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Definition
Forki,...,kr > 1,2 € C\Z<gand N > 1 we define the (truncated) multiple Hurwitz zeta function
(k. k) = > - ! ,
P o (x +mny)kr ... (z+n,)kr
and write (v (K1, ..., kr) = (N (K1, - . -, kr; 0) for the truncated multiple zeta values.

For k1 > 2 the multiple zeta values are given by
Clky, ... k) = lim Cn(kp, ..., k).
N—oo

o depth: r
o weight: k1 + --- + k,
o Z : (Q-algebra of MZVs

(c.f. Komori & Ono  talk) 1/44



- Harmonic & shuffle product

Harmonic product (coming from the definition as iterated sums)
Example in depth two (k1, ko > 1)

Cn (ks o) - Cv(kos ) = (v (R, ko o) + Cv (k2 ks ) + (v (ky + kos o)

Shuffle product (coming from the expression as iterated integrals)
Example in depth two (k1, ko > 2)

) Gl = S (R +(L20)) ik + k=),

Jj=2

Example C(2) - ¢(3) =" ¢(2,3) + ¢(3,2) + ¢(5)

shuffle

= ((2,3)+3¢(3,2) +6¢(4,1).

— 24(3 2) + 6((4 1) (finite) doubleshuffle C(5) ]
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- Quasi-shuffle product

o L: countable set (set of letters).
o ©: commutative and associative product on QL.
@ word: monic monomial in the non-commutative polynomial ring Q(L) (1: empty word)

Definition
The quasi-shuffle product *. on @<L> is defined as the (Q-bilinear product satisfying 1 %o w = w %, 1 = w
for any word w € Q(L) and

aw *o bv = a(w *, bv) + b(aw *6 v) + (a © b)(w *, v)

for any letters a, b € L and words w, v € Q(L).

Theorem (Hoffman)

(Q(L), %) is a commutative Q-algebra. Moreover, this algebra can be equipped with the structure of a Hopf

A(w) = Z URU.

Uv=w

algebra with the coproduct given by
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- Quasi-shuffle product examples

o Harmonic product *: L, = {2z, | k > 1} and zj, © 2k, = 2, +k, forall k1, ko > 1.
29 % 23 = Z923 + 2322 + %5 .

We set H1 = Q(L,). (Compare with: ¢(2)¢(3) = ¢(2,3) + ((3,2) + ¢(5))

o Shuffle product LLi: Ly = {z,y} andaob = 0fora,b € Ly,. Wewrite ) = Q(z,y).
zy W zry = xyxrzry + 3xxyry + 6xrryy .

k—1
By identifying 2 <> X - - - Y we can also equip 5’)1 with the shuffle product, e.g.

2o W 23 = 2923 + 32322 + 62421 .
(Compare with: (2)((3) = ¢(2,3) + 3((3,2) + 6¢(4,1))

o Index shuffle product [(: L, = {2} | k > 1} and 2y, © 2, = Oforall ki, ko > 1

2olllzg = 2923 + 2329 .
4744



- Algebras

o As usual (c.f. Machide talk) we write Ho = Q+xHy C ' for the space of admissible words.

o As not usual we also consider the following subspace of ,S’JO

9 =Q+ (b1, sk | 72> 1K1, ke > 2)g

Both 550 and 3")2 are closed under * but only 550 is closed under LLI. We obtain the following inclusion of

Q-algebras

H2cHlchHl,
9 CcH,CH.
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- From objects to maps

o Often it is convinient to think of (variations of) multiple zeta values as maps.

o By abuse of notation and the sanity of the audience: We use the same symbol for maps and the
corresponding object and assume it is always clear from context what we mean.

For example, for any IN > 1 the truncated Hurwitz zeta function can be viewed as a (Q-linear map

(n(—x) 9 — C(x),
W= 2k ... 2k — (N(wsz) =y (k.o ke )

For all maps we consider we always send the empty word to 1, e.g. {n (0; ) = (n(1;2) = 1.
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- Regularization

The multiple zeta values can be viewed as (Q-algebra homomorphism ¢ : .69 — Zfore € {x,LU}.
Since 1 = H2[z1] and H, = HY, [, ] there exist algebra homomorphisms

¢ 9, = Z[T],
9y — ZIT, X,
uniquely determined by
o ((2) =Ty =T, ((x) =X,
° C[;Jo = Ct‘%o = (.
Theorem (Ihara-Kaneko-Zagier)

Define the R-linear map p : R[T] — R[T] by

e %p(TQ)u2 4 =p(eT¥) ;= exp (Tu—i—z #C(n)un) =+ - (T*+(2) " +....

n=2

N | —

Then we have C|u51 =po(*.  (~ extended double shuffle relations)




- Hopf algebra structure

Let A = (Q(L), *,) be a quasi-shuffle algebra with the coproduct given by

A(w) = Z URV.

