Sum/Some formulas for Schur multiple zeta values

Henrik Bachmann

based on joint works (in progress) with

- S. Kadota, Y. Suzuki, S. Yamamoto, Y. Yamasaki
- S. Charlton

Multiple zeta values and related topics, Kyushu University, 12th June 2019 www.henrikbachmann.com

Schur multiple zeta values

$$\zeta \left(\begin{array}{c|c} & h \\ \hline e & f & g \\ \hline b & d \\ \hline a & c \end{array} \right)$$

Overview

2

Sum formulas

$$\zeta(1,4) + \zeta(2,3) + \zeta(3,2) = \zeta(5)$$

3 & 4

Symmetric & Even sum formulas

$$\zeta(2,4) + \zeta(4,2) = \frac{3}{4}\zeta(6)$$

5

1-3 Schur MZV

$$\zeta\left(\begin{array}{c} \begin{array}{c} 1\\ \hline \begin{array}{c} \cdot & 3\\ \hline \end{array} \\ \begin{array}{c} 1\\ \hline \end{array} \\ \end{array}\right) = \frac{2}{4^n}\zeta(4n+1)$$

Definition

For $k_1,\ldots,k_{r-1}\geq 1, k_r\geq 2$ define the **multiple zeta value** (MZV) by

$$\zeta(k_1, \dots, k_r) = \sum_{0 < m_1 < \dots < m_r} \frac{1}{m_1^{k_1} \cdots m_r^{k_r}}$$

and the multiple zeta-star value (MZSV) by

$$\zeta^*(k_1, \dots, k_r) = \sum_{0 < m_1 < \dots < m_r} \frac{1}{m_1^{k_1} \cdots m_r^{k_r}}.$$

weight: $k_1 + \cdots + k_r$, depth: r.

Today: Introduce a simultaneous generalization of MZV and MZSV, given by Schur MZV, and discuss their sum formulas.

• By a **partition** we denote a tuple $\lambda=(\lambda_1,\ldots,\lambda_n)$ with $\lambda_1>\cdots>\lambda_n>1$.

- $\bullet |\lambda| = \lambda_1 + \dots + \lambda_n.$
- Its **transpose** is denoted by $\lambda'=(\lambda'_1,\dots,\lambda'_m)$ and it is defined by transposing the corresponding Young diagram.

Example

A partition and its transpose visualized by Young diagrams

$$\lambda = (5, 2, 1) =$$
 $\lambda' = (3, 2, 1, 1, 1) =$

1 Schur MZV - Partitions & Young Tableaux

Let $\lambda=(\lambda_1,\ldots,\lambda_n)$ be a partition.

- For another partition $\mu=(\mu_1,\ldots,\mu_r)$ we write $\mu\subset\lambda$ if $r\leq n$ and $\mu_j<\lambda_j$ for $j=1,\ldots,r$.
- ullet For partitions λ,μ with $\mu\subset\lambda$ we define

$$D(\lambda/\mu) = \{(i,j) \in \mathbb{Z}^2 \mid 1 \le i \le n, \mu_i < j \le \lambda_i \}.$$

• We denote the set of all **corners** of λ/μ by $\operatorname{Cor}(\lambda/\mu) \subset D(\lambda/\mu)$.

Example When $\lambda/\mu=(5,4,3)/(3,1)$ we have

$$D(\lambda/\mu) = \{(1,4), (1,5), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3)\},$$

$$\operatorname{Cor}(\lambda/\mu) = \{(1,5), (2,4), (3,3)\},$$

which we visualize (Corners = ●) in the corresponding Young diagram:

• A (skew) Young tableau $\mathbf{k}=(k_{i,j})$ of shape λ/μ is a collection of $k_{i,j}\in\mathbb{N}$ for all $(i,j)\in D(\lambda/\mu)$.

Example When $\lambda/\mu=(5,4,3)/(3,1)$ we visualize this Young tableau by

$$\mathbf{k} = (k_{i,j}) = \frac{\begin{vmatrix} k_{1,4} k_{1,5} \\ k_{2,2} k_{2,3} k_{2,4} \\ k_{3,1} k_{3,2} k_{3,3} \end{vmatrix}}{k_{3,1} k_{3,2} k_{3,3}}.$$

- A Young tableau $(m_{i,j})$ is called **semi-standard** if $m_{i,j} < m_{i+1,j}$ and $m_{i,j} \leq m_{i,j+1}$ for all i and j.
- The set of all Young tableaux and all semi-standard Young tableaux of shape λ/μ are denoted by ${\rm YT}(\lambda/\mu)$ and ${\rm SSYT}(\lambda/\mu)$, respectively.

A Young tableau $\mathbf{k}=(k_{i,j})\in \mathrm{YT}(\lambda/\mu)$ is called **admissible** if $k_{i,j}\geq 2$ for $(i,j)\in \mathrm{Cor}(\lambda/\mu)$.

