p = ζA(k)

and

(z?p(k; ζp) mod p)p = ζ?A(k).

In particular since zn(k) ∈ (1− ζn)k ·Q it is ζA(k) = 0.
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2© Finite MZV - Linear relations from zn

We saw before that for all p

2z?p(4, 1) + z?p(3, 2) =
(p4 − 1)(p+ 5)

1440
(1− ζp)5 +

p+ 2

3
(1− ζp)2z?p(2, 1)

The right-hand side vanishes for p > 5 in Z[ζp]/p and therefore we obtain the relation

2ζ?A(4, 1) + ζ?A(3, 2) = 0 .
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2© Finite MZV - Duality

Similar to the zn the finite MZV also satisfy the duality relation

Theorem (Hoffman)

For all index sets k it is

ζ?A(k) = −ζ?A(k∨) .

This follows from

z?n(k) = (−1)wt(k)+1z?n(k
∨) .

and the easy to check relation ζ?A(k) = (−1)wt(k)ζ?A(k).

17 / 31



3© Symmetrized MZV - Regularized multiple zeta values

Definition

For k1, . . . , kr ≥ 1 denote byRk1,...,kr(T ) ∈ R[T ] the regularized multiple zeta

values, which are uniquely determined by

R1(T ) = T ,

For k1 ≥ 2 it isRk1,...,kr(T ) = ζ(k1, . . . , kr),

Their product can be expressed by the harmonic product formula.

Example: SinceR1(T ) ·R2(T ) = R1,2(T ) +R2,1(T ) +R3(T ) it is

R1,2(T ) = ζ(2)T − ζ(2, 1)− ζ(3) .
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3© Symmetrized MZV - Definition

Definition

For an index k = (k1, . . . , kr) ∈ Nr define the symmetrized multiple zeta values by

ζS(k) =

r∑
a=0

(−1)k1+···+kaRka,ka−1,...,k1(T )Rka+1,ka+2,...,kr(T )

and

ζ?S(k) = ζ?S(k1, . . . , kr) =
∑

� is either a comma ‘,’
or a plus ‘+’

ζS(k1� · · ·�kr).

One can check that the definition of ζS is independent of T .

In depth r = 1 it is

ζS(k) = Rk(T ) + (−1)kRk(T ) =
{

2ζ(k) , k is even

0 , k is odd
.
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3© Symmetrized MZV - Connection to zn in depth one

Now we want to give the connection of zn to the symmetrized multiple zeta values.

For this part we will fix the primitive n-th root of unity ζn = e
2πi
n .

We saw earlier that in depth one we have for all k, n ≥ 1

zn(k) = −
bk (n)

k!
(n(1− ζn))k .

Notice that

lim
n→∞

n(1− ζn) = lim
n→∞

n

(
−2πi

n
− 1

2

(
2πi

n

)2

− . . .

)
= −2πi .

With lim
n→∞

bk(n) = Bk and ζ(k) = −Bk
k!

(−2πi)k
2 for even k we obtain

lim
n→∞

zn(k) =


−πi (k = 1)
2ζ(k) (k ≥ 2, k is even)
0 (k ≥ 3, k is odd)

In particular Re
(
lim
n→∞

zn(k)
)
= ζS(k).
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3© Symmetrized MZV - Limit n→∞ and ξ(k)

Theorem (B., Takeyama, Tasaka)

For any index set k = (k1, . . . , kr) the limit lim
n→∞

zn(k; e
2πi
n ) exists and we set

ξ(k) := lim
n→∞

zn(k; e
2πi
n ) ∈ C

and

ξ?(k) := lim
n→∞

z?n(k; e
2πi
n ) ∈ C .

As we saw before in depth one it is

ξ(k) =


−πi (k = 1)
2ζ(k) (k ≥ 2, k is even)
0 (k ≥ 3, k is odd)
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3© Symmetrized MZV - Limit n→∞ and ξ(k)

Theorem (B., Takeyama, Tasaka)

For any index set k = (k1, . . . , kr) we have

ξ(k) =

r∑
a=0

(−1)k1+···+kaRka,ka−1,...,k1

(πi
2

)
Rka+1,ka+2,...,kr

(
− πi

2

)
.

From this explicit expression we obtain

Theorem (B., Takeyama, Tasaka)

For any index set k = (k1, . . . , kr) we have

Re (ξ(k)) ≡ ζS(k) mod ζ(2)Z .