Uv=w

For an Q-algebra B with multiplication 7 and f, g € Hom(A, B) the convolution product is defined by

frg=mo(f@g)oA.

If f,g € Hom(A, B)then f x g € Hom(A, B).

Lw=10
The antipode S : A — Ais the inverse of Id with respect to *, i.e. (S x Id)(w) = {O’
, else
For example, in the case *, = LLI the antipode is given by S(a . .. ap) = (—1)"ay, ... a1.

(c.f. Komiyama talk)
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- Antipode relation

Forki,...,k. > landk = k1 + --- + K, we have

> -9 ] (li:11>Cm(l1>---;lj—l)cm(lr’lr—la”-7lj+1):Oa

1<j<r 1<i<r
fit i+l =k—1 #j

where e; = lhi+--- —i—lj_l —l—kj.

Proof: Using

_ 1om " Sl —1
CHahr—ty gk Ty = (—1) Z H(k'_l)g'm(ll,...,lr)
Lt =k +tkptni=1 N

and the following antipode relation for ay . . . @y, = a:kl_ly kL

Z(_l)icm(al o)) (@mam-1 ... aiy1) = 0.

i=0 9/44



- Eisenstein series

Riemann zeta values also appear in the Fourier expansion of the Eisenstein series defined for even k > 4 by

1 1 B (—2mi)k & .
G(ka T) 9 m;ez (mT + n)k - C(k) + (k) — 1)' nglo-k—l(n)q )
(m,n)#(0,0)

where o—1(1) = 3 41, d"Lis the divisor sum, 7 € H = {7 € C | Im(7) > 0} and g = €>™".

Define a multiple version of G, such that

Glky,. . k) =Ck1, . b)) + > ang™.

n>0
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- Order on lattices

For M > 1 set
Zy={meZ||m|l<M}.
and for 7 € H define on ZT + Z the order - by

miT +niy = maT + N & (m1 > mQ) or (m1 = mgandny > nQ).

—_—t—t———+—1————— 7
—6 6

All the points \ € Zsgi + Zg satisfying A = ().
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- Multiple Eisenstein series

For M > 1 set
Zy={meZ||m| < M}.
and for 7 € H define on ZT + Z the order - by

mi7T + Ny = MoT + N & (m1 > mQ) or (m1 = Mmgandn; > ’nz).

Definition
For integers k1, ..., k. > 1,and M, N > 1 we define the truncated multiple Eisenstein series by
1
GM,N(kl,...,kr;T)= Z kl—Akr
A== Ap=0 711 7
NE€LNMTHEIN
For k1, ..., k, > 2 the multiple Eisenstein series are defined by
G(kl, e ,kT;T) = lim lim GM,N(kla “e ,k:T;T) .
M—o00 N—o00
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For k1, ..., k, > 2 the multiple Eisenstein series is defined by

G(kla"'ak’r;T)z Z !

k1 k- °
AL = Ap =0 )‘1 Ar
N €ELTHTL

o These are holomorphic functions on the upper-half plane IH, but in general they are not modular.

o The product of multiple Eisenstein series can also be express by the harmonic product formula, e.g.
G(4;7)-GB3;7) =G(4,3;7) + G(3,4;7) + G(7;7) .
@ We can view them as algebra homomorphisms

G: 9% = O(H)
W= 2k ... 25 — Glw;—) = G(ki,..., k;—).
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-The g-series g

Definition
For k1, ..., kr > 1 we define the g-series g(k1, . .., kr) € Q[[¢]] by

ny ! ! ot
glk1, .. k) =g(k1,..., kr) = Z CENRRC — 1)'qmm1 Mt
my>e>me>0 L ’ T ’
nyye.,p >0
In the case 7 = 1 these are the generating series of divisor-sums o, _ 1 zdln
nk—l
k) = —q" o
m,n>0 n>0

and they can be viewed as g-analogues of multiple zeta values, since for k1 > 2, ko, ..., k, > 1 we have

lim (1 — ¢)M F gk, o k) = Clk, .. k)

q—1
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- Fourier expansion

G(k1, ... k) = (=2mi)rt TR g (kg k) € Qlmi[q] -

Theorem (Gangl-Kaneko-Zagier 2006 (rr = 2), B. 2012 (r > 2))

19 7kr

Forki, ..., k. > 2 there exist explicit o’ € 7Z, such that forq = €™ we have

G(k‘l,...,kT)=<(k‘1,...,k,n)+ E afll’ }ﬁi‘j (ll7 . lj)g(lj+1,...,lr)+g(k‘1,...,kr).
0<j<r
lit-+lp=ki+--+kr

In particular, G(k1, ..., k) = ((k1, ..., kr) + D50 kg, k, (R)q" for some ag, ..k, (n) € Z[mi].

