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Abstract

In this report, we state the definition and prove some basic properties of quasi-shuffle
algebras, with the shuffle and stuffle products serving as our main examples. We give
examples of applications to multiple zeta values (MZV), proving that the multiple zeta map
gives a homomorphism from certain shuffle and stuffle algebras H0

� and H0
∗ to the Q-algebra

Z ⊂ R of multiple zeta values. From this, one obtains a family of Q-linear relations among
MZV, known as the finite double-shuffle relations. Further, these homomorphism properties
give a natural way to extend MZV to shuffle and stuffle regularized MZV, and from this
extension one obtains a larger family of linear relations among MZV known as the extended
double-shuffle relations.

We also give applications to multiple Eisenstein series (MES) following [Bac4]. By using
convolutions with respect to the stuffle-product, MES can be shown to have q-series whose
coefficients are closely related to multiple zeta values and their q-analogues. As a byproduct
of the proof of this fact, and using some properties of the multitangent functions studied by
[Bou], one gets a natural way of extending MES to a stuffle-regularized version.
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1 Introduction

The Riemann zeta function

ζ(s) =
∑
m>0

1

ms
(Re(s) > 1)

1



is one of the most important objects in modern number theory. Famously, the zeroes of (the
analytic continuation of) ζ(s) are related to the distribution of prime numbers. Of separate
interest to the analytic aspects of the zeta function are its special values, such as ζ(k) for integers
k ≥ 2. These special numbers tend to show up in various places ranging from physics to the
theory of modular forms. Euler famously proved that

ζ(2k) =
(−1)k−1B2k

2(2k)!
(2π)2k,

where Bn are the Bernoulli numbers defined by the generating function∑
n≥0

Bn
xn

n!
=

x

ex − 1
= 1− 1

2
x+

1

6

x2

2!
− 1

30

x4

4!
+

1

42

x6

6!
+ . . .

Thus for example, ζ(2) = π2

6 , ζ(4) =
π4

90 and ζ(6) = π6

945 .
Since π is transcendental, it follows from Euler’s formula that all even zeta values ζ(2k) are

transcendental. By comparison, much less is known about the odd zeta values ζ(2k+ 1). Apéry
proved in 1978 that ζ(3) is irrational, but no other particular odd zeta values are known to be
irrational, let alone transcendental. However, it is conjectured that the numbers

1, π2, ζ(3), ζ(5), ζ(7), . . .

are algebraically independent over the rational numbers (though a proof of this conjecture seems
far out of reach at the moment). In other words, we don’t expect any algebraic combination of
ζ(k1), . . . , ζ(kn) to be rational when k1, . . . , kn ≥ 2 are distinct integers, at most one of which is
even. The simplest such (non-linear) algebraic combination is the product of two zeta-values:

ζ(k1)ζ(k2) =
∑

m1,m2>0

1

mk1
1 m

k2
2

=

[ ∑
m1>m2>0

+
∑

m2>m1>0

+
∑

m1=m2>0

]
1

mk1
1 m

k2
2

.

If one defines the double zeta-values ζ(k1, k2) :=
∑

m1>m2>0
1

m
k1
1 m

k2
2

, then the above gives the

identity
ζ(k1)ζ(k2) = ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2). (1)

In Section 2, we will define a certain Q-algebra where the following equation resembling (1) holds:

zk1 ∗ zk2 = zk1zk2 + zk2zk1 + zk1+k2 .

The product ∗ is called the stuffle-product (or harmonic product) and is one of the main examples
of a quasi-shuffle product, which are the subject of study in this report.

A different way of writing ζ(k1)ζ(k2) comes from the partial fraction decomposition

1

xk1yk2
=

k1+k2−1∑
j=1

( (
j−1
k1−1

)
(x+ y)jyk1+k2−j

+

(
j−1
k2−1

)
(x+ y)jxk1+k2−j

)
.
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Noting that the j = 1 term vanishes when k1, k2 ≥ 2, this gives

ζ(k1)ζ(k2) =

k1+k2−1∑
j=2

∑
m1,m2>0

( (
j−1
k1−1

)
(m1 +m2)jm

k1+k2−j
2

+

(
j−1
k2−1

)
(m1 +m2)jm

k1+k2−j
1

)

=

k1+k2−1∑
j=2

((
j − 1

k1 − 1

) ∑
n1>n2>0

1

nj1n
k1+k2−j
2

+

(
j − 1

k2 − 1

) ∑
n1>n2>0

1

nj1n
k1+k2−j
2

)

=

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j). (2)

Again, we will define a certain algebra in Section 2 where a similar equation holds, namely

xk1−1y� xk2−1y =

k1+k2−1∑
j=1

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
xj−1yxk1+k2−j−1y (k1, k2 ≥ 1). (3)

The product� is known as the shuffle product, and is another example of a quasi-shuffle product.
Combining (1) and (3), one gets (a special case of) what is known as the double-shuffle relations:

ζ(k1, k2)+ζ(k2, k1)+ζ(k1+k2) = ζ(k1)ζ(k2) =

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1+k2−j).

For example

ζ(2, 3) + ζ(3, 2) + ζ(5) = ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1).

In Section 2, we will prove the double-shuffle relations in full generality using the quasi-shuffle
products ∗ and�. We will also use the theory of quasi-shuffle products to make sense of divergent
multiple zeta values such as “ζ(1)”.

In Section 3, we will study several other families of objects that satisfy identities similar to (1),
mainly multiple Eisenstein series, which are generalizations of Eisenstein series, the well-known
modular forms. Using the theory of quasi-shuffle products built up in Section 2 (especially of the
stuffle-product), we will be able to prove that the Fourier series expansions of multiple Eisenstein
series are closely related to multiple zeta values. As a byproduct of the proof, we will find a
“natural” way of making sense of divergent multiple Eisenstein series.

2 Quasi-shuffle products and multiple zeta values

Let k be a field, and let A (the “alphabet”) be a countable set of symbols. We denote by kA
the k-vector space having a basis-element for each symbol in A, i.e.

kA :=
⊕
a∈A

ka.

Let A∗ = {a1 · · · ar | r ≥ 0, a1, . . . , ar ∈ A} be the set of words in the alphabet A. For a
word w = a1 · · · ar ∈ A∗, we let ℓ(w) = r denote the length of w. We denote by k⟨A⟩ the
noncommutative polynomial algebra, which as a vector space has A∗ as a basis, i.e.

k⟨A⟩ :=
⊕
w∈A∗

kw.
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This is a k-algebra with the product given on basis-elements by concatenation of words. Note
that the empty word is the unit for this algebra, and so we will simply denote it by 1, and we
will identify k with the span of the empty word in k⟨A⟩.

Suppose kA is equipped with an associative, commutative, k-bilinear product ⋄. This then
induces a new product on k⟨A⟩ defined as follows:

Definition 2.1. Given a commutative, associative, k-bilinear product ⋄ on kA, we define the
quasi-shuffle product ∗⋄ on k⟨A⟩ as follows: On the generators