Interpolated Schur multiple zeta values

Henrik Bachmann
Nagoya University

Tokyo Metropolitan University - Number theory seminar 13th December 2016

Slides are available here: www.henrikbachmann.com

Content of this talk

- Overview
- (harmonic) Interpolated multiple zeta values
- (harmonic) Interpolated Schur multiple zeta values
- Main result
- Lemma of Lindström, Gessel \& Viennot
- t-Lattice Graph \& Proof sketch of the main result

Multiple zeta values

Definition

For $N \geq 1$ and $k_{1}, \ldots, k_{r} \in \mathbb{Z}$ define the (harmonic) multiple zeta value by

$$
\zeta_{N}\left(k_{1}, \ldots, k_{r}\right)=\sum_{0<m_{1}<\cdots<m_{r}<N} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{Q}
$$

and the (harmonic) multiple zeta-star value by

$$
\zeta_{N}^{\star}\left(k_{1}, \ldots, k_{r}\right)=\sum_{0<m_{1} \leq \cdots \leq m_{r}<N} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{Q}
$$

For $k_{1}, \ldots, k_{r-1} \geq 1$ and $k_{r} \geq 2$ we have

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=\lim _{N \rightarrow \infty} \zeta_{N}\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{R}
$$

Interpolated multiple zeta values

For numbers $m_{1} \leq m_{2} \leq \cdots \leq m_{r}$ define the number of their equalities by

$$
e\left(m_{1}, \ldots, m_{r}\right)=\sharp\left\{1 \leq i \leq r-1 \mid m_{i}=m_{i+1}\right\}
$$

Definition

For $N \geq 1$ and $k_{1}, \ldots, k_{r} \in \mathbb{Z}$ define the (harmonic) interpolated multiple zeta value by

$$
\zeta_{N}^{t}\left(k_{1}, \ldots, k_{r}\right)=\sum_{0<m_{1} \leq \cdots \leq m_{r}<N} \frac{t^{e\left(m_{1}, \ldots, m_{r}\right)}}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{Q}[t] .
$$

For $t=0$ and $t=1$ it is $\zeta_{N}=\zeta_{N}^{0}$ and $\zeta_{N}^{\star}=\zeta_{N}^{1}$.

Interpolated multiple zeta values

Every ζ_{N}^{t} can be written as a polynomial with coefficients given by ζ_{N}.

Example

For $a, b, c \in \mathbb{Z}$ and $N \geq 1$ we have

$$
\begin{aligned}
\zeta_{N}^{t}(a) & =\zeta_{N}(a) \\
\zeta_{N}^{t}(a, b) & =\zeta_{N}(a, b)+\zeta_{N}(a+b) t \\
\zeta_{N}^{t}(a, b, c) & =\zeta_{N}(a, b, c)+\left(\zeta_{N}(a+b, c)+\zeta_{N}(a, b+c)\right) t \\
& +\zeta_{N}(a+b+c) t^{2}
\end{aligned}
$$

The idea of interpolated Schur multiple zeta

Replace by vertical and horizontal equalities of ordered Young tableaux

Partitions \& (Ordered) Young Tableaux

- By a partition (of $\lambda_{1}+\cdots+\lambda_{h}$) we denote a tuple

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right) \text { with } \lambda_{1} \geq \cdots \geq \lambda_{h} \geq 1
$$

- Its conjugation is denoted by $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{h^{\prime}}^{\prime}\right)$ and it is defined by transposing the corresponding Young diagram.

Example: Partition of 8

$$
\lambda=(5,2,1)=\square \square \square
$$

$$
\lambda^{\prime}=(3,2,1,1,1)=\sharp
$$

Partitions \& (Ordered) Young Tableaux

- For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right)$ we define its coordinates by

$$
D(\lambda)=\left\{(i, j) \in \mathbb{Z}^{2} \mid 1 \leq i \leq h, 1 \leq j \leq \lambda_{i}\right\}
$$

- By a Young tableau of shape λ we denote a tupel $\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right)$ with $k_{i, j} \in \mathbb{Z}$ for indices $(i, j) \in D(\lambda)$.
- Its conjugation is given by $\mathbf{k}^{\prime}=\left(\lambda^{\prime},\left(k_{j, i}\right)\right)$.
- We visualize them in the usual way. For example for $\lambda=(3,3,2,1)$ we write

$$
\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right)=\frac{\frac{k_{1,1} k_{1,2} \mid k_{1,3}}{k_{2,1} k_{2,2} k_{2,3}}}{\frac{k_{3,1} k_{3,2}}{k_{4,1}}} .
$$

- By $\mathrm{YT}(\lambda)$ we denote the set of all Young tableaux of shape λ.