Examples

G(k;7) = C(k) +9(k),
G(3,2;7) = ((3,2) +3¢(3)9(2) + 2¢(2)9(3) + 4(3,2) -

15/44



- Multitangent functions

Definition
Forki,...,kr > 1N > 1and z € C\Z define the (truncated) multitangent function by
Uy (k Ky ) > 1
N\R1, ..., Rp;T) 1= 1 kr
N>n1>-->np>—N ((L’ + nl) (.’L‘ + nr)
n;EZL
For k1, ki > 2 the multitangent function is given by W (k1, ..., ky;z) = Uimy o0 U (K1, .., kr ) .

In depth one we have for k > 2 the Lipschitz formula (¢ = €2™ )

‘I’(k§T)ZZ(T_|_1n) = k2m |de .

neZ d>0

In particular for k1, . . ., k. > 2 we get
glki, ..., k) = Z Uy, (mat) - Yy (m,7).

my1>-->myp>0
16/44



- Fourier expansion - Multitangent functions

We can write G as sums over W. For example, in depth two we have:

1
Gk, ki 7) = >

k k
m17T+n1>=ma7+n2 >0 (mlT + nl) ! (mQT + n2) :

1
- Z + Z T Z + Z (M7 + n1)R (ma + na)k2

mi1=mo=0 my>mo=0 mi=m2>0 mi;>ma2>0

ni>na2>0 nyE€Z,n2>0 ni>ngz ni,no€L
= (k1 ko) + > Ulkiymr)Clka) + Y (ki kasmr) + > U(kyymar)W(ka;mor).
m>0 m>0 mi1>mo>0
k
by ky |k :

ko

~

ko kq ko
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- Fourier expansion - Multitangent functions

Theorem (Bouillot 2011)
Forki,..., k. > 1withky, k. > 2andk = ki + - - - + k,. the multitangent function can be written as

Uk, k)= Y (<D ] <,i",:11)<(l1,...,lH)ﬂf(ljsf)car,zr_l,...,ljm-

1<5<r 1<i<r N
L+ Fl=k i#]

where ® =l + - - -+ 1;_1 + k; + k. Moreover, the terms with W (1; T) vanish.

Proof: Partial fraction decomposition and antipote relation.

Sums over multitangent ~» Sums over monotangent with MZV coefficients ~~ MZV-linear combination of §

Forwy, ..., w; € 2 we have

Z U(wy;mit) ... Y(w;myr) C Z[mi] @ (g(w) | w € H2)g .
m1>->my>0
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- Relations?

Multiple zeta values satisfy various relations. For example,

COP=201),  C(5)=20(3,2) +64(4,1).

Do multiple Eisenstein series satisfy these relations? I
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(1) MzV & MES

Multiple zeta values satisfy various relations. For example,

(P =2, C(5) =2(3,2) + 6(1,1).

Do multiple Eisenstein series satisfy these relations?

The first relation is clearly not satisfied, since setting G, = (—QWi)ikG(k; 7) we have

5 1 d
2 [p— _ JR—
G5 = 2G4 5 qug.

The second relation can not be satisfied since G4,1 is not defined.

@ Are there "natural" extensions of the algebra homomorphism G : 2 — O(H) to $H! or H, 2

@ How to include derivatives in our algebraic setup?
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We saw that for k1, ko > 2

Gk, koi7) = C(kn ko) + > Wkismr)C(ka) + > (ki kyymr)+ > W(kismy7)U(ka;mor) .

m>0 m>0 m1>mo>0

Define the part coming from the sums parts in the upper half-plane by

= Z U (k1;mT),
m>0
g*(kl,k’Q) = Z \I/(kl,kz;’mﬂ')-l- Z \I/(k'l;mlT)\I/(kQ;sz).
m>0 m1>mao>0

Then we have for k1, kg > 2

G(k1,ko;7) = C(k1, ko) + g (k1)C(k2) + g™ (k1, k2)

and in general G = g*  ( (as functions on )?).
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The anatomy of classical (truncated) multiple Eisenstein series

N
(N

Multiple zeta values

E Multitangent function ‘I’N(_§ x)

\ :] Multiple Hurwitz zeta CN(_7 33')

C(—x)
:] (reversed) Multiple Hurwitz zeta C]?/'(_a 37)