Definition (Yamasaki 2010, Nakasuji-Phuksuwan-Yamasaki 2018)

For an admissible $\mathbf{k}=(k_{i,j})\in\mathrm{YT}(\lambda/\mu)$ the Schur multiple zeta value is defined by

$$\zeta(\mathbf{k}) = \sum_{(m_{i,j}) \in SSYT(\lambda/\mu)} \prod_{(i,j) \in D(\lambda/\mu)} \frac{1}{m_{i,j}^{k_{i,j}}}.$$

These generalize MZV and MZSV in the following way.

$$\zeta(k_1,\ldots,k_r) = \zeta\left(\begin{array}{|c|} \hline k_1 \\ \hline \vdots \\ \hline k_r \end{array} \right) \quad \text{and} \quad \zeta^{\star}(k_1,\ldots,k_r) = \zeta\left(\begin{array}{|c|} \hline k_1 \\ \hline \vdots \\ \hline k_r \end{array} \right) \;.$$

Example 1 For $a \geq 1$ and $b, c \geq 2$ we have

$$\zeta\left(\left[\begin{array}{c|c} a & b \\ \hline c & \end{array} \right) = \sum_{\substack{m_a \leq m_b \\ \land \\ m_c}} \frac{1}{m_a^a \cdot m_b^b \cdot m_c^c} \, .$$

Clearly every Schur MZV is just a linear combination of MZV, e.g.

$$\zeta\left(\begin{array}{|c|} \hline a & b \\ \hline c \\ \hline \end{array}\right) = \zeta(a,c,b) + \zeta(a,b,c) + \zeta(a+b,c) + \zeta(a,b+c)$$
.

1 Schur MZV - Definition - Examples

Example 2

For $a,b,d\geq 1$ and $c,e,f\geq 2$ we have

$$\zeta\left(\begin{array}{|c|c|c}\hline a&b&c\\\hline d&e\\\hline f\end{array}\right) = \sum_{\substack{m_a \leq m_b \leq m_c\\ \land & \land\\ m_d \leq m_e\\ m_f}} \frac{1}{m_a^a \cdot m_b^b \cdot m_c^c \cdot m_d^d \cdot m_e^e \cdot m_f^f}.$$

Example 3

For $b,d \geq 1$ and $c,e,f \geq 2$ we have

$$\zeta\left(\begin{array}{c|c} \hline b & c \\ \hline d & e \\ \hline f \end{array} \right) = \sum_{\substack{m_b \leq m_c \\ \land \\ m_f}} \frac{1}{m_b^b \cdot m_c^c \cdot m_d^d \cdot m_e^e \cdot m_f^f}.$$

1 Schur MZV - Arakawa-Kaneko zeta values & Ohno's 🖰

In Ohno's talk on monday we saw the following results.

Theorem (Kuba 2010, Yamamoto 2016+)

For $k_1,\ldots,k_{r-1},m\geq 1$, $k_r\geq 2$ the Arakawa-Kaneko zeta value can be written as

$$\xi(k_1,\ldots,k_{r-1},k_r-1;m)=\zeta\left(\underbrace{\frac{k_1}{\vdots}}_{m}\right).$$

Ohno's \P Identity: For $a,b\geq 1$ we have

$$\zeta\left(\underbrace{\frac{1}{\vdots\atop 1}\atop 1}\atop a+1}\right\}b\right) = \zeta\left(\underbrace{\frac{1}{\vdots\atop 1}\atop 1}\atop b+1}\right\}a\right)\;.$$

Compared to multiple zeta values, the product of two arbitrary Schur multiple zeta values can be written quite easily.

Example The harmonic product formula of MZV is given by

$$\zeta(a) \cdot \zeta(b) = \sum_{m>0} \frac{1}{m^a} \sum_{n>0} \frac{1}{n^b}$$

$$= \sum_{0 < m < n} \frac{1}{m^a n^b} + \sum_{0 < n < m} \frac{1}{m^a n^b} + \sum_{m=n>0} \frac{1}{m^{a+b}}$$

$$= \zeta(a,b) + \zeta(b,a) + \zeta(a+b).$$

Using the notion of Schur MZV this can be written as

$$\zeta(\boxed{a})\,\zeta(\boxed{b}) = \sum_{0 < m < n} \frac{1}{m^a n^b} + \sum_{0 < n < m} \frac{1}{m^a n^b} = \zeta(\boxed{a}\boxed{b}) + \zeta\left(\boxed{\frac{b}{a}}\right).$$

Compared to multiple zeta values, the product of two arbitrary Schur multiple zeta values can be written quite easily.

Example The harmonic product formula of MZV is given by

$$\zeta(a) \cdot \zeta(b,c) = \zeta(a,b,c) + \zeta(b,a,c) + \zeta(b,c,a) + \zeta(a+b,c) + \zeta(b,a+c).$$

Using the notion of Schur MZV this can be written as

$$\zeta(a)\zeta\left(b\atop c\right) = \zeta\left(b\atop a\ c\right) + \zeta\left(b\atop c\atop a\right).$$

In general the product of two Schur MZV is always the sum of two Schur MZV.

Example

$$\zeta\left(\begin{array}{c} e \\ b \ d \\ a \ c \end{array}\right) \zeta\left(\begin{array}{c} h \\ f \ g \end{array}\right) = \zeta\left(\begin{array}{c} h \\ f \ g \end{array}\right) + \zeta\left(\begin{array}{c} h \\ e \ f \ g \end{array}\right) \ .$$

Some sum formulas...

For all $k > r \ge 1$ we have

$$\sum_{\substack{k_1 + \dots + k_r = k \\ k_1, \dots, k_{r-1} \ge 1, k_r \ge 2}} \zeta(k_1, \dots, k_r) = \zeta(k),$$

$$\sum_{\substack{k_1 + \dots + k_r = k \\ k_1, \dots, k_{r-1} \ge 1, k_r \ge 2}} \zeta^{\star}(k_1, \dots, k_r) = \binom{k-1}{r-1} \zeta(k),$$

For $k \geq 4$ we have (Kaneko-Tsumura 2019, Kaneko's talk yesterday)

$$\sum_{\substack{a+b+c=k\\a,b\geq 1,c\geq 2}} T(a,b,c) + \sum_{j=2}^{k-2} T(1,k-1-j,j) = \frac{2}{3} T(2) T(k-2).$$

Key property of a "sum formula"

The number of terms on the right-hand side do not depend on the weight.