Partitions \& (Ordered) Young Tableaux

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right)$ and $N \geq 1$ we define the set of ordered
Young tableaux by

$$
\operatorname{OYT}_{N}(\lambda)=\left\{\begin{array}{c|c}
& 0<m_{i, j}<N \\
\mathbf{m} \in \mathrm{YT}(\lambda) & m_{i, j} \leq m_{i+1, j} \\
\mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right) & m_{i, j} \leq m_{i, j+1} \\
m_{i, j}<m_{i+1, j+1}
\end{array}\right\}
$$

Example for $N=4$ and $\lambda=(2,2)$

For the set of all ordered Young tableaux we write

$$
\mathrm{OYT}(\lambda)=\bigcup_{N \geq 1} \mathrm{OYT}_{N}(\lambda)
$$

Partitions \& (Ordered) Young Tableaux

Definition

For an ordered Young tableau $\mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right) \in \mathrm{OYT}(\lambda)$ we define the number of vertical equalities by

$$
v(\mathbf{m})=\#\left\{(i, j) \in D(\lambda) \mid m_{i, j}=m_{i+1, j}\right\}
$$

and the number of horizontal equalities by

$$
h(\mathbf{m})=\#\left\{(i, j) \in D(\lambda) \mid m_{i, j}=m_{i, j+1}\right\}
$$

Example:

$$
v\left(\begin{array}{|l|l|}
\begin{array}{|l|l}
2 & 2 \\
\hline 2 & 3 \\
\hline 2 & 3 \\
\hline 2 & 4
\end{array} \\
\hline 2 &
\end{array}\right)=3 \quad, \quad h\left(\begin{array}{l|l|l}
\left.\begin{array}{|l|l|l}
2 & 2 & 3 \\
2 & 3 & \\
\hline 2 & 4 & \\
\hline 2 & &
\end{array}\right)=1 . . .
\end{array}\right.
$$

Interpolated Schur multiple zeta values

Definition

For a Young tableau $\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right) \in \mathrm{YT}(\lambda)$ and $N \geq 1$ we define the (harmonic) interpolated Schur multiple zeta value by

$$
\zeta_{N}^{t}(\mathbf{k})=\sum_{\substack{\mathbf{m} \in \mathrm{OYT}_{N}(\lambda) \\ \mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right)}} t^{v(\mathbf{m})}(1-t)^{h(\mathbf{m})} \prod_{(i, j) \in D(\lambda)} \frac{1}{m_{i, j}^{k_{i, j}}} \in \mathbb{Q}[t] .
$$

Interpolated Schur multiple zeta values

Definition

For a Young tableau $\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right) \in \mathrm{YT}(\lambda)$ and $N \geq 1$ we define the (harmonic) interpolated Schur multiple zeta value by

$$
\zeta_{N}^{t}(\mathbf{k})=\sum_{\substack{\mathbf{m} \in \mathrm{OYT}_{N}(\lambda) \\ \mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right)}} t^{v(\mathbf{m})}(1-t)^{h(\mathbf{m})} \prod_{(i, j) \in D(\lambda)} \frac{1}{m_{i, j}^{k_{i, j}}} \in \mathbb{Q}[t] .
$$

Example for $N=3, \lambda=(2,1)$ and $a, b, c \in \mathbb{Z}$

$$
\left.\begin{array}{c}
\mathrm{OYT}_{3}(\square)=\left\{\begin{array}{ll}
1 & 1 \\
1 & \frac{1}{1} \\
\hline
\end{array} \frac{2}{2}, \frac{1}{2} 1, \frac{1}{2} 2\right. \\
2
\end{array}, \frac{2}{2} 2\right\} .
$$

Interpolated Schur multiple zeta values

Interpolated Schur multiple zeta values generalize interpolated multiple zeta values, since for $\lambda=(1, \ldots, 1)$ we have:

$$
\begin{aligned}
& =\sum_{0<m_{1} \leq \cdots \leq m_{r}<N} \frac{t^{e\left(m_{1}, \ldots, m_{r}\right)}}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}=\zeta_{N}^{t}\left(k_{1}, \ldots, k_{r}\right) .
\end{aligned}
$$

Interpolated Schur multiple zeta values

Define the corners of λ by

$$
\operatorname{Cor}(\lambda)=\{(i, j) \in D(\lambda) \mid(i, j+1) \notin D(\lambda) \text { and }(i+1, j) \notin D(\lambda)\}
$$

A Young tableau $\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right) \in \mathrm{YT}(\lambda)$ with

$$
\begin{aligned}
& k_{i, j} \geq 1 \text { for }(i, j) \notin \operatorname{Cor}(\lambda) \text { and } \\
& k_{i, j} \geq 2 \text { for }(i, j) \in \operatorname{Cor}(\lambda)
\end{aligned}
$$

is called admissible.

Lemma

For an admissible Young tableau \mathbf{k} the following limit exists:

$$
\zeta^{t}(\mathbf{k}):=\lim _{N \rightarrow \infty} \zeta_{N}^{t}(\mathbf{k}) \in \mathbb{R}[t]
$$

(Interpolated) Schur multiple zeta values

Definition

For a partition λ the set of semi-standard Young tableaux is given by

$$
\operatorname{SSYT}(\lambda)=\{\mathbf{m} \in \operatorname{OYT}(\lambda) \mid v(\mathbf{m})=0\}
$$

For an admissible Young tableau $\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right) \in \mathrm{YT}(\lambda)$ the Schur multiple zeta value (Y. Yamasaki) is defined by

$$
\zeta(\mathbf{k})=\sum_{\substack{\operatorname{m} \in \operatorname{SSYT}(\lambda) \\ \mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right)}} \prod_{(i, j) \in D(\lambda)} \frac{1}{m_{i, j}^{k_{i, j}}}
$$