The construction of stuffle reqularized multiple Eisenstein series

RS
o) ) ) Q.
=)

J*(w; ) == limpr—y00 Gar(w; 7)

R M-1
gm(—;7) = t1 T*(—;m7)

Ed
Regularized Multitangent function Stuffle regularized
E U (—;2) = *(—;2) % C(—; 2) * % (—; 2) Multiple zeta values
:] Regularized Multiple Hurwitz zeta C*(—; 7)
C(—; )

:](reversed) Regularized Multiple Hurwitz zeta (" (—; )



-GM.N

For M, N > 1 define the map gar,n(—;7T) : Ht — O(H) forw € H' by

gu,n(w;T) = Z Z Uy (wismar) ... Wy (wj;myT).
j>1 M>my>-->m;>0
wy... W;=w
w1, w; £

21/44



-OM.N

For M, N > 1 define the map gar,n(—;7T) : Ht — O(H) forw € H' by

gu,n(w;T) = Z Z Uy (wismar) ... Wy (wj;myT).
j>1 M>my>-->m;>0
wy... W;=w
w1, w; £

This formula is ugly, but using the convolution product we can write it as

M—1
guN(—7) = * Un(—;m7),
m=1
where we write *g:a fi = fox fo—1 % x fa
We have N
Gm,N = gu,N *CN - J

Make sense of the limits M/, N — 00 to obtain Stuffle regularized multiple Eisenstein series G*.




- Regularization of Multitangent functions

Defineforki,...,k. > 1,z € Hand N > 1

]-a r=yu,
C(k‘l,...,kr;$): ;1;%1’ T:177

0, r=
_ 1
(L, ks x) = Z

k e
0>n1>>np>—N (fL' + nl) 1. (fE + nr) 7

These give algebra homomorphisms C', (y; : Hl — O(H)

Proposition

For N > 1 we have
Un(=;2) =Cn(=52) x O 3) x (y (=5 2) -

22/44



- Regularization of multiple Hurwitz zetas

The limit N — 00 of
Un(—2) =(n(=2) * C(=32) x (y (=5 2)

does not exist, but the multiple hurwitz zeta function can be regularized (c.f. Bouillot, Kaneko-Xu-Yamamoto) to
algebra homomorphism (*(—; x) : 1 — O(H), such that

o Fork; > 2wehave (*(k1,..., k) = limy oo (N (K1, - .o Ky ),
o C(lim) = Tong (75 - 1)

Definition

We define the algebra homomorphism ¥* : 1 — O(H) by
U (—2) = C(—52) x C(—2) * (=5 2),

where ( ~"* is defined by (* in the obvious way.
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For M > 1 define the map gz : 1 — O(H)

M-1 M-1
du(=i7) = K W (=imr) = Sk (¢ (mr)x O(=imr) « (0 (=mr)).

Proposition (B.)

Forallw € $H° the limit §* (w; 7) = lim s o0 Gas (w; T) exists.

Define the algebra homomorphism §* : ,S’Ji — O(H) by
o §*(w;T) = limps_soo gar(w; 7) forw € HO.
o g*(z157) = g(1;7).
Definition
Define the stuffle regularized multiple Eisenstein series as the algebra homomorphism G* : 531 — O (]HI)
G"=g"x(".

By construction we have (Gikﬁz =G.
24/44



Is there a "natural” construction of an algebra homomorphism G : ﬁ&u — O(H)?

Equipped with the Goncharov coproduct A ¢; the algebra ﬁ&u becomes a Hopf algebra.
There exist explicit formulas for A¢, e.g.

Ag(z329) = 2320 @1+ 320 @ 23 + 223 R 29 + 1 @ 2329 .
Compare this to the Fourier expansion of G372:

G(3,2;7) = ((3,2) +39(2)C(3) +29(3)C(2) +4(3,2) -
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Is there a "natural” construction of an algebra homomorphism G : Y)EU — O(H)?

Equipped with the Goncharov coproduct A ¢; the algebra ﬁ&u becomes a Hopf algebra.
There exist explicit formulas for A¢, e.g.

Ag(z322) = 2320 ® 1 +320 @ 23 + 223 ® 22 + 1 @ 2320 .
Compare this to the Fourier expansion of G372:
G(3,2;7) = ¢(3,2) +33(2)¢(3) +29(3)¢(2) + 9(3,2) -

Write f x¢ g =mo (f ® g) o Ag.

