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(1) Schur MZV - Multiple zeta values

Fork1,...,k._1 > 1,k. > 2 define the multiple zeta value (MZV) by

(ks k)= ) i !

kr
0<mi<--<my "1 my

and the multiple zeta-star value (MZSV) by

Gl k)= Y - !

o °
0O<my<-<m, 01 M

weight: k1 + - - - + k., depth: r.

Today: Introduce a simultaneous generalization of MZV and MZSV, given by Schur
MZV, and discuss their sum formulas.



(1) Schur M2V - Partitions

o By a partition we denote a tuple A = (A1, ..., A,) with
A= 2> A > 1

o Al =AM+ + An.

o lts transpose is denoted by A" = (\|, ..., \/,,) and it is defined by
transposing the corresponding Young diagram.

Example
A partition and its transpose visualized by Young diagrams

)\:(5,2,1):__%11‘ )\I:(352717171):M

[




(1) Schur MZV - Partitions & Young Tableaux

Let A = (A1, ..., \y) be a partition.
@ For another partition & = (41, . . ., ity ) we write it C A if 7 < m and
py < Ajforj=1,...,7.
@ For partitions A, i with (1 C A we define

D\/p) ={(,§) €Z* |1 <i<n,pu <j<N}.
@ We denote the set of all corners of A/ by Cor(\/p) C D(A\/p).

Example When A\/p = (5,4, 3)/(3,1) we have

DA p) ={(1,4),(1,5),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3)},
COI‘()\/;L) = {(17 5)7 (2’ 4)7 (37 3)} )

which we visualize (Corners = ®) in the corresponding Young diagram:

Hanty




(1) Schur MZV - Partitions & Young Tableaux

o A (skew) Young tableau k = (k; ;) of shape A/ is a collection of k; j € N
forall (i,7) € D(A/p).

Example When A/ = (5,4, 3)/(3, 1) we visualize this Young tableau by

k1,ak1,5
k = (ki,j) = k2 2k2 3lk2,4
‘k3,1k3,2k3,3

@ A Young tableau (1, ;) is called semi-standard if 7; j < ™M1, j and
m; j < my; j41 forall zand j.

@ The set of all Young tableaux and all semi-standard Young tableaux of shape )\/u

are denoted by YT'(A/pt) and SSYT(A\/ ), respectively.



(1) Schur M2V - Definition

A Young tableau k = (k; ;) € YT (A/p) is called admissible if k; j > 2 for
(i,4) € Cor(A/p).

Definition (Yamasaki 2010, Nakasuji-Phuksuwan-Yamasaki 2018)

For an admissible k = (k; j) € YT(A/p) the Schur multiple zeta value is defined by

W= 3 I

(mi,;)ESSYT(A/p) (i,)€D(A\ /1) i j

These generalize MZV and MZSV in the following way.

and  C(kiy... k) = g() .




(1) Schur MZV - Definition - Examples

Example 1 Fora > 1and b, ¢ > 2 we have

a b‘ 1
C< )Z b ‘

A
me

Clearly every Schur MZV is just a linear combination of MZV, e.g.

C( Z b) = ((a,c,b) +¢(a,b,c)+((a+b,¢c)+ ((a,b+c).




(1) Schur MZV - Definition - Examples

Example 2
Fora,b,d > landc, e, f > 2 we have

C alb c‘ 1
d|e = E .
a b e .and . e . o
7 e <1 < me TVE T T - TG - TG - G - Mg
- A AN
mg < Me
AN
my

Example 3
Forb,d > landc,e, f > 2 we have

e = o
Z b d f
f my <me M " MG Mg~ M = My
o VAN
mdgme
A

mg



(1) Schur MZV - Arakawa-Kaneko zeta values & Ohno’s @ identity

In Ohno’s talk on monday we saw the following results.

Theorem (Kuba 2010, Yamamoto 2016+)

Forki,...,kr_1,m > 1, k. > 2 the Arakawa-Kaneko zeta value can be written as
2
§(k1,...,kr_1,kr—1;m)=g“
[1]. 1]k~
—_——
m

Ohno’s 0 Identity: For a, b > 1 we have




(1) Schur M2V - Products

Compared to multiple zeta values, the product of two arbitrary Schur multiple zeta
values can be written quite easily.