(Interpolated) Schur multiple zeta values

Interpolated Schur multiple zeta values generalize Schur multiple zeta values, since for $t=0$ we have

$$
\begin{aligned}
\zeta^{0}(\mathbf{k})= & \sum_{\substack{\mathbf{m} \in \mathrm{OYT}(\lambda) \\
\mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right)}} 0^{v(\mathbf{m})}(1-0)^{h(\mathbf{m})} \prod_{(i, j) \in D(\lambda)} \frac{1}{m_{i, j}^{k_{i, j}}} \prod_{\substack{\mathbf{m} \in \operatorname{OYT}(\lambda) \\
\mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right) \\
v(\mathbf{m})=0}} \prod_{(i, j) \in D(\lambda)} \frac{1}{m_{i, j}^{k_{i, j}}}=\zeta(\mathbf{k}) .
\end{aligned}
$$

Interpolated Schur multiple zeta values

The transformation $t \rightarrow 1-t$ corresponds to the conjugation $\mathbf{k} \rightarrow \mathbf{k}^{\prime}$:

$$
\begin{aligned}
\zeta_{N}^{1-t}(\mathbf{k}) & =\sum_{\substack{\mathbf{m} \in \mathrm{OYT}_{N}(\lambda) \\
\mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right)}}(1-t)^{v(\mathbf{m})} t^{h(\mathbf{m})} \prod_{(i, j) \in D(\lambda)} \frac{1}{m_{i, j}^{k_{i, j}}} \\
& =\sum_{\substack{\mathbf{m} \in \mathrm{OYT}_{N}(\lambda) \\
\mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right)}}(1-t)^{h\left(\mathbf{m}^{\prime}\right)} t^{v\left(\mathbf{m}^{\prime}\right)} \prod_{(i, j) \in D(\lambda)} \frac{1}{m_{i, j}^{k_{i, j}}} \\
& =\sum_{\substack{\mathbf{m} \in \mathrm{OYT}_{N}\left(\lambda^{\prime}\right) \\
\mathbf{m}=\left(\lambda,\left(m_{i, j}\right)\right)}}(1-t)^{h(\mathbf{m})} t^{v(\mathbf{m})} \prod_{(i, j) \in D\left(\lambda^{\prime}\right)} \frac{1}{m_{i, j}^{k_{j, i}}}=\zeta_{N}^{t}\left(\mathbf{k}^{\prime}\right)
\end{aligned}
$$

Interpolated Schur multiple zeta values

Summarizing Proposition

- In the case $\lambda=(1, \ldots, 1)$ interpolated Schur multiple zeta values are interpolated multiple zeta values:

$$
\zeta_{N}^{t}\left(\begin{array}{c}
k_{1} \\
\vdots \\
k_{r}
\end{array}\right)=\zeta_{N}^{t}\left(k_{1}, \ldots, k_{r}\right) .
$$

- For an admissible Young tableau $\mathbf{k} \in \mathrm{YT}(\lambda)$ we obtain the Schur multiple zeta values for $t=0$:

$$
\zeta^{0}(\mathbf{k})=\zeta(\mathbf{k}) .
$$

- For all $N \geq 1$ and a Young tableau $\mathbf{k} \in \mathrm{YT}(\lambda)$ it is

$$
\zeta_{N}^{1-t}(\mathbf{k})=\zeta_{N}^{t}\left(\mathbf{k}^{\prime}\right)
$$

Interpolated Schur multiple zeta values

In the following $\left(a_{i}\right)_{i \in \mathbb{Z}}$ is a family of arbitrary integers $a_{i} \in \mathbb{Z}$.

Theorem (B. 2016)

For $N \geq 1$ and a Young tableau $\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right)$ with $k_{i, j}=a_{j-i}$ we have

$$
\zeta_{N}^{t}(\mathbf{k})=\operatorname{det}\left(\zeta_{N}^{t}\left(a_{j-1}, a_{j-2}, \ldots, a_{j-\left(\lambda_{i}^{\prime}-i+j\right)}\right)\right)_{1 \leq i, j \leq \lambda_{1}}
$$

where we set the (i, j)-th entry to be $\left\{\begin{array}{l}1 \text { if } \lambda_{i}^{\prime}-i+j=0 \\ 0 \text { if } \lambda_{i}^{\prime}-i+j<0\end{array}\right.$
The condition $k_{i, j}=a_{j-i}$ means that \mathbf{k} looks like this:

$$
\mathbf{k}=\begin{array}{|c|c|c|c|}
\begin{array}{|c|c|c}
\hline a_{0} & a_{1} & a_{2} \\
a_{3} & \ldots \\
\hline a_{-1} & a_{0} & a_{1} \\
\ldots & \ldots \\
\cline { 1 - 1 } & a_{-1} & \ddots
\end{array} \\
\begin{array}{c}
\vdots \\
\vdots
\end{array}
\end{array}
$$

Interpolated Schur multiple zeta values

Theorem (B. 2016)

For $N \geq 1$ and a Young tableau $\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right)$ with $k_{i, j}=a_{j-i}$ we have

$$
\zeta_{N}^{t}(\mathbf{k})=\operatorname{det}\left(\zeta_{N}^{t}\left(a_{j-1}, a_{j-2}, \ldots, a_{j-\left(\lambda_{i}^{\prime}-i+j\right)}\right)\right)_{1 \leq i, j \leq \lambda_{1}}
$$

where we set the (i, j)-th entry to be $\left\{\begin{array}{l}1 \text { if } \lambda_{i}^{\prime}-i+j=0 \\ 0 \text { if } \lambda_{i}^{\prime}-i+j<0\end{array}\right.$.