Theorem (B.-Tasaka 2017)

We have

G = (g*c ()p2 -

25/44



- Definition

Proposition (B.-Tasaka 2017)

There exists an algebra homomorphism g : 1, — O(H) with gi'j':'02 =g

Definition
Define the shuffle regularized multiple Eisenstein series as the algebra homomorphism G* : 1, — O(H)
GH =g" x ™.

By the previous mentioned results we have

- _ *
|.62_G_G|f)2

Corollary

The shuffle regularized multiple Eisenstein series satisfy the restricted double shuffle relations, i.e.

GYUwwv—wxv)=0 (w,v€H?).
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(3) Shuffle regularizes MES

But one can check that G satisfy more relations than the restricted double shuffle relations, e.g.
G™ (29 W 2921 — 29 x 2921) = 0.

=0, butfore € {x, LU}

G*(1).

But they satisfy less relations than MZV, e.g. we have ((3) — ((2,1)
(27mi)? d
2 T

G*(3) — G*(2,1) =

@ Introduce an algebraic setup which can deal with derivatives ~~ double shuffle relations for functions

@ The letters 2 will be replaces by 25 for d > (0 and above equations becomes (roughly)
3 2.1 _ 2
20 = 2040 = “1

@ More precisely the operator qd% corresponds to a derivation 0 given by

kl kr_ k+1 kr
5Zd1" Zkz d+1"'Zdr
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Let A be a Q-algebra.

Definition
@ Amould with values in A is a family Z = (Z(")),>q with Z(") € A[[X1,..., X,]].
@ Foramould Z with

ZO(Xy, . X)) = Y alky,. . k)X XY
kiyeykr>1

we define its coefficient map as the (Q-linear map given by 902(1) = Z(O) and on the generators by

SOZ:Q<LZ> — A
Zhey - - 2k —> 2(K1, .. k)

(c.f. Komiyama & Kimura talk)
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Definition

@ A mould Z is called ©-symmetril if its coefficient map @z gives an algebra homomorphism

Yz : (Q(Lz>a *<>) — A

Q Ifoisgivenby 2k, © 2k, = Zk,+k, then we call a ©-symmetril mould symmetril. (<~~~ harmonic product)

Q Ifoisgivenby 2k, © 2k, = 0 then we call a ©-symmetril mould symmetral. (<~ index shuffle product)

Example: The mould of harmonic regularized multiple zeta values 3, whose depth 1 part is defined by

(X1, X)) = ) Mk k)X X
kiyeykr>1

is symmetril.
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- Moulds & Double shuffle relations

Let Z be a mould with Z(1) (X)) = D kst 2(k) X ¥~ Define the elements 7Z € A by

Z'ykZXk = exp (Z #z(n)X“) .

n=2

With this we define the mould Z, by

.
ZUN(X,. . X)) =Y A2 (X Xy, X+ X, X9).
7=0

We say a mould Z satisfies the double shuffle relations if Z is symmetril and Z., is symmetral. I

30/44




- Moulds & Double shuffle relations

We say a mould Z satisfies the double shuffle relations if Z is symmetril and Z,y is symmetral. I

In lowest depth, this means that if Z satisfies the double shuffle relations, then (c.f. Kimura talk)

Z(X1) - Z(Xo)
X1 — Xy ’

Z(X1)Z(X2) = Z(X1, X2) + Z(X2, X1) +

Z(X1)Z(X2) = Zy(X1, X2) + Zy (X2, X1)
= Z(Xl +X2,X1) + Z(X1 +X2,X2) —l—")/ZZ.

Theorem (Ecalle, Ihara-Kaneko-Zagier, Racinet, . ..)
The mould of harmonic regularized multiple zeta values 3 satisfies the double shuffle relations. J
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- Rational solution to the double shuffle relations

Theorem (Drinfeld + Furusho, Racinet)

There exists a mould b with values in Q with the following properties.
Q b satisfies the double shuffle relations.
Q Forallr > 1,b(—Xq,...,—X;) = (=1)"b(Xy,..., X,).
Q In depth one b is given by

b(X)=—) %X’“‘l =3 —(gg’;’gﬂ){?m—l .

k>2 m>1

This mould is not unique, but in the following, we will fix one choice of such a mould b with coefficients 3, i.e.

b(X1,... . Xp) = > Bk, k)Xt XL
k1yeoykr>1
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Let A be a Q-algebra, define L5 = {z% | k > 1,d > 0} and write * = *, for zS; o zsz = zslliss

Definition

O Abimould with values in A is a family B = (B("),>q with B") € A[[X1,...,X,,Y1,...,Y;]].