Example The harmonic product formula of MZV is given by

(@ =3 -3

m>0 n>0
1 1
- Z a b+ Z manb Z ma+b
0<m<n 0<n<m m=n>0

= ((a,b) + ((b,a) + ((a+ ).

Using the notion of Schur MZV this can be written as

C(fa)¢() = Y minﬁ > minb=<<>+<<>

0<m<n 0<n<m



(1) Schur M2V - Products

Compared to multiple zeta values, the product of two arbitrary Schur multiple zeta
values can be written quite easily.

Example The harmonic product formula of MZV is given by
¢(a) - ¢(b,c) =((a,b,¢) + ¢(b,a,c) + ((b,c,a) + ((a+b,c) + ((b,a+c).

Using the notion of Schur MZV this can be written as

@ ¢( ) =¢(ft) +¢




(1) Schur M2V - Products

In general the product of two Schur MZV is always the sum of two Schur MZV.

o

Example

olalo]

><<f3):< ;

ISR

O |0




(2) Sum formulas - Sum formulas for MZ(S)V

Some sum formulas...

Forallk > r > 1 we have

> C(ka, .o k) = ((k),

kit-+kr=Fk
k1, kr—12>1,kr>2

> Gl = (5o,

Kyt thn=k
kiyeooskro1> 1k, >2

For k > 4 we have (Kaneko-Tsumura 2019, Kaneko’s talk yesterday)

k—2

2
> T(abo)+> TAk—1-jj) = 3T@T(k~2).
a+b+c=k Jj=2
a,b>1,c>2

Key property of a "sum formula”

The number of terms on the right-hand side do not depend on the weight.



2) Sum formulas - for Schur multiple zeta values

Goal of the project: For a fixed shape )\/}L we want to evaluate the following sum:

> k).

keYT(\/p)
wt(k)=k
k is admissible



(2) Sum formulas - for Schur multiple zeta values

Goal of the project: For a fixed shape )\/}L we want to evaluate the following sum:

> k).

keYT(\/p)
wt(k)=k
k is admissible

Bad news: So far we just succeeded for a few shapes )\/u.



(2) Sum formulas - for Schur multiple zeta values

Goal of the project: For a fixed shape )\/}L we want to evaluate the following sum:

> k).

keYT(\/p)
wt(k)=k
k is admissible

Bad news: So far we just succeeded for a few shapes )\/u.

Good news: If we take the sum just over all kiu’ € N for some subset N C ZZQ
(symmetric sums), we can do it for all shapes.



(2) Sum formulas - for anti-hooks I@

Theorem (B.-Kadota-Suzuki-Yamamoto-Yamasaki, 2019+)
Forr > 1,8 > 0andk > 1+ s > 1 we have

; k—1
Z ¢ - = C(k).

I r—1
ki+-+kr+l++ls=k
kl,...,kr—1217k7‘22 ‘ le ‘ PPN kr

l1,---,l521




(2) Sum formulas - for anti-hooks I@

Theorem (B.-Kadota-Suzuki-Yamamoto-Yamasaki, 2019+)
Forr > 1,8 > 0andk > 1+ s > 1 we have

; k—1
Z ¢ - = C(k).

I r—1
ki+-+kr+l++ls=k
kl,...,kr—1217k7‘22 ‘ ,I€1 ‘ PPN :ICT-

l1,---,l521

Are all sum of Schur multiple zeta values rational multiples of ¢ (k)?



(2) Sum formulas - for anti-hooks I@

Theorem (B.-Kadota-Suzuki-Yamamoto-Yamasaki, 2019+)
Forr > 1,8 > 0andk > 1+ s > 1 we have

; k—1
Z ¢ - = C(k).

I r—1
ki+-+kr+l++ls=k
kl,...,kr—1217k7‘22 ‘ ,I€1 ‘ PPN :ICT-

l1,---,l521

Are all sum of Schur multiple zeta values rational multiples of ¢ (k)?

No



(2) Sum formulas - for hooks @E

Theorem (B.-Kadota-Suzuki-Yamamoto-Yamasaki, 2019+)
Forr,s > land k > r + s we have

ki | L \ I

> ¢

kit the 4l =k k
k17~'-ykr71217kr22 r
ll,‘..7l3,121,l522

~ s o sr+571

= (") - (12 07)ctek -0 - 3 ctak o)
. Z«;(‘”a<k et - g (727 st -a)
_ T+fl<_1>r—a(r R SO (!

a=r+1



Sum of Schur multiple zeta values are multiple zetas of depth = "number of corners™?