2 Sum formulas - for Schur multiple zeta values

Goal of the project: For a fixed shape λ/μ we want to evaluate the following sum:

$$\sum_{\substack{\mathbf{k} \in \mathrm{YT}(\lambda/\mu)\\ \mathrm{wt}(\mathbf{k}) = k\\ \mathbf{k} \text{ is admissible}}} \zeta(\mathbf{k})\,.$$

Goal of the project: For a fixed shape λ/μ we want to evaluate the following sum:

$$\sum_{\substack{\mathbf{k} \in \mathrm{YT}(\lambda/\mu)\\ \mathrm{wt}(\mathbf{k}) = k\\ \mathbf{k} \text{ is admissible}}} \zeta(\mathbf{k})\,.$$

Bad news: So far we just succeeded for a few shapes λ/μ .

Goal of the project: For a fixed shape λ/μ we want to evaluate the following sum:

$$\sum_{\substack{\mathbf{k} \in \mathrm{YT}(\lambda/\mu)\\ \mathrm{wt}(\mathbf{k}) = k\\ \mathbf{k} \text{ is admissible}}} \zeta(\mathbf{k})\,.$$

Bad news: So far we just succeeded for a few shapes λ/μ .

Good news: If we take the sum just over all $k_{i,j} \in \mathcal{N}$ for some subset $\mathcal{N} \subset \mathbb{Z}_{\geq 2}$ (symmetric sums), we can do it for all shapes.

For r > 1, s > 0 and k > r + s > 1 we have

$$\sum_{\substack{k_1+\dots+k_r+l_1+\dots+l_s=k\\k_1,\dots,k_{r-1}\geq 1,k_r\geq 2\\l_1,\dots,l_s\geq 1}} \zeta \begin{pmatrix} \frac{l_1}{\vdots}\\l_s\\\hline k_1&\dots&k_r \end{pmatrix} = \binom{k-1}{r-1}\zeta(k).$$

For $r \geq 1, s \geq 0$ and $k > r + s \geq 1$ we have

$$\sum_{\substack{k_1+\cdots+k_r+l_1+\cdots+l_s=k\\k_1,\ldots,k_{r-1}\geq 1,k_r\geq 2\\l_1,\ldots,l_s\geq 1}} \zeta \begin{pmatrix} \boxed{l_1}\\\vdots\\l_s\\\hline k_1&\ldots&k_r \end{pmatrix} = \binom{k-1}{r-1} \zeta(k) \, .$$

Great!

Are all sum of Schur multiple zeta values rational multiples of $\zeta(k)$?

For $r \geq 1, s \geq 0$ and $k > r + s \geq 1$ we have

$$\sum_{\substack{k_1+\dots+k_r+l_1+\dots+l_s=k\\k_1,\dots,k_{r-1}\geq 1,k_r\geq 2\\l_1,\dots,l_s\geq 1}} \zeta \begin{pmatrix} \boxed{l_1}\\\vdots\\l_s\\\hline k_1&\dots&k_r \end{pmatrix} = \binom{k-1}{r-1} \zeta(k) \, .$$

Great!

Are all sum of Schur multiple zeta values rational multiples of $\zeta(k)$?

No

For $r, s \ge 1$ and k > r + s we have

$$\sum_{\substack{k_1 + \dots + k_r + l_1 + \dots + l_s = k \\ k_1, \dots, k_{r-1} \ge 1, k_r \ge 2 \\ l_1, \dots, l_{s-1} \ge 1, l_s \ge 2}} \zeta \begin{pmatrix} \boxed{k_1 & l_1 & \dots & l_s \\ \vdots & & & \\ k_r & & & \\ \end{pmatrix}}$$

$$= \binom{k-2}{s} \zeta(k) - \sum_{a=1}^s \binom{k-a-2}{s-a} \zeta(a, k-a) - (-1)^s \sum_{a=s+1}^{r+s-1} \zeta(a, k-a)$$

$$- \sum_{a=2}^s (-1)^a \binom{k-a-2}{s-a} \zeta(a) \zeta(k-a) - \sum_{a=2}^r \binom{k-a-2}{s-1} \zeta(a) \zeta(k-a)$$

$$- \sum_{a=r+1}^{r+s-1} (-1)^{r-a} \binom{k-a-2}{r+s-a-1} \zeta(a) \zeta(k-a).$$



Question

Sum of Schur multiple zeta values are multiple zetas of depth = "number of corners"?

Question

Sum of Schur multiple zeta values are multiple zetas of depth = "number of corners"?

No...

Theorem (B.-Kadota-Suzuki-Yamamoto-Yamasaki, 2019+)

For $k \geq 5$ we have

$$\sum_{\substack{a+b+c+d=k\\ a,b,c\geq 1\\ d\geq 2}} \zeta\left(\frac{\boxed{a} \ \ b}{\boxed{c} \ \ d}\right) = (k-4)\zeta(k) - (k-2)\zeta(1,k-1) + (2k-6)\zeta(2,k-2)$$

$$-2\zeta(k-3,3) + (k-2)\zeta(k-2,2) \, .$$

- In general it is difficult to evaluate sums over all admissible Young tableaux.
- \bullet For example: Summing the following over all $a\geq 1, b,c\geq 2$ with a+b+c=k

$$\zeta\left(\begin{bmatrix} a & b \\ c \end{bmatrix}\right) = \zeta(a,b,c) + \zeta(a,c,b) + \zeta(a+b,c) + \zeta(a,b+c),$$

we get the sum

$$\sum_{\substack{a+b+c=k\\a\geq 1,b,c\geq 2}}\zeta(a,b,c)=\sum_{\substack{a+b+c=k\\a,b\geq 1,c\geq 2\\=\zeta(k)}}\zeta(a,b,c)-\sum_{\substack{a+c=k-1\\a\geq 1,c\geq 2}}\zeta(a,1,c)\,.$$