- The cases $t=0$ and $t=1$ of this Theorem were originally proven by M. Nakasuji and O. Phuksuwan (2016).
- Our definition of interpolated Schur multiple zeta values was motivated by their work.

Interpolated Schur multiple zeta values

Theorem (B. 2016)

For $N \geq 1$ and a Young tableau $\mathbf{k}=\left(\lambda,\left(k_{i, j}\right)\right)$ with $k_{i, j}=a_{j-i}$ we have

$$
\zeta_{N}^{t}(\mathbf{k})=\operatorname{det}\left(\zeta_{N}^{t}\left(a_{j-1}, a_{j-2}, \ldots, a_{j-\left(\lambda_{i}^{\prime}-i+j\right)}\right)\right)_{1 \leq i, j \leq \lambda_{1}},
$$

where we set the (i, j)-th entry to be $\left\{\begin{array}{l}1 \text { if } \lambda_{i}^{\prime}-i+j=0 \\ 0 \text { if } \lambda_{i}^{\prime}-i+j<0\end{array}\right.$

Example

For $\lambda=(2,1,1)$ it is $\lambda^{\prime}=(3,1)$ and the Theorem states that

$$
\zeta_{N}^{t}\left(\begin{array}{c|c}
\left.\begin{array}{|c|c}
a_{0} & a_{1} \\
\hline a_{-1} \\
\hline a_{-2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\zeta_{N}^{t}\left(a_{0}, a_{-1}, a_{-2}\right) & \zeta_{N}^{t}\left(a_{1}, a_{0}, a_{-1}, a_{-2}\right) \\
1 & \zeta_{N}^{t}\left(a_{1}\right)
\end{array}\right) ~
\end{array}\right.
$$

Interpolated Schur multiple zeta values

By the Proposition before we know that

$$
\zeta_{N}^{t}\left(\begin{array}{|l|l}
\hline a_{0} & a_{1} \\
\hline a_{-1} & \\
\hline a_{-2} &
\end{array}\right)=\zeta_{N}^{1-t}\left(\begin{array}{|l|l|l|}
\hline a_{0} & a_{-1} a_{-2} \\
\hline a_{1} &
\end{array}\right)
$$

For this we can use the Theorem again which gives

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\zeta_{N}^{1-t}\left(a_{0}, a_{1}\right) & \zeta_{N}^{1-t}\left(a_{-1}, a_{0}, a_{1}\right) & \zeta_{N}^{1-t}\left(a_{-2}, a_{-1}, a_{0}, a_{1}\right) \\
1 & \zeta_{N}^{1-t}\left(a_{-1}\right) & \zeta_{N}^{1-t}\left(a_{-2}, a_{-1}\right) \\
0 & 1 & \zeta_{N}^{1-t}\left(a_{-2}\right)
\end{array}\right) \\
& \quad=\operatorname{det}\left(\begin{array}{cc}
\zeta_{N}^{t}\left(a_{0}, a_{-1}, a_{-2}\right) & \zeta_{N}^{t}\left(a_{1}, a_{0}, a_{-1}, a_{-2}\right) \\
1 & \zeta_{N}^{t}\left(a_{1}\right)
\end{array}\right)
\end{aligned}
$$

Interpolated Schur multiple zeta values

As a Corollary of the Theorem and the Proposition we obtain the following family of algebraic relations between interpolated multiple zeta values ζ_{N}^{t} and ζ_{N}^{1-t} :

Corollary

With the same Notation as before we have for every partition λ and $N \geq 1$

$$
\begin{gathered}
\operatorname{det}\left(\zeta_{N}^{t}\left(a_{j-1}, a_{j-2}, \ldots, a_{j-\left(\lambda_{i}^{\prime}-i+j\right)}\right)\right)_{1 \leq i, j \leq \lambda_{1}} \\
= \\
\operatorname{det}\left(\zeta_{N}^{1-t}\left(a_{1-j}, a_{2-j}, \ldots, a_{\left(\lambda_{i}-i+j\right)-j}\right)\right)_{1 \leq i, j \leq \lambda_{1}^{\prime}} .
\end{gathered}
$$

- If $a_{j} \geq 2$ for $j \in \mathbb{Z}$ this gives algebraic relations between ζ^{t} and ζ^{1-t}.
- In particular for $t=\frac{1}{2}$ we get algebraic relations for $\zeta^{\frac{1}{2}}$.