(2) Sum formulas - for [

Question

Sum of Schur multiple zeta values are multiple zetas of depth = "number of corners™?

No...

Theorem (B.-Kadota-Suzuki-Yamamoto-Yamasaki, 2019+)

For kK > 5 we have

>, ¢ <(§ Z) = (k= 4)¢(k) — (k= 2)¢(1,k — 1) + (2k — 6)¢(2,k — 2)
e
d>2

—2¢(k—3,3)+ (k—2)C(k—2,2).



(8) Symmetric sum formulas - ... because classical sums are

@ In general it is difficult to evaluate sums over all admissible Young tableaux.
@ For example: Summing the following over all @ > 1, b, ¢ > 2 with

a+b+ec=k

C( Z b) = ((a,b,¢) + ¢(a,¢,b) + ((a+b,c) + ((a,b+c),

we get the sum

Z ¢(a,b,c) = Z ¢(a,b,c)— Z C(a,1,¢).

a+b+c=k a+b+c=k a+c=k—1
a>1,b,c>2 a,b>1,c>2 a>1,c>2

=((k)




(8) Symmetric sum formulas - ... because classical sums are

@ In general it is difficult to evaluate sums over all admissible Young tableaux.
@ For example: Summing the following over all @ > 1, b, ¢ > 2 with

a+b+ec=k

C( Z b) = ((a,b,¢) + ¢(a,¢,b) + ((a+b,c) + ((a,b+c),

we get the sum

Z ¢(a,b,c) = Z ¢(a,b,c)— Z C(a,1,c¢).

a+b+c=k a+b+c=k a+c=k—1
a>1,b,c>2 a,b>1,c>2 a>1,c>2
=(¢(k)

Easier: Evaluate symmetric sums of the form

> o

a,b,ceN’

b>

for some N C Z>o.



@ Symmetric sum formulas - Symmetric sums

o Forasubset N C Z:>2 we define
YT\ N) = {(kij) € YT(A) [ kij € N'}
@ The generating series for sums of Schur multiple zeta values with entries in N by

Gy X) = Y (X" € z][x]).
keEYT(AN)

The coefficient of X ¥ in these generating series are examples of "symmetric sums”.
9 g



@ Symmetric sum formulas - Symmetric functions

Let A C Q[[x1, x2, .. .]] be the Q-algebra of symmetric functions.

For a partition A let s be the Schur function defined by

sx(z1,x2,...) = Z H T, ; -

(m4,5)€SSYT(X) (4,5)eD(N)

The s, form a basis of A.

@ Notation: (1") = (1,...,1) =
N——
T
e Forr > llete, = S(1m) be the elementary symmetric functions.

eT:S(lT):SE: E Tmy -+ Tmy, -

0<my <---<my



(8) Symmetric sum formulas - the map ¢ s

For any subset N C Z>2 the linear map ¢, defined by ¢ar(1) = 1 and on the
generators by

on A — Z[[X]]
S\ —— GN()\,X)

is a (Q-algebra homomorphism.

Proof sketch: Make a change of variables

Xk
T )
m

This Lemma allows us to use linear & algebraic relations among s to evaluate the G .



(8) Symmetric sum formulas - Jacobi-Trudi formula

Proposition (Jacobi-Trudi formula)

For a partition A = (A1, ..., \y) with transpose X' = (\], ..., AL,) we have

sx = det(ex i1 j)1<ij<m -

Example

€3

€2 2 2
SEE = det <€1 62) =ej; —eje3 = SB — SBS@.