- In general it is difficult to evaluate sums over all admissible Young tableaux.
 - \bullet For example: Summing the following over all $a\geq 1, b,c\geq 2$ with

$$a+b+c=k$$

$$\zeta\left(\begin{array}{|c|} \hline a & b \\ \hline c \\ \hline \end{array}\right) = \zeta(a,b,c) + \zeta(a,c,b) + \zeta(a+b,c) + \zeta(a,b+c),$$

we get the sum

$$\sum_{\substack{a+b+c=k\\a\geq 1,b,c\geq 2}}\zeta(a,b,c)=\sum_{\substack{a+b+c=k\\a,b\geq 1,c\geq 2\\=\zeta(k)}}\zeta(a,b,c)-\sum_{\substack{a+c=k-1\\a\geq 1,c\geq 2}}\zeta(a,1,c)\,.$$

Easier: Evaluate symmetric sums of the form

$$\sum_{a,b,c\in\mathcal{N}} \zeta\left(\begin{bmatrix} a & b \\ c \end{bmatrix} \right)$$

for some $\mathcal{N} \subset \mathbb{Z}_{\geq 2}$.

ullet For a subset $\mathcal{N}\subset\mathbb{Z}_{\geq 2}$ we define

$$YT(\lambda, \mathcal{N}) = \{(k_{i,j}) \in YT(\lambda) \mid k_{i,j} \in \mathcal{N}\}$$

ullet The generating series for sums of Schur multiple zeta values with entries in ${\cal N}$ by

$$G_{\mathcal{N}}(\lambda, X) = \sum_{\mathbf{k} \in YT(\lambda, \mathcal{N})} \zeta(\mathbf{k}) X^{\text{wt}(\mathbf{k})} \in \mathcal{Z}[[X]].$$

The coefficient of X^k in these generating series are examples of "symmetric sums".

- Let $\Lambda \subset \mathbb{Q}[[x_1, x_2, \dots]]$ be the \mathbb{Q} -algebra of symmetric functions.
- For a partition λ let s_{λ} be the **Schur function** defined by

$$s_{\lambda}(x_1, x_2, \dots) = \sum_{(m_{i,j}) \in SSYT(\lambda)} \prod_{(i,j) \in D(\lambda)} x_{m_{i,j}}.$$

- The s_{λ} form a basis of Λ .
- $\bullet \ \ \text{Notation:} \ (1^r) = (\underbrace{1, \dots, 1}) = \boxed{\vdots}.$
- ullet For $r\geq 1$ let $e_r=s_{(1^r)}$ be the elementary symmetric functions.

$$e_r = s_{(1^r)} = s_{=} = \sum_{0 < m_1 < \dots < m_r} x_{m_1} \dots x_{m_r}.$$

3 Symmetric sum formulas - the map $\phi_{\mathcal{N}}$

Lemma

For any subset $\mathcal{N}\subset\mathbb{Z}_{\geq 2}$ the linear map $\phi_{\mathcal{N}}$, defined by $\phi_{\mathcal{N}}(1)=1$ and on the generators by

$$\phi_{\mathcal{N}}: \Lambda \longrightarrow \mathcal{Z}[[X]]$$

$$s_{\lambda} \longmapsto G_{\mathcal{N}}(\lambda, X)$$

is a Q-algebra homomorphism.

Proof sketch: Make a change of variables

$$x_m \mapsto \sum_{k \in \mathcal{N}} \frac{X^k}{m^k}$$
.

This Lemma allows us to use linear & algebraic relations among s_{λ} to evaluate the $G_{\mathcal{N}}.$

Proposition (Jacobi-Trudi formula)

For a partition $\lambda=(\lambda_1,\ldots,\lambda_n)$ with transpose $\lambda'=(\lambda'_1,\ldots,\lambda'_m)$ we have

$$s_{\lambda} = \det(e_{\lambda'_i - i + j})_{1 \le i, j \le m}$$
.

Example

$$s_{\square} = \det \begin{pmatrix} e_2 & e_3 \\ e_1 & e_2 \end{pmatrix} = e_2^2 - e_1 e_3 = s_{\square}^2 - s_{\square} s_{\square}.$$

$$Z_{\mathcal{N}}(r,X) = G_{\mathcal{N}}((1^r),X) = \sum_{k_1,\dots,k_r \in \mathcal{N}} \zeta(k_1,\dots,k_r) X^{k_1+\dots+k_r}.$$

Corollary

For any subset $\mathcal{N}\subset\mathbb{Z}_{\geq 2}$ and a partition $\lambda=(\lambda_1,\ldots,\lambda_n)$ with transpose $\lambda'=(\lambda'_1,\ldots,\lambda'_m)$ we have

$$G_{\mathcal{N}}(\lambda, X) = \det(Z_{\mathcal{N}}(\lambda'_i - i + j, X))_{1 \le i, j \le m}.$$

$$Z_{\mathcal{N}}(r,X) = G_{\mathcal{N}}((1^r),X) = \sum_{k_1,\dots,k_r \in \mathcal{N}} \zeta(k_1,\dots,k_r) X^{k_1+\dots+k_r}.$$