Interpolated Schur multiple zeta values

Choosing $\lambda=(r)$ and setting $a_{j}=k_{j+1}$ we obtain for $k_{1}, \ldots, k_{r} \geq 2$ the identity
$\zeta^{1-t}\left(k_{1}, \ldots, k_{r}\right)=$
$\operatorname{det}\left(\begin{array}{ccccc}\zeta^{t}\left(k_{1}\right) & \zeta^{t}\left(k_{2}, k_{1}\right) & \zeta^{t}\left(k_{3}, k_{2}, k_{1}\right) & \ldots & \zeta^{t}\left(k_{r}, \ldots, k_{1}\right) \\ 1 & \zeta^{t}\left(k_{2}\right) & \zeta^{t}\left(k_{3}, k_{2}\right) & & \zeta^{t}\left(k_{r}, \ldots, k_{2}\right) \\ 0 & 1 & \zeta^{t}\left(k_{3}\right) & \zeta^{t}\left(k_{4}, k_{3}\right) & \vdots \\ \vdots & \ddots & \ddots & \ddots & \zeta^{t}\left(k_{r}, k_{r-1}\right) \\ 0 & \cdots & 0 & 1 & \zeta^{t}\left(k_{r}\right)\end{array}\right)$

Lemma of Lindström, Gessel \& Viennot

A graph is a tupel $G=(V, E)$ of vertices V and edges E.
Our graphs today are all:

- finite
V and E are finite.
- directed

Edges have a direction.

- acyclic

There are no cycles with
respect to the direction.

- weighted

We have a map

$$
\begin{aligned}
V & =\left\{v_{1}, \ldots, v_{5}\right\} \\
E & =\left\{e_{1}, \ldots, e_{7}\right\} \\
w\left(e_{1}\right) & =1, \ldots, w\left(e_{7}\right)=5
\end{aligned}
$$

$$
w: E \rightarrow \mathbb{Q}[t] .
$$

Lemma of Lindström, Gessel \& Viennot

For vertices $A, B \in V$ we define the

- weight of a path $P: A \rightarrow B$ by

$$
w(P)=\prod_{e \text { edge in } P} w(e)
$$

- weight from A to B by

Example:

$$
\begin{aligned}
& w\left(P_{1}\right)=2 \cdot 1 \cdot 3=6 \\
& \qquad w(A, B)=6+\ldots
\end{aligned}
$$

Lemma of Lindström, Gessel \& Viennot

For vertices $A, B \in V$ we define the

- weight of a path $P: A \rightarrow B$ by

$$
w(P)=\prod_{e \text { edge in } P} w(e)
$$

- weight from A to B by

Example:

$$
\begin{gathered}
w\left(P_{1}\right)=2 \cdot 1 \cdot 3=6, \quad w\left(P_{2}\right)=1 \cdot 2 \cdot 4 \cdot 3=24 \\
w(A, B)=6+24+\ldots
\end{gathered}
$$

Lemma of Lindström, Gessel \& Viennot

For vertices $A, B \in V$ we define the

- weight of a path $P: A \rightarrow B$ by

$$
w(P)=\prod_{e \text { edge in } P} w(e)
$$

- weight from A to B by

$$
w(A, B)=\sum_{P: A \rightarrow B} w(P)
$$

Example:

$$
\begin{gathered}
w\left(P_{1}\right)=2 \cdot 1 \cdot 3=6, \quad w\left(P_{2}\right)=1 \cdot 2 \cdot 4 \cdot 3=24 \\
w\left(P_{2}\right)=1 \cdot 2 \cdot 5=10 \\
\quad w(A, B)=6+24+10=40
\end{gathered}
$$

Lemma of Lindström, Gessel \& Viennot

Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\} \subset V$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\} \subset V$ be two subsets of vertices with the same cardinality n.

Definition

A vertex-disjoint path system $\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}$ is a collection of vertex-disjoint paths

$$
P_{i}: A_{i} \rightarrow B_{\sigma(i)}, \quad i=1, \ldots, n
$$

with $\sigma \in \Sigma_{n}$. We also write $\mathcal{P}=\left(P_{1}, \ldots, P_{n}\right)$.

- Sign of \mathcal{P} :

$$
\operatorname{sign} \mathcal{P}:=\operatorname{sign} \sigma .
$$

- Weight of \mathcal{P} :

$$
w(\mathcal{P}):=\prod_{j=1}^{n} w\left(P_{i}\right)
$$

Lemma of Lindström, Gessel \& Viennot

Consider $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}\right\}$ in the following graph:

This graph hast two vertex-disjoint path systems $\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}$:

Lemma of Lindström, Gessel \& Viennot

Lemma (Lindström, Gessel \& Viennot)

For a finite, weighted, acyclic, directed graph $G=(V, E)$ and two subsets of V $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}$ it is

$$
\sum_{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}} \operatorname{sign} \mathcal{P} \cdot w(\mathcal{P})=\operatorname{det}\left(w\left(A_{i}, B_{j}\right)\right)_{1 \leq i, j \leq n}
$$

Example

$$
\begin{aligned}
a d-b c & =\operatorname{det}\left(\begin{array}{ll}
w\left(A_{1}, B_{1}\right) & w\left(A_{1}, B_{2}\right) \\
w\left(A_{2}, B_{1}\right) & w\left(A_{2}, B_{2}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{aligned}
$$

Lemma of Lindström, Gessel \& Viennot: Example

We now consider lattice graphs of the following form ($a_{j} \in \mathbb{Z}$)

where the weights of the marked edges are given by

$$
w\left(e_{1}\right)=\frac{1}{3^{a_{0}}} \quad \text { and } \quad w\left(e_{2}\right)=1
$$