@ For a bimould B with

X17---,Xr) <k17--'7kr) ke —1 D L ¢

B - b XF=t. .. X5k

<Y1,...,n kh;@l di,...,d.) 1 T dy! d,!
dy,...,dr>0

we define its coefficient map as the Q-Iinear map given by @ B(l) =B ©) and on the generators by

op: QLYY — A

k1 kr b 1, y
A (dl,...,dr)'
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- Bimoulds - Symmetril

Definition
Q@ Abimould B is called ©-symmetril if its coefficient map (o5 gives an algebra homomorphism
bi
op : (QL'), *o) — A.

Q Ifois given by 2{2 o ZS; = zsllj__s; then we call a ¢-symmetril bimould symmetril.

If B is symmetril then it satisfies in lowest depth

B(XI)B<X2) _ B(X17X2> + B(XZ)X1> + B(Yl)—(i}YQ) - B(Yl)j?YQ) ,

Yy Y Y1,Ys Yo, Y1 X1 —Xo

which is similar to the relation satisfied by a symmetril mould Z

Z(X1) — Z(X2) '

Z(X1)Z(X2) = Z(X1,X2) + Z(Xo, X1) +
X1 — Xy
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- Mould product

Let B and C' two bimoulds with values in A. The mould product B x C'is the bimould given by
Xi,... ) <X1 . ) (X-+1 XT>
-lg >< (:7 ) bl 13 b b (:7 J ) ) .
( )(Yiaa Z Y17 "7Y }/}+17"'7Y;"

Proposition

If B and C' are o-symmetril then B x C'is o-symmetril

Proof: The coefficient map of B X C'is the convolution product of (o5 and (¢, i.e.
ppxc =mo(p®pc)oA,

where m : A ® A — Ais the multiplication on A and A is the deconcatination coproduct on Q(L21>
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A bimould B is called swap invariant if for all 7 > 1

B(Xla'”,X’r') _B(Yi_'_+K‘aY1++K'—1,7Y1+}/27Y1)

Yi,....Y, Xpy Xp1 = Xy, Xo — X3, Xy — X

Example: If B is swap invariant we have B(;() = BG;) which gives, for example, b(}) = b((z)) J
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- From mould to bimould

For a mould Z, we define the bimould BZ by

2( X1, ., X» 4
B =>"Z,(V1,...,Y)Z(Xj41,. .., Xs).
9 9 j::0

Recall that by definition

ZUO(V1, . V) = 220D (Vi 4 Y, Y Y, V)
j=0

Proposition
o For any mould Z the bimould BZis swap invariant,

o If Z satisfies the double shuffle relations then B is symmetril.
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(4) Combinatorial MES

7 satisfies the double shuffle relations = BZ is swap invariant & symmetril.

Question ("<="?)

Does a swap invariant & symmetril bimould B give a mould Z which satisfies the double shuffle relations by setting

Xl,...,XT>?

Z(Xl,...,XT):B( B

No, not in general: Let B swap invariant & symmetril bimould. Then one can show that its coefficient satisfy
2
2 5. (4 3
b =-b —b .
0 2 \0 1

1 d
G2 = 704—7qd

— The coefficients of an swap invariant & symmetril bimould "behave like Eisenstein series".

Compare this to

G (2= 2C(0).
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- Swap invariant & symmetril bimould

Theorem ( (B.-Burmester (2022+) )

There exist a swap invariant & symmetril bimould & with values in Q[[¢]]

Xl,...,Xr) <k1k) . oYt Y

® = > G Xl xke

(Yl,...,Y; sy \di,...d Todydy!
didr >0

such that the coefficients in depth one are given by Eisenstein series and their derivatives (k >d > 0)

o) St ) o

Define the combinatorial multiple Eisenstein series for k1, ..., k. > 1by

(R Ky
Glhroosh) = (Fer b,
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- Swap invariant & symmetril bimould

Denote the space spanned by all combinatorial multiple Eisenstein by

G=Q+(Gkr,....k) |7 > L k1, ...k > 1) € Q[lg]].

Theorem (B.-Burmester (2022+))

@ The space G is a Q-algebra which contains the space of (quasi-)modular forms with rational coefficients.

@ The combinatorial multiple Eisenstein series give an algebra homomorphism

W= 2k, ... 25 — G(w) = G(k,..., k).

Q § is closed under q% and for any w € Q(L) we have

d

qd—qG(w) =G(ze*xw — 29 Ww).
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- Swap invariant & symmetril bimould

The combinatorial multiple Eisenstein series have the form

G(k1,y...,ky) = B(k1,...,kr)+ products of 5 and g in lower depths + g(k1, ..., kr).