Corollary

For any subset $\mathcal{N}\subset\mathbb{Z}_{\geq 2}$ and a partition $\lambda=(\lambda_1,\ldots,\lambda_n)$ with transpose $\lambda'=(\lambda'_1,\ldots,\lambda'_m)$ we have

$$G_{\mathcal{N}}(\lambda, X) = \det(Z_{\mathcal{N}}(\lambda'_i - i + j, X))_{1 \le i, j \le m}.$$

Using Hoffmans symmetric sum formulas (appearing in his talk yesterday) we get

Corollary

For any subset $\mathcal{N}\subset\mathbb{Z}_{\geq 2}$ we have

$$G_{\mathcal{N}}(\lambda, X) \in \mathbb{Q}[\zeta(2), \zeta(3), \zeta(4), \dots][[X]].$$

Example

$$G_{\mathcal{N}}(\coprod, X) = Z_{\mathcal{N}}(2, X)^2 - Z_{\mathcal{N}}(1, X)Z_{\mathcal{N}}(3, X).$$

Considering the coefficient of X^k gives the following sum formula for all $k \geq 1$

$$\sum_{\substack{a,b,c,d\in\mathcal{N}\\a+b+c+d=k}} \zeta\left(\frac{\boxed{a} \boxed{b}}{c}\right) = \sum_{\substack{m+n=k\\m,n\geq 1}} \left(\sum_{\substack{m_1+m_2=m\\m_1,m_2\in\mathcal{N}}} \zeta(m_1,m_2)\right) \left(\sum_{\substack{n_1+n_2=n\\n_1,n_2\in\mathcal{N}}} \zeta(n_1,n_2)\right)$$
$$-\sum_{\substack{m+n=k\\m\in\mathcal{N}\\n\geq 1}} \zeta(m)\sum_{\substack{n_1+n_2+n_3=n\\n_1,n_2,n_3\in\mathcal{N}}} \zeta(n_1,n_2,n_3).$$

From now on we consider the case $\mathcal{N}=\mathrm{ev}:=\{2,4,6,\dots\}$.

ullet A Young tableau ${f k}=(k_{i,j})\in {
m YT}(\lambda)$ is called **even**, if all $k_{i,j}$ are even.

With the notation from before we have

$$G_{\mathrm{ev}}(\lambda, X) = \sum_{\substack{\mathbf{k} \in YT(\lambda) \\ \mathbf{k} \text{ even}}} \zeta(\mathbf{k}) X^{\mathrm{wt}(\mathbf{k})} =: \sum_{k \ge 1} E_{2k}(\lambda) X^{2k}.$$

In the following we are therefore interested in evaluating

$$E_{2k}(\lambda) = \sum_{\substack{\mathbf{k} \in \mathrm{YT}(\lambda) \\ \mathbf{k} \text{ even} \\ \mathrm{wt}(\mathbf{k}) = 2k}} \zeta(\mathbf{k}) \,.$$

Theorem (Hoffman 2017, but already presented tomorrow 7 years ago in Hamburg)

For k > r > 1 we have

$$E_{2k}((1^r)) = \frac{1}{2^{2(r-1)}} {2r-1 \choose r} \zeta(2k)$$
$$- \sum_{j=1}^{\lfloor \frac{r-1}{2} \rfloor} \frac{1}{2^{2r-3}(2j+1)B_{2j}} {2r-2j-1 \choose r} \zeta(2j)\zeta(2k-2j).$$

$$E_{2k} (\boxminus) = \frac{3}{4} \zeta(2k) ,$$

$$E_{2k} (\boxminus) = \frac{5}{8} \zeta(2k) - \frac{1}{4} \zeta(2) \zeta(2k-2) ,$$

$$E_{2k} (\boxminus) = \frac{35}{64} \zeta(2k) - \frac{5}{16} \zeta(2) \zeta(2k-2) ,$$

$$E_{2k}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = \frac{63}{128}\zeta(2k) - \frac{21}{64}\zeta(2)\zeta(2k-2) + \frac{3}{64}\zeta(4)\zeta(2k-4).$$

Lemma (Hoffman, 2017)

For $k \geq r \geq 1$ have

$$E_{2k}([]) = E_{2k}((r)) = \sum_{j=1}^{r} {k-j \choose r-j} E_{2k}((1^{j})).$$

Example

$$E_{2k}\left(\square\right) = \frac{4k-1}{4}\zeta(2k),$$

$$E_{2k}\left(\square\right) = \frac{4k^2 - 6k + 1}{8}\zeta(2k) - \frac{1}{4}\zeta(2)\zeta(2k-2),$$

$$E_{2k}\left(\square\right) = \frac{32k^3 - 120k^2 + 112k - 15}{192}\zeta(2k) - \frac{4k-7}{16}\zeta(2)\zeta(2k-2).$$

For any partition $\lambda=(\lambda_1,...,\lambda_n)$ there exist unique polynomials

$$p_{\lambda,j}(x) \in \mathbb{Q}[x], \quad j = 0, \dots, \left\lfloor \frac{|\lambda| - 1}{2} \right\rfloor$$

of degree $\deg(p_{\lambda,j}) < \min(|\lambda| - 2j, \lambda_1)$, such that we have for all $k \geq |\lambda|$

$$E_{2k}(\lambda) = \sum_{j=0}^{\lfloor \frac{|\lambda|-1}{2} \rfloor} p_{\lambda,j}(k)\zeta(2j)\zeta(2(k-j)).$$

In particular we have $E_{2k}(\lambda) \in \pi^{2k}\mathbb{Q}$.

$$\left(\zeta(0) = -\frac{1}{2}\right)$$

Remark

The Theorem also holds for skew type young diagrams λ/μ .