Lemma of Lindström, Gessel \& Viennot: Example

More precisely we consider the Lattice graph $G=(E, V)$ with

- Vertices:

$$
V=\{(x, y) \mid-2 \leq x \leq 2,1 \leq y \leq 4\}
$$

- Edges: $E=E^{h o r} \cup E^{v e r}$

$$
\begin{aligned}
E^{h o r} & =\{(x, y) \rightarrow(x+1, y) \mid-2 \leq x \leq 1,1 \leq y \leq 4\} \\
E^{v e r} & =\{(x, y) \rightarrow(x, y-1) \mid-2 \leq x \leq 2,2 \leq y \leq 4\}
\end{aligned}
$$

- Weights:
- For a horizontal edge $e \in E^{h o r}$ from (x, y) to $(x+1, y)$ we define the weight by

$$
w(e)=\frac{1}{y^{a_{x}}} .
$$

- For a vertical edge $e \in E^{v e r}$ we set $w(e)=1$.

Lemma of Lindström, Gessel \& Viennot: Example

Now consider the following paths from A_{1} to B_{1} :

$$
\begin{aligned}
w(P) & =\frac{1}{4^{a_{-2}}} \cdot 1 \cdot \frac{1}{3^{a_{-1}}} \cdot 1^{2} \cdot \frac{1}{1^{a_{0}}} \\
& =\frac{1}{1^{a_{0}} 3^{a_{-1}} 4^{a_{-2}}}
\end{aligned}
$$

Lemma of Lindström, Gessel \& Viennot: Example

Now consider the following paths from A_{1} to B_{1} :

$$
\begin{array}{rlrl}
w(P) & =\frac{1}{4^{a_{-2}}} \cdot 1 \cdot \frac{1}{3^{a_{-1}}} \cdot 1^{2} \cdot \frac{1}{1^{a_{0}}} \quad w(P) & =1 \cdot \frac{1}{3^{a_{-2}}} \cdot \frac{1}{3^{a_{-1}}} \cdot 1 \cdot \frac{1}{2^{a_{0}}} \cdot 1 \\
& =\frac{1}{1^{a_{0}} 3^{a_{-1}} 4^{a_{-2}}} & & =\frac{1}{2^{a_{0}} 3^{a_{-1}} 3^{a_{-2}}}
\end{array}
$$

Lemma of Lindström, Gessel \& Viennot: Example

It is easy to see that we have

$$
\begin{aligned}
& w\left(A_{1}, B_{1}\right)=\sum_{P: A_{1} \rightarrow B_{1}} w(P) \\
& =\sum_{0<m_{1} \leq m_{2} \leq m_{3}<5} \frac{1}{m_{1}^{a_{0}} m_{2}^{a_{-1}} m_{3}^{a_{-2}}}=\zeta_{5}^{1}\left(a_{0}, a_{-1}, a_{-2}\right) . \\
& 1 \text { + }
\end{aligned}
$$

Lemma of Lindström, Gessel \& Viennot: Example

With the same arguments we also obtain that
$w\left(A_{1}, B_{1}\right)=\zeta_{5}^{1}\left(a_{0}, a_{-1}, a_{-2}\right), \quad w\left(A_{1}, B_{2}\right)=\zeta_{5}^{1}\left(a_{1}, a_{0}, a_{-1}, a_{-2}\right)$
$w\left(A_{2}, B_{1}\right)=\zeta_{5}^{1}\left(a_{0}\right)$, $w\left(A_{2}, B_{2}\right)=\zeta_{5}^{1}\left(a_{1}, a_{0}\right)$
for $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}\right\}$ given by

Lemma of Lindström, Gessel \& Viennot: Example

Question: How do vertex-disjoint path systems \mathcal{P} from $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ to $\mathcal{B}=\left\{B_{1}, B_{2}\right\}$ look like?

Claim

$$
\sum_{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}} \operatorname{sign} \mathcal{P} \cdot w(\mathcal{P})=\zeta_{5}^{1}\left(\begin{array}{|l|l|}
\hline a_{0} & a_{1} \\
\hline a_{-1} & a_{0} \\
\hline a_{-2} &
\end{array}\right)
$$

Lemma of Lindström, Gessel \& Viennot: Example

Notice that in this example we always have $\operatorname{sign} \mathcal{P}=1$, i.e. we want to show

$$
\begin{aligned}
\sum_{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}} w(\mathcal{P}) & \stackrel{!}{=} \zeta_{5}^{1}\left(\begin{array}{|l|l}
a_{0} & a_{1} \\
\hline a_{-1} & a_{0} \\
\hline a_{-2}
\end{array}\right) \\
& =\sum_{\mathbf{m} \in \mathrm{OYT}_{5}(\boxplus)} 1^{v(\mathbf{m})}(1-1)^{h(\mathbf{m})} \prod_{(i, j) \in D(\boxplus)} \frac{1}{m_{i, j}^{a_{j-i}}} \\
& =\sum_{\substack{\mathbf{m} \in \mathrm{OYT}_{5}(\boxplus) \\
h(\mathbf{m})=0}} \prod_{(i, j) \in D(\boxplus)} \frac{1}{m_{i, j}^{a_{j-i}}}
\end{aligned}
$$