There are similar statements for ξ?(k) := lim
n→∞

z?n(k; e
2πi
n ) and ζ?S .
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3© Symmetrized MZV - Linear relations

We have seen before that for all n

2z?n(4, 1) + z?n(3, 2) =
(n4 − 1)(n+ 5)

1440
(1− ζn)5 +

n+ 2

3
(1− ζn)2z?n(2, 1)

Taking the limit n→∞ we obtain

2ξ?n(4, 1) + ξ?n(3, 2) =
(−2πi)5

1440
and in particular

2ζ?S(4, 1) + ζ?S(3, 2) ≡ 0 mod ζ(2)Z.
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3© Symmetrized MZV - Duality

From z?n(k) = (−1)wt(k)+1z?n(k
∨) we also obtain duality for ξ? and ζ?S

Theorem (B., Takeyama, Tasaka)

For any index k, the following relations hold.

ξ?(k∨) = − ξ?(k) .
ξ?(k) = (−1)wt(k) ξ?(k) ,

Here the bar on the right-hand sides denotes complex conjugation.

Taking the real part gives:

Theorem (B., Takeyama, Tasaka)

For any index k we have

ζ?S(k) ≡ −ζ?S(k∨) and ζ?S(k) ≡ (−1)wt(k)ζ?S(k) mod ζ(2)Z.
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4© Z(k) & Kaneko-Zagier Conjecture - Motivation

So far we considered zn for a fixed n.

Observation

For a fixed weight k, the number of linear relations between zn(k) with wt(k) = k
seem to be the same for all n� k.

We therefore want to introduce now a "global object" Z(k).
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4© Z(k) & Kaneko-Zagier Conjecture - Definition

We will now collect for all prime p the values zp and define for this

Acyc =

 ∏
p:prime

Z[ζp]/(p)

/ ⊕
p:prime

Z[ζp]/(p)

 ,

Acyc is aQ-algebra.

It is independet of the choice of ζp, since Z[ζp] = Z[ζ ′p] for any other p-th

primitive root of unity ζ ′p.

Definition

For an index k ∈ Nr we define

Z(k) = (zp(k) mod p)p ∈ Acyc

and

Z?(k) = (z?p(k) mod p)p ∈ Acyc.
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4© Z(k) & Kaneko-Zagier Conjecture - Linear relations & Dimension

LetZcyc
k be theQ-vector space spanned by all Z(k) of weight k.

Proposition

The product Z(k1) · Z(k2) can be written as a linear combination of Z(k3) with

wt(k3) = wt(k1) + wt(k2).

For any index k we also have the duality

Z?(k) = (−1)wt(k)+1Z?(k∨).

Combining this with the product gives again a large family of linear relations and we

obtain the following upper bounds for the dimensions:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

dimQZcyc
k ≤ 1 1 1 2 2 4 5 8 12 17 27 38 57 84
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4© Z(k) & Kaneko-Zagier Conjecture - Again FMZ

Since (p) = (1− ζp)p−1 we have a projection ϕ : Acyc → A sending (ap
mod (p))p ∈ Acyc to (ap mod p)p ∈ A.

This give aQ-algebra homomorphism

ϕA : Zcyc −→ ZA
Z(k) 7−→ ζA(k).

The ideal kerϕA can be written as follows.

Proposition

We have kerϕA = (1− ζp)Acyc ∩ Zcyc.
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4© Z(k) & Kaneko-Zagier Conjecture - Conjecture

We saw that relations between zn(k) gives relations between ζA(k) and ζS(k)
mod ζ(2)Z .

This supports the following conjecture:

Conjecture (Kaneko-Zagier)

The map ϕKZ , defined by

ϕKZ : ZA −→ Z/ζ(2)Z
ζA(k) 7−→ ζS(k) mod ζ(2)Z

is aQ-algebra isomorphism.
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4© Z(k) & Kaneko-Zagier Conjecture - Refinement

Conjecture

The map ϕR : Zcyc → Z/ζ(2)Z that sends Z(k) to Re (ξ(k)) is a

Q-algebra homomorphism.

It holds kerϕA
?
= kerϕR.

This Conjecture would imply the Kaneko-Zagier conjecture. We expect the following

commutative diagram:

Zcyc

ZA Z
/
ζ(2)Z

ϕRϕA
?∼=
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Thank you for your attention!
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