$$\begin{split} E_{2k} \left(\boxminus \right) &= \frac{3k-1}{4} \zeta(2k) - \frac{1}{2} \zeta(2) \zeta(2k-2) \,, \\ E_{2k} \left(\boxminus \right) &= -\frac{2k+1}{32} \zeta(2k) + \frac{2k-5}{8} \zeta(2) \zeta(2k-2) \,, \\ E_{2k} \left(\boxminus \right) &= -\frac{10k+5}{128} \zeta(2k) + \frac{8k-29}{64} \zeta(2) \zeta(2k-2) + \frac{15}{64} \zeta(4) \zeta(2k-4) \,, \\ E_{2k} \left(\boxminus \right) &= -\frac{10k+5}{512} \zeta(2k) - \frac{5k-5}{64} \zeta(2) \zeta(2k-2) + \frac{40k-55}{256} \zeta(4) \zeta(2k-4) \,. \end{split}$$

Example For $k \ge 9$ we have

$$E_{2k} \left(\bigoplus \right) = -\frac{(2k+1)(k+1)}{2^{14}} \zeta(2k)$$

$$+ \frac{28k^2 - 78k + 35}{2^{13}} \zeta(2)\zeta(2k-2)$$

$$+ \frac{148k^2 - 798k + 989}{2^{13}} \zeta(4)\zeta(2k-4)$$

$$- \frac{196k^2 - 882k + 749}{2^{13}} \zeta(6)\zeta(2k-6)$$

$$+ \frac{35}{2^{13}} \zeta(8)\zeta(2k-8).$$

Hoffman gives an explicit formula for the generating series for $E_{2k}((\mathbf{1}^r))$

$$1 + \sum_{k>r>r} E_{2k}((1^r))X^{2k}Y^r = \frac{\sin(\pi X\sqrt{1-Y})}{\sqrt{1-Y}\sin(\pi X)},$$

from which we can deduce

$$Z_{\text{ev}}(r,X) = \left(\frac{1}{r!} \left(\frac{d}{dY}\right)^r \frac{\sin(\pi X \sqrt{1-Y})}{\sqrt{1-Y}\sin(\pi X)}\right)_{|Y=0}.$$

Hoffman gives an explicit formula for the generating series for $E_{2k}((\mathbf{1}^r))$

$$1 + \sum_{k \ge r \ge r} E_{2k}((1^r)) X^{2k} Y^r = \frac{\sin(\pi X \sqrt{1 - Y})}{\sqrt{1 - Y} \sin(\pi X)},$$

from which we can deduce

$$Z_{\text{ev}}(r,X) = \left(\frac{1}{r!} \left(\frac{d}{dY}\right)^r \frac{\sin(\pi X \sqrt{1-Y})}{\sqrt{1-Y} \sin(\pi X)}\right)_{|Y=0}.$$

Doing messy calculations with the cotangents and its derivatives yields the result and an explicit construction of the polynomials $p_{\lambda,j}(x)$.

Remark

One can also prove our Theorem by using a result of Guo-Lei-**Zhao** (2015). In their work they show that one can also write the sum

$$\sum_{m+n=k} m^a n^b \zeta(2m) \zeta(2n)$$

as a sum of $p_j(k)\zeta(2j)\zeta(2(k-j))$ for some $p_j(x)\in\mathbb{Q}[x]$.

4 Even sum formulas - relations among sum formulas

Due to the Theorem we have a map

$$\phi_{\mathrm{ev}}: \Lambda \longrightarrow \mathbb{Q}[\pi^2][[X]]$$

 $s_{\lambda} \longmapsto G_{\mathrm{ev}}(\lambda, X).$

Question

Is ϕ_{ev} injective or are there "relations among sum formulas"?

Due to the Theorem we have a map

$$\phi_{\text{ev}}: \Lambda \longrightarrow \mathbb{Q}[\pi^2][[X]]$$

 $s_{\lambda} \longmapsto G_{\text{ev}}(\lambda, X)$.

Question

Is ϕ_{ev} injective or are there "relations among sum formulas"?

Answer: There seem to be no relation among $G_{\mathrm{ev}}(\lambda,X)$ in a fixed depth $|\lambda|$, but allowing mixed depth we have for example for all $k\geq 2$

$$E_{2k}\left(\square\right) + \frac{7}{4}E_{2k}\left(\square\right) = 2E_{2k}\left(\square\right) + \frac{3}{4}E_{2k}\left(\square\right)$$

and for all $k \geq 4$

$$E_{2k}\left(\square\right) + \frac{1}{2}E_{2k}\left(\square\right) + \frac{15}{32}E_{2k}\left(\square\right) = \frac{1}{2}E_{2k}\left(\square\right) + \frac{3}{8}E_{2k}\left(\square\right).$$

Theorem (Borwein-Bradley-Broadhurst-Lisonek)

For all n > 1 we have

$$\zeta(1,3,\ldots,1,3) = \zeta(\{1,3\}^n) = \frac{2\pi^{4n}}{(4n+2)!} = \frac{1}{4^n}\zeta(\{4\}^n).$$

Using the notion of Schur MZV the identity $\zeta(\{1,3\}^n)=\frac{1}{4^n}\zeta(\{4\}^n)$ reads

$$\zeta \begin{pmatrix} \boxed{\frac{1}{3}} \\ \vdots \\ \boxed{\frac{1}{3}} \end{pmatrix} = \frac{1}{4^n} \zeta(\{4\}^n) .$$

$$\zeta \begin{pmatrix} \boxed{1 \\ 3 \\ \vdots \\ 1 \\ 2 \end{pmatrix} = \frac{1}{4^n} \zeta(\{4\}^n).$$