(8) Symmetric sum formulas - Jacobi-Trudi formula

Zn(r, X) = Gn((1), X) = Y Clhryooo k)Xt

kl,“.,kre/\/
Corollary
For any subset N’ C Z> and a partiion A = (A1, . .., A\,,) with transpose

N = (A\],..., AL, we have

Gn (A, X) = det(Zn (N, — i+ §, X)) 1<i j<m -



(8) Symmetric sum formulas - Jacobi-Trudi formula

Zn(r X) = Gu((1N), X) = D (k.. k) XPErthe,

kl,...,kre/\/
Corollary
For any subset N’ C Z> and a partiion A = (A1, . .., A\,,) with transpose
N = (A\],..., AL, we have

GN()‘v X) = det(ZN()‘; -1+, X))lﬁi,jgm :

Using Hoffmans symmetric sum formulas (appearing in his talk yesterday) we get

Corollary

For any subset N/ C Z>2 we have

Gn (A, X) € Q[€(2),¢(3),¢(4), - [IXT]-



(3) Symmetric sum formulas - for [

Example

Gy (B, X) = Zn(2,X)? = Zn (1, X) Zn (3, X) .

Considering the coefficient of pid gives the following sum formula for all & > 1

b
> o) = X | X cmm) || 3 cmom)
a,b,c,deN m+n=k \ mi+mo=m ni+nzs=n
a+btctd=k m,n>1 my,mo €N n1,ma€N
- > Cm) Y ((nnzmg).
m+n=k ni+ns+ns=n
meN ni,n2,nzeN

n>1



(4) Even sum formulas - definition

From now on we consider the case N' = ev := {2,4,6,... }.
o AYoung tableau k = (k; ;) € YT(A) s called even, if all k; ; are even.
With the notation from before we have

Ger(NX) = ) )XV =3 (N X
keYT(N) k>1

k even
In the following we are therefore interested in evaluating

Ex(N) = Y (k)

keYT(N)
Kk even
wt(k)=2k



(4) Even sum formulas - for columns E (MZV)

Theorem (Hoffman 2017, but already presented tomorrow 7 years ago in Hamburg)

Fork > r > 1 we have

1 2r — 1
Ear((17)) Zm( TT >C(2k‘)
52

= 227‘—3(2 1

J + 1) Ba; r

Example

Exe (B) = S(28),

0
B f) - 5

Esy,

—C (2k) ——C( )C(2k —2),

)C(2j)C(2k —2j).

3
By @ 2 0(2k) — Z0@)C(2k — 2) + )2k 4).



(4) Even sum formulas - for rows 117 (MZSV)

Lemma (Hoffman, 2017)
Fork > r > 1 have

Fa CEL) =E2k<<r>>=2(’“ ])E2k<< 7).

= N T
Example
B () = T 2¢(2k),
B ) = T2 Loy Lepean -2,
Eox (ITT) = 32k3 — 120k + 112k — 15<(2k) 4k - 74(2)“2]€ ).

192 16



(4) Even sum formulas - for all shapes

Theorem (B.-Kadota-Suzuki-Yamamoto-Yamasaki, 2019+)

For any partition A = (g, ..., Ay, ) there exist unique polynomials

prj(@) €Qll,  j=0,..., VMT_lJ

of degree deg(py ;) < min(|A| — 27, A1), such that we have forall k > ||
|25 ]

Ea(N) = Y paj(R)C20)CMKk - ).
j=0

In particular we have Eoy(\) € 72*Q. (C(()) = _%)

The Theorem also holds for skew type young diagrams )\/u.




(4) Even sum formulas - a few examples

Example
Bap () = 2208) - 360002k -2,
Eo () = - 2t 1@‘(216) L2 5c(2)<(2k —2),

32
o (Hﬂ) = 15 oy + B B oyc2k - 9) + 54(4)«21@ —4),

128 64
40k — 55

10k + 5 5k —5
Eax (@ =~y C(2k) — == C(2)C(2k = 2) + —

C(4)C(2k — 4) .



(4) Even sum formulas - for

Example For k > 9 we have

Epe () = - @k + D(E+D) o

214

28k% — 78k + 35

148k2 — 798k + 989

o C(4)¢(2k —4)
B 196k2 —Sizk + 749C(6)C(2k )

+ o CE)C(2k —8).