We will do this by illustrating the following 1:1 correspondence
$\left\{\begin{array}{c}\text { Vertex-disjoint path systems } \\ \mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { Ordered Young tableaux } \\ \mathbf{m} \in \mathrm{OYT}_{5}(\boxplus) \text { with } h(\mathbf{m})=0\end{array}\right\}$

Lemma of Lindström, Gessel \& Viennot: Example

$$
\begin{aligned}
\mathcal{P} & =\left(P_{1}, P_{2}\right) \\
w\left(P_{1}\right) & =\frac{1}{1^{a_{0}} 3^{a_{-1}} 4^{a_{-2}}} \\
w\left(P_{2}\right) & =\frac{1}{2^{a_{1}} 4^{a_{0}}}
\end{aligned}
$$

Lemma of Lindström, Gessel \& Viennot: Example

The vertex-disjoint path system \mathcal{P} corresponds to

It is $h(\mathbf{m})=0$ and we have

$$
\begin{aligned}
\mathcal{P} & =\left(P_{1}, P_{2}\right) \\
w\left(P_{1}\right) & =\frac{1}{1^{a_{0}} 3^{a_{-1}} 4^{a_{-2}}} \\
w\left(P_{2}\right) & =\frac{1}{2^{a_{1}} 4^{a_{0}}}
\end{aligned}
$$

$$
\begin{aligned}
\prod_{(i, j) \in D(\boxplus)} \frac{1}{m_{i, j}^{a_{j-i}}} & =\frac{1}{1^{a_{0}} 3^{a_{-1}} 4^{a_{-2}} 2^{a_{1}} 4^{a_{0}}} \\
& =w\left(P_{1}\right) \cdot w\left(P_{2}\right) \\
& =w(\mathcal{P})
\end{aligned}
$$

Lemma of Lindström, Gessel \& Viennot: Example

The vertex-disjoint path system \mathcal{P} corresponds to

It is $h(\mathbf{m})=0$ and we have

$$
\begin{aligned}
\mathcal{P} & =\left(P_{1}, P_{2}\right) \\
w\left(P_{1}\right) & =\frac{1}{1^{a_{0}} 3^{a_{-1}} 3^{a_{-2}}} \\
w\left(P_{2}\right) & =\frac{1}{2^{a_{1}} 4^{a_{0}}}
\end{aligned}
$$

$$
\begin{aligned}
\prod_{(i, j) \in D(\boxplus)} \frac{1}{m_{i, j}^{a_{j-i}}} & =\frac{1}{1^{a_{0}} 3^{a_{-1}} 3^{a_{-2}} 2^{a_{1}} 4^{a_{0}}} \\
& =w\left(P_{1}\right) \cdot w\left(P_{2}\right) \\
& =w(\mathcal{P})
\end{aligned}
$$

Lemma of Lindström, Gessel \& Viennot: Example

We therefore have

$$
\sum_{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}} \operatorname{sign} \mathcal{P} \cdot w(\mathcal{P})=\zeta_{5}^{1}\left(\begin{array}{|l|l|}
\hline a_{0} & a_{1} \\
\hline a_{-1} & a_{0} \\
\hline a_{-2} &
\end{array}\right)
$$

and by the Lemma of Lindström, Gessel \& Viennot this equals
$\operatorname{det}\left(w\left(A_{i}, B_{j}\right)\right)_{1 \leq i, j \leq 2}=\left(\begin{array}{cc}\zeta_{5}^{1}\left(a_{0}, a_{-1}, a_{-2}\right) & \zeta_{5}^{1}\left(a_{1}, a_{0}, a_{-1}, a_{-2}\right) \\ \zeta_{5}^{1}\left(a_{0}\right) & \zeta_{5}^{1}\left(a_{1}, a_{0}\right)\end{array}\right)$,
which is the statement of the Theorem for $\lambda=(2,2,1), t=1$ and $N=5$.

Proof sketch of the Theorem

Question

How to include the parameter t and allow Young tableaux with horizontal equalities?

This path system $\left(P_{1}, P_{2}\right)$ is not vertex-disjoint!

The "path system" $\left(P_{1}, P_{2}\right)$
"corresponds" to

It is $h(\mathbf{m})=1$ and $v(\mathbf{m})=1$.

Proof sketch of the Theorem

If a path goes to the right twice we want to obtain a factor t.
\rightsquigarrow vertical equality of \mathbf{m}

If two paths "touch" we want to obtain a factor $1-t$.
\rightsquigarrow horizontal equality of \mathbf{m}

Solution

Blow up the vertices and replace each vertex by two new vertices and then use the same combinatorics and the Lemma of Lindström, Gessel \& Viennot as before.

Proof sketch of the Theorem: t-Lattice Graph

For a fixed $N \geq 1$ we consider the following set of Vertices

$$
V=\left\{v_{x, y}^{*} \mid x \in \mathbb{Z}, 0 \leq y<N, * \in\{\bullet, \circ\}\right\}
$$

$N-1$		0	0	0	0	0	0	0	0	0	0	0
N												

Proof sketch of the Theorem: t-Lattice Graph

For each position (x, y) we will have five different types of outgoing edges

$$
E:=\left\{e_{x, y}^{i} \mid i=1, \ldots, 5, x \in \mathbb{Z}, 0<y<N\right\} .
$$

Weights:

$$
\begin{gathered}
w\left(e_{x, y}^{1}\right)=1 \\
w\left(e_{x, y}^{2}\right)=w\left(e_{x, y}^{4}\right)=\frac{1}{y^{a_{x}}} \\
w\left(e_{x, y}^{3}\right)=w\left(e_{x, y}^{5}\right)=t \cdot \frac{1}{y^{a_{x}}}
\end{gathered}
$$

Proof sketch of the Theorem: t-Lattice Graph

As an example consider the following path P from $A=v_{-4,4}^{\circ}$ to $B=v_{4,0}^{\circ}$.

Proof sketch of the Theorem: t-Lattice Graph

This leads to the following Lemma:

Lemma 1

For integers $i \leq j$ the sum of all Paths weights of paths between the vertex
$A=v_{i, N-1}^{\circ}$ and $B=v_{j+1,0}^{\circ}$ is given by

$$
w(A, B)=\zeta_{N}^{t}\left(a_{j}, a_{j-1}, \ldots, a_{i}\right)
$$

- This gives the "ingredients" for the RHS of the Theorem.
- For a given partition λ we now need to define sets \mathcal{A} and \mathcal{B} to explain the LHS of the Theorem.

Proof sketch of the Theorem: t-Lattice Graph

For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right)$ with conjugate $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{h^{\prime}}^{\prime}\right)$ we define sets $\mathcal{A}_{\lambda}:=\left\{A_{1}, \ldots, A_{\lambda_{1}}\right\}$ and $\mathcal{B}_{\lambda}:=\left\{B_{1}, \ldots, B_{\lambda_{1}}\right\}$, by

$$
A_{j}=v_{j-\lambda_{j}^{\prime}, N-1}^{\circ} \quad \text { and } \quad B_{j}=v_{j, 0}^{\circ}
$$

With this notation we can state the following Lemma.

Lemma2

The interpolated Schur multiple zeta value $\zeta_{N}^{t}(\mathbf{k})$ for the young tableau $\mathbf{k}=\left(\lambda, k_{i, j}\right)$ with $k_{i, j}=a_{j-i}$ is given by

$$
\zeta_{N}^{t}(\mathbf{k})=\sum_{\mathcal{P}: \mathcal{A}_{\lambda} \rightarrow \mathcal{B}_{\lambda}} \operatorname{sign} \mathcal{P} \cdot w(\mathcal{P})
$$

Lemma 1, Lemma 2 and the Lemma of Lindström, Gessel \& Viennot imply the Theorem.

Proof sketch of Lemma 2

- The proof uses similar arguments as in the $t=1$ example except that we need to take care of crossings.
- One of these crossings gives the factor $(1-t)$ and corresponds to the "touching of paths", which we described before:

Proof sketch of Lemma 2

For every vertex-disjoint path system $\mathcal{P}: \mathcal{A}_{\lambda} \rightarrow \mathcal{B}_{\lambda}$ containing P_{i} and P_{j} there is a vertex-disjoint path system $\mathcal{P}^{\prime}: \mathcal{A}_{\lambda} \rightarrow \mathcal{B}_{\lambda}$ containing P_{i}^{\prime} and P_{j}^{\prime} and which just differ as illustrated above. It is

$$
\operatorname{sign}(\mathcal{P}) w(\mathcal{P})=-t \operatorname{sign}\left(\mathcal{P}^{\prime}\right) w\left(\mathcal{P}^{\prime}\right)
$$

and therefore their sum gives

$$
(1-t) \operatorname{sign}\left(\mathcal{P}^{\prime}\right) w\left(\mathcal{P}^{\prime}\right) .
$$

Proof sketch of Lemma 2

For every vertex-disjoint path system $\mathcal{P}: \mathcal{A}_{\lambda} \rightarrow \mathcal{B}_{\lambda}$ containing P_{i} and P_{j} there is a vertex-disjoint path system $\mathcal{P}^{\prime}: \mathcal{A}_{\lambda} \rightarrow \mathcal{B}_{\lambda}$ containing P_{i}^{\prime} and P_{j}^{\prime} and which just differ as illustrated above. It is

$$
\operatorname{sign}(\mathcal{P}) w(\mathcal{P})=-\operatorname{sign}\left(\mathcal{P}^{\prime}\right) w\left(\mathcal{P}^{\prime}\right)
$$

and therefore their sum gives 0 .

Summarize

- Interpolated Schur multiple zeta values are polynomials which generalize Schur multiple zeta values and t-multiple zeta values.
- Interpolated Schur multiple zeta values of a certain type can be written as the determinant whose entries are given by t-multiple zeta values.
- The proof also works for other interpolated sums such as t - q-analogues of multiple zeta values (defined by N. Wakabayashi).
- The main Theorem can probably also be proven by using the harmonic product of t-multiple zeta values introduced by S . Yamamoto.

Thank you very much for your attention!

Slides are available here: www.henrikbachmann.com