Example: G(3,2) = B(3,2) + 38(3)9(2) + 28(2)9(3) + ¢(3,2) )

Therefore they can be seen as an interpolation between the harmonic regularized multiple zeta values and the
rational solutions to double shuffle equations: For all k1, . .., k. > 1 we have

lim(1 — @) oGk, .. k) = C (R, k)

q—1
(%I_I)I(I)G(kla"'va) :B(kla--'ak’r‘)'

Here limzﬁl means that for k1 = 1 one needs to use a regularized limit (B.-van-lttersum 2022+)
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- Formal multiple Eisenstein series

(Rough) Let S be the ideal in (Q(Lgi), %) generated by the "swap invariance relations", e.g. z% — zg € S.

Definition
The algebra of formal multiple Eisenstein series is defined by

bi

and we denote the class of a word zsi . ’” "oy G (kl’ :) andset Gj(k1, ..., k) == Gj (k(l)::g’")

Theorem (B.-Matthes-van-lttersum (2022+))

The following map gives a derivation on G f

ki .., kiy oo ki + 1,k
6Gf<d1,.. ) ZkGf( ...,dj+1,...,dT)'

7

As an analogue of G3 = 3G, — %qdquz we get G(2)? = 3Gj(4) — 30G}(2).
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- Formal multiple Eisenstein series

Theorem (B.-Matthes-van-lttersum (2022+))
Q The space of formal modular forms MT = Q[G}(4), G;(6)] is isomorphic to the space of modular forms.

O The space of formal quasi-modular forms M = Q[G(2), Gj(4), G§(6)] is isomorphic to the space of
quasi-modular forms as differential algebras.

f
O There exist an ideal N, such that the algebra Z1 = g is isomorphic to the algebra of formal multiple
N

zeta values (defined by Racinet). )

Conjecture (5[2-action)

There exist a unique derivation @ on G such that the triple (0, W,0) is an sly-triple, i.e.

[W,8] =20, [W,d]=-20, [0,8]=W,

where W is the weight operator.

We have an explicit conjectured construction of the derivation 0. This s[-action would generalize the classical

slo-action on the space of quasi-modular forms. doras



- Open questions & future directions

There are still some undiscovered species of multiple Eisenstein series.
@ Higher level analogues (cf. Kaneko-Tasaka 2013, Yuan-Zhao 2016).
Analytic realization of the formal multiple Eisenstein series.
Extension of the Kronecker realization (B.-Kiihn-Matthes 2021) to higher depths. ~~ "Modular MES".
Connection to the Goncharov coproduct (cf. B.-Tasaka 2017).
Possible definition of g-Associators.
Basis & Dimension formulas (cf. B.-Kuhn 2020).

Interpretation of the Broadhurst-Kreimer conjecture & exotic relations in this setup.

© ©0 00O0O

Adaptation of this setup for finite multiple zeta values (cf. Kaneko-Zagier, B.-Tasaka-Takeyama 2018).

Thank you for your attention.
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Construction of combinatorial multiple Eisenstein series

Symmetril & swap invariant bimould

ki, kr X1,..., X,
o5 o3
dy,...,d, QS(Y&,...,Y})

Mould product
_ *
Symmetril & swap invariant 6 = g X b

bimould -
Sums of multiple version of L: Symmetril bimould g
b le 000 7Xr
}/17 e 7Y;‘

of X1, X2\ X1 X X1, X
g(ym) ) »:(Y) ( ) mzs(”)

m1>mz>0
BZ |

Symmetril bimould

Rational solution Define multiple version of L by b and single version of L
for double shuffle equations . (X. ..... x,.) _ z h(X' — X X — XJ)L ( X; )B(X' — X, X1 — XJ) £m
b(Xla 500 Xr) R = Vi Yo Y +¥ Yoo Vi

The series g (sums of single version of L)

Xi.... X, Xy X,
- ¥ L L
9<Y1,...,Y,> m1<Y1> ’"T(YT>

my>--->my>0




Bonus - Construction of the bimould &

With Ly, ()}f) = % define the bimould g with values in Q][[g]] by

X1,... ,Xr) (Xl) X,
g( = > Lm Y .
Y, Y my>->mp>0 " Yr

Theorem (B. 2013)
The bimould g is swap invariant.