(4) Even sum formulas - proof sketch

Hoffman gives an explicit formula for the generating series for EQk((lr))

in(rXv1-Y
1 + Z E2k X2ky1‘ _ Sln(ﬂ- : ) ,
Koror V1 =Y sin(nX)
from which we can deduce
1/ d\ sin(zXV1-Y)
Zey(r, X) = — | Y= .
r\dY ) I Y sin(mX) |y=0



(4) Even sum formulas - proof sketch

Hoffman gives an explicit formula for the generating series for Egk((lr))

1+ Z Eon (1) X2y = sin(rXv1-Y) 7
V1 =Y sin(nX)

k>r>r

from which we can deduce

o= (3 () HEE), L

Doing messy calculations with the cotangents and its derivatives yields the result and

an explicit construction of the polynomials p ; ().

Remark
One can also prove our Theorem by using a result of Guo-Lei-Zhao (2015). In their work they

show that one can also write the sum

S° menb(2m)(2n)

m-+n=~k

as asumof p;j(k)((27)C(2(k — 7)) for some pj(x) € Q[z].



(4) Even sum formulas - relations among sum formulas

Due to the Theorem we have a map

ey : A — Q[r?][[X]]
S\ —> Gev()\,X) .

Question

Is ¢ev injective or are there "relations among sum formulas”?



(4) Even sum formulas - relations among sum formulas

Due to the Theorem we have a map

ey : A — Q[r?][[X]]
S\ —> Gev()\,X) .

Question

Is ¢ev injective or are there "relations among sum formulas”?

Answer: There seem to be no relation among Gey (A, X)) in a fixed depth |\|, but
allowing mixed depth we have for example for all k > 2

Eoy, (Hj> + ZE% (B) = 2Fy, (ﬁ) + %E% ()

andforallk > 4
15

Esk (HH) + %E% (Hjj> + g5 P (1) = %E% (Bj> + gE% (Cr) -



Theorem (Borwein-Bradley-Broadhurst-Lisonek)

For allm > 1 we have

92 7T4n

€13, 1,8) = C(L,3)") = - =

PIOOE

Using the notion of Schur M2V the identity ¢ ({1, 3}") = £ (({4}") reads




(4) 1-3-M2V - 1-3-Stairs Formula

Theorem (B.-Yamasaki, 2018)

Forany n > 1 we have

[1 ) [1]3] .
c(ll;:.?’ = =Cln+1), c(l;:.?’ )=4—nc<4n+3>,

3 3]

[1]

E BN - cdgheianh)
C(;-" = ¢, <<1.3. )—2_% 7 :

where 7 is the number of (-{ and respectively.



(4) 1-3-M2V - 1-3 -Schur MzV

Consequence of the Theorem: Every Checkerboard Schur MZV is a polynomial in odd
single zetas and .

Theorem (B.-Yamasaki, B.-Charlton)

Schur M2V with alternating entries in 1 and 3 are elements in Q[74, ¢(3), ¢(5), . . .].

@ We can give explicit formulas for a lot of shapes as determinants in odd zeta
values and powers of 4.

Example
4
3(1]3 L 166 1, <(7)
B[] =% <¢6) A=
2|7 $°) worm
3|13 ¢(7) s3em0 ¢(11)



1-3 Stair types

n 4 3]
13
odd C( T ) C(1,-' )
[1]3 3]
(1,1)-stair (3,3)-stair
(1]
3 3]
even (<1~_. )e@fm g( >e@w4n
3] 13
(3,1)-stair (1,3)-stair



(4) 1-3-M2V - - Refinement of the 1-3 Theorem

The Theorem from before can be refined in the following way:

Theorem (rough statement) (B.-Charlton, 2019+)

If a Young diagram k can be glued together by (a, b)-stairs, for fixed a, b € {1, 3}, then

¢ (k) is a polynomial in (a, b)-stairs.

Example

‘OJP—‘OJ
w
I
(<]
=
w

~
‘oo»—loo
|
|




(4) 1-3-M2V - - Refinement of the 1-3 Theorem

The Theorem from before can be refined in the following way:

Theorem (rough statement) (B.-Charlton, 2019+)

If a Young diagram k can be glued together by (a, b)-stairs, for fixed a, b € {1, 3}, then
¢ (k) is a polynomial in (a, b)-stairs.

Example

c Q’/Tlﬁ

co»—Aoor—A‘
w»—Aoo»—A‘

BEREE
[~



@ Schur MZV generalize MZV and MZSYV into one object.

@ The algebraic structure of Schur MZV is easy to describe.

@ We have sum formulas for a few shapes.

@ Symmetric & Even sum formulas are known for all shapes.