Theorem (B.-Yamasaki, 2018)

For any $n \ge 1$ we have

$$\zeta\left(\begin{array}{c} \boxed{1}\\ \boxed{1}\\ \boxed{1}\\ \boxed{3} \end{array}\right) = \frac{2}{4^n}\zeta(4n+1)\,,\quad \zeta\left(\begin{array}{c} \boxed{1}\\ \boxed{3}\\ \boxed{1}\\ \boxed{3} \end{array}\right) = \frac{1}{4^n}\zeta(4n+3)\,,$$

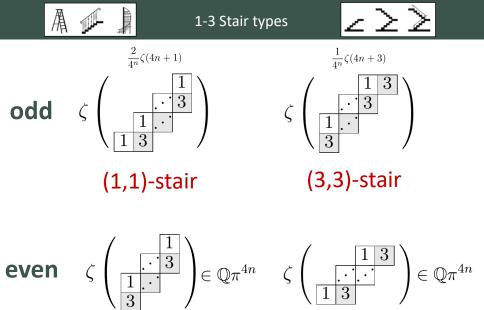
where n is the number of $\frac{1}{3}$ and $\frac{1}{3}$ respectively.

Consequence of the Theorem: Every Checkerboard Schur MZV is a polynomial in odd single zetas and π^4 .

Theorem (B.-Yamasaki, B.-Charlton)

Schur MZV with alternating entries in 1 and 3 are elements in $\mathbb{Q}[\pi^4, \zeta(3), \zeta(5), \ldots]$.

 \bullet We can give explicit formulas for a lot of shapes as determinants in odd zeta values and powers of $\pi^4.$



(1,3)-stair

(3,1)-stair

The Theorem from before can be refined in the following way:

Theorem (rough statement) (B.-Charlton, 2019+)

If a Young diagram \mathbf{k} can be glued together by (a,b)-stairs, for fixed $a,b\in\{1,3\}$, then $\zeta(\mathbf{k})$ is a polynomial in (a,b)-stairs.

The Theorem from before can be refined in the following way:

Theorem (rough statement) (B.-Charlton, 2019+)

If a Young diagram **k** can be glued together by (a, b)-stairs, for fixed $a, b \in \{1, 3\}$, then $\zeta(\mathbf{k})$ is a polynomial in (a,b)-stairs.

$$\begin{array}{c|c}
1 \\
1 & 3 \\
3 & 1 \\
1 & 3 \\
3 & 1
\end{array}$$

$$\zeta \begin{pmatrix} \boxed{1} \\ \boxed{1} \\ \boxed{3} \\ \boxed{1} \\ \boxed{1} \\ \boxed{3} \end{bmatrix} \in \mathbb{Q}\pi^{16}$$

Summary

- Schur MZV generalize MZV and MZSV into one object.
- The algebraic structure of Schur MZV is easy to describe.
- We have sum formulas for a few shapes.
- Symmetric & Even sum formulas are known for all shapes.
- In the 1-3-case, one can write Schur MZV in terms of single zeta values.
- There are more results (e.g. Ohno-type relations for certain ribbons).
- There are various further open problems regarding Schur MZV (e.g. integral representation)

Thank you very much for your attention!

Theorem (Kaneko-Yamamoto)

For every indexsets $\mathbf{k}=(k_1,\ldots,k_r), \mathbf{l}=(l_1,\ldots,l_s), M=k_r+l_s$ we have

$$\zeta \begin{pmatrix} & & & k_1 \\ \vdots & & & \vdots \\ k_{r-1} & & & k_{r-1} \end{pmatrix} =: \zeta(\mathbf{k} \circledast \mathbf{l}^*) = I \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \end{pmatrix},$$

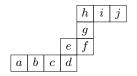
where the right-hand side is given by a Yamamoto 2-poset integral.

Example
$$\mathbf{k} = (4, 1), \mathbf{l} = (3, 2, 2)$$
:

$$\zeta\left(\begin{array}{|c|c|c}\hline 4\\\hline 3 & 2 & 3\end{array}\right) = I\left(\begin{array}{|c|c|c}\hline \\ \end{array}\right)$$

6 Bonus - Integral expression

The result of Kaneko-Yamamoto can be generalized to arbitrary **ribbons**.



Theorem (Nakasuji-Phuksuwan-Yamasaki)

Every Schur MZV of ribbon shape can be written as a Yamamoto 2-poset integral.

Open question

Can an arbitrary Schur MZV be written as a 2-poset integral?

$$\zeta\left(\left[\begin{array}{c|c} a & b \\ \hline c & d \end{array} \right) = \sum_{\substack{m_a \leq m_b \\ \land & \land \\ m_c < m_d}} \frac{1}{m_a^a \cdot m_b^b \cdot m_c^c \cdot m_d^d} = I\left(\begin{array}{c} \red{\red{?}} \end{array} \right).$$

To state the Jacobi-Trudi formula we need the following notations.

• Let $T^{\mathrm{diag}}(\lambda/\mu)$ be the subset of $T(\lambda/\mu)$ consisting of all Young tableaux with the same entries on the diagonal.

Example

• Denote for $k_1, \ldots, k_r \ge 1$ by $\zeta^*(k_1, \ldots, k_r)$ the stuffle regularized multiple zeta value (with $\zeta^*(1) = 0$).

$$\zeta^*(1) \cdot \zeta^*(2) = \zeta^*(1,2) + \zeta^*(2,1) + \zeta^*(3),$$

$$\zeta^*(2,1) = -\zeta(1,2) - \zeta(3) = -2\zeta(3).$$

Let
$$\lambda = (\lambda_1, \dots, \lambda_h)$$
 and $\mu = (\mu_1, \dots, \mu_r)$ be partitions with $\mu \subset \lambda$.

Regularized Jacobi-Trudi formula (Nakasuji-Phuksuwan-Yamasaki, B.-Charlton)

For an admissible Young tableau ${f k}=(k_{i,j})\in T^{{
m diag}}(\lambda/\mu)$ and $d_{i-j}=k_{i,j}$ we have

$$\zeta(\mathbf{k}) = \det \left(\zeta^*(d_{-\mu'_j + j - 1}, d_{-\mu'_j + j - 2}, \dots, d_{-\mu'_j + j - (\lambda'_i - \mu'_j - i + j)}) \right)_{1 \le i, j \le \lambda_1},$$

where we set
$$\zeta^*(\cdots) = \begin{cases} 1 & \text{if } \lambda_i' - \mu_j' - i + j = 0 \\ 0 & \text{if } \lambda_i' - \mu_j' - i + j < 0 \end{cases}$$
 .

$$\zeta \begin{pmatrix} \boxed{d_0 & d_1 & d_2} \\ \boxed{d_{-1} & d_0} \\ \boxed{d_{-2}} \end{pmatrix} = \begin{vmatrix} \zeta(d_{-2}, d_{-1}, d_0) & \zeta(d_{-2}, \dots, d_1) & \zeta(d_{-2}, \dots, d_2) \\ \zeta(d_0) & \zeta(d_0, d_1) & \zeta(d_0, d_1, d_2) \\ 0 & 1 & \zeta(d_2) \end{vmatrix}$$

$$\zeta \begin{pmatrix} \boxed{d_1 & d_2} \\ \boxed{d_{-1} & d_0} \\ \boxed{d_{-2}} \end{pmatrix} = \begin{vmatrix} \zeta(d_{-2}, d_{-1}) & \zeta(d_{-2}, \dots, d_1) & \zeta(d_{-2}, \dots, d_2) \\ 1 & \zeta(d_0, d_1) & \zeta(d_0, d_1, d_2) \\ 0 & 1 & \zeta(d_2) \end{vmatrix}$$

Consequence of Jacobi-Trudi formula and the formula for stairs: The thick stairs in the case (a,b)=(1,3) are Hankel-determinants in odd zeta values.

$$\zeta \begin{pmatrix} \boxed{3} & \boxed{1} & \boxed{3} \\ \boxed{1} & \boxed{3} \\ \boxed{3} \end{pmatrix} = \frac{1}{4^2} \begin{vmatrix} \zeta(3) & \zeta(7) \\ \zeta(7) & \zeta(11) \end{vmatrix},$$

$$\zeta \begin{pmatrix}
3 & 1 & 3 & 1 & 3 \\
1 & 3 & 1 & 3 \\
3 & 1 & 3 \\
1 & 3 \\
3 & 3 & 3
\end{pmatrix} = \frac{1}{4^6} \begin{vmatrix}
\zeta(3) & \zeta(7) & \zeta(11) \\
\zeta(7) & \zeta(11) & \zeta(15) \\
\zeta(11) & \zeta(15) & \zeta(19)
\end{vmatrix}.$$

Consequence of Jacobi-Trudi formula and the formula for stairs: The thick stairs in the case (a,b)=(1,3) are Hankel-determinants in odd zeta values.

$$\zeta \left(\begin{array}{c|cccc} & 3 & 1 & 3 \\ \hline & 1 & 3 \\ \hline & 3 & \\ \hline \end{array} \right) = -\frac{1}{4^4} \left| \begin{array}{ccccc} 0 & 0 & \zeta(3) & \zeta(7) \\ 0 & \zeta(3) & \zeta(7) & \zeta(11) \\ \zeta(3) & \zeta(7) & \zeta(11) & \zeta(15) \\ \zeta(7) & \zeta(11) & \zeta(15) & \zeta(19) \\ \end{array} \right| .$$

We also have 1-3-Formulas for the (non-admissible) stuffle regularized MZV:

Theorem (B.-Yamasaki, B.-Charlton)

For $n \geq 0$ we have

$$\zeta^*(\{1,3\}^n,1) = \frac{1}{2^{2n-1}} \sum_{j=1}^n (-1)^j \zeta(4j+1) \zeta(\{4\}^{n-j}),$$

$$\zeta^*(\{3,1\}^n) = \frac{1}{2^{2n-3}} \sum_{\substack{1 \le j \le n-1 \\ 0 \le k \le n-1-j}} (-1)^{j+k} \zeta(4j+1) \zeta(4k+3) \zeta(\{4\}^{n-j-1-k})$$

$$+ (-1)^n \sum_{k=0}^n \frac{1}{4^k} \zeta^*(\{4\}^k) \zeta(\{4\}^{n-k}).$$

We have

$$A_{1,2}(n) = \zeta \begin{pmatrix} & & 1 \\ & \ddots & 2 \\ \hline & 1 & \ddots \\ \hline & 1 & 2 \end{pmatrix} = 3\zeta(3n+1)$$

but in general it is

$$B_{1,2}(n) = \zeta \begin{pmatrix} 1 & 2 \\ \vdots & 2 \end{pmatrix} \notin \mathbb{Q}[\zeta(k) \mid k \ge 2].$$

Also easy to check:

$$\zeta\left(\begin{array}{c} \boxed{1}\\ \boxed{\vdots \ 2} \end{array}\right) = \zeta^{\star}(\{3\}^n).$$