The coefficients generalize the g-series g. This bimould is not symmetril, but satisfies, for example,

g(X1)g(X2) _ g(Xl,XQ> . g<X2,X1) n g(Yl)—(i-lYl) - Q(Yl)-%yl)

Yy Ys Y1,Ys Yo, Y1 X1 —Xo

(2b(X2—X1) 1) (Yl)j_lyl>+(2b(X1 Xo) — 1) (Yl)—%Yl)

Using the swap invariance of g, the above relationship between g and b and the fact that b satisfies the double

shuffle relation, one can given an explicit (but complicated) construction of @.
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Bonus - Construction of the bimould - £,,,

X\ _ eXtm¥gm X1 Xe\ o (—1)? Xit1ye Xy
Recall Lm(y) = oxgn andset b( i T) = im0 5 b(_Y’l,. . T_i).
Definition
For m > 1 we define the bimould £,,, by defining £,,, (Xi’ XT) as

Zb(xl X, X I—XJ)L ( X; )E(XT—XJ-,...,XN—XJ-)
Yi? '51/3—1 " K++YT YT‘)“"}/}"FI '

The L., ()Y() can be seen as the generating series of the "(bi-)combinatorial version" of the monotangent

function U™ (1) = = 1 = Zd>0 @ (defined by the Lipschitz formula instead of nested sum), since

comb k—1 1 k—1,md yk—1 dX _md eXgm X
Z\I/k (m7)X :Z—(k—l)'zd qmX :Ze q :—1_6)(m:Lm 0)
E>1 k>1 T d>0 d>0 q

The £, can then be seen as the generating series of (bi-)combinatorial version of the multitangent functions.

(compare with the flexion units in the talk of Komiyama)
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Bonus - Construction of the bimould - g*

Let B,,, be a family of bimoulds which are <-symmetril for all . > 1. Then the bimould C'; defined by

J
CM(Xl,...,XT> B 3 5 <X+1X)
= -~
1/].7"'71/7‘ 1<j<r 5=l Y;‘i_l-i-lv"'ayri
0=T‘0<T1<T'<_T‘j_1<7‘j=7‘
M>mi>--->m;>0
is O-symmetril for all M > 1. Proof: Show Cpy1 = By x Chy and do induction on M.

Definition
We define the bimould g* by
J
g*<)§/1a-'-’})fr> _ Z Hgmi (XT¢_1+1""";/(T«;).
IERREEE 43 155r i LY,

0=T‘0<1"1<"~<Tj_1<7‘j=7‘
mi>-->m; >0

Lemma = if the £, are symmetril for all 71 then g* is symmetril. woras



Bonus - Construction of the bimould - Definition

Definition (B.-Burmester (2022+))

The bimould of combinatorial (bi)-multiple Eisenstein series is defined by & = g* x b.

Definition (B.-Burmester (2022+))

For j > 0 we define the bimould &; = (QS;T)),«ZO as follows. In the case j = 0 we set &y = b and
(’55-” =0forr < 7.1f1 < j < r we define

6_(X17"-7X7‘) . Z H£ ( Po— 1+13"'7XT7;>b(XTj+1;"'7XT)

J — m; .

-YV].""JK” O=ro<r <--<r;<ri=1 ‘ 'I“z 1+13"'7Y;”1' erj-l‘la"'ay;‘
my>-->m;>0

Theorem (B.-Burmester (2022+))

The bimould & ; is swap invariant for any j > 0 and we have & = Z;T:O &, ie. & is swap invariant.
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Bonus - Example of the bimould &

Let b = B denote the bimould coming from the mould b, which satisfies the double shuffle relation.
(i.e. the bimould b is symmetril and swap invariant)

Example: In depth one and two the bimould @& is given by
X1\ (Xi X
o() =) +o(s)
®(X1’X2>—b(Xl’Xz)—b<Xl_X2> ( X1 )_1( X1
Yi,Y2) T O\ WY . )J\n+n) 2\n+n

(o) o (5 el ) ()
v, )"\ n i J'\vi+w) T vn )

_|_
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Bonus - Analogue for the double shuffle relation in small depth

As a consequence of the swap invariance the formal (and therefore also the combinatorial) bi-multiple Eisenstein
series satisfy for k1, ko > 1,dy,ds > 0

k1 ka\ k1, k2 ko, k1 k1 + ko
G (dl>Gf <d2> =G (dl,d2> G <d2, d1> + G <d1 + d2>

s e el
Li+lo=ky+ko 1= €1 2 — €1 e1, e

e1+ex=d1+d2
l1,l2>1,e1,e220

. dq!ds! (k1+k2—2>G (k1+k2—1>
(d1+d2+1)! ki —1 f di+do+1)°
Example The k1 = 2, ko = 3,d; = dy = 0 case gives

G(2)G1(3) = Gf(2,3) + G;(3,2) + G;(5)
= Gf(?, 3) + 3Gf(3, 2) + 6Gf(4, 1) + 8Gf(3) .

Compare thisto ((2) - (3) = ((2,3) + ((3,2) + ((5) = ¢(2,3) + 3¢(3,2) + 6¢(4,1).

44/44