@ Inthe 1-3-case, one can write Schur MZV in terms of single zeta values.
@ There are more results (e.g. Ohno-type relations for certain ribbons).

@ There are various further open problems regarding Schur MZV
(e.g. integral representation)

Thank you very much for your attention !



(6) Bonus - Integral expression

Theorem (Kaneko-Yamamoto)

For every indexsets k = (k1,...,k;),1 = (l1,...,ls), M = k, + 5 we have

¢ | =cxer =1 ,

| oo |ls—a | M

where the right-hand side is given by a Yamamoto 2-poset integral.

Example k = (4,1),1= (3,2,2):

4]
C(w 3)21




(6) Bonus - Integral expression

The result of Kaneko-Yamamoto can be generalized to arbitrary ribbons.

hlilj]
g
el f
‘a‘b‘c d

Theorem (Nakasuji-Phuksuwan-Yamasaki)
Every Schur MZV of ribbon shape can be written as a Yamamoto 2-poset integral.

Open question

Can an arbitrary Schur MZV be written as a 2-poset integral?

alb 1 .
C(cd): 2 mg-mz-mz-mz_I( ?)

maq < myp
AN AN
me < myg




@ Bonus - Special types of Young tableux & Regularized MZV

To state the Jacobi-Trudi formula we need the following notations.

o Let 79128 ( )\ /11) be the subset of T'(\/ 1) consisting of all Young tableaux with
the same entries on the diagonal.

Example
2[1]6]8]
915|121 )
395 e T998((5,4,4,2,1)/(1)).
13
5
e Denote for k1, ...,k > 1by (*(k1,..., k) the stuffle regularized

multiple zeta value (with (*(1) = 0).

Example

Iy
*
—
—_
~—
Iy

"(2) = (1L,2)+ (2, ) +¢73),
¢"(2,1) = =¢(1,2) = ¢(3) = —2¢(3) -



(6) Bonus - Regularized Jacobi-Trudi formula

Let A\ = (A1,...,A\n)and = (fu1, .. ., fiy) be partitions with po C .

Regularized Jacobi-Trudi formula (Nakasuji-Phuksuwan-Yamasaki, B.-Charlton)

For an admissible Young tableau k = (k; ;) € T9%8(\/p) and d;—; = k; j we have

¢(k) = det (C*(d_u;+j—1a d—u;+j—27 ce d—u;ﬂ—()\;—u}—iﬂ)))1<ij<)\1 ’
Lit A\ —ps;—i+5=0

where we set (*( -+ ) = , A



(6) Bonus - Jacobi-Trudi formula - Example

Example
do [ |\ 1 ddrds) C(doyersdd) (g rda)
¢ ||d=1| do = ¢(do) ¢(do, d1) ¢(do, d1,d2)
d_s 0 1 ¢(d2)
Al e(dadr) C(dogsendy) Cdoss...da)
¢ | |d-1|do = 1 C(do,dy) ¢(do, d1,d2)
» 0 1 ¢(dz)




(6) Bonus - Thick stairs for (@, b) = (1, 3)

Consequence of Jacobi-Trudi formula and the formula for stairs: The thick stairs in
the case (@, b) = (1, 3) are Hankel-determinants in odd zeta values.

Example

{

3
13
13]

)

w

3]

W =W~

I
‘OJD—‘OJD—‘OJ

11¢3) @)
£¢(n) ¢y’
L6 cay
| can cus)
¢(11) ¢(15) ¢(19)




(6) Bonus - Thick stairs for (@, b) = (1, 3)

Consequence of Jacobi-Trudi formula and the formula for stairs: The thick stairs in
the case (a, b) = (1, 3) are Hankel-determinants in odd zeta values.

Example
1[3]1]3]
113113
¢|[311]3 - E|ian &a),
113 46 1¢(15) ¢(19)
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(6) Bonus - 1-3-Formulas for non-admissible MZV

We also have 1-3-Formulas for the (non-admissible) stuffle regularized MZV:

Theorem (B.-Yamasaki, B.-Charlton)
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(6) Bonus - 1-2-Stairs

We have
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but in general it is

N —

2]
zaxm—c(lji )¢@Kw>k>m.

1
c(le)cmw»
2

Also easy to check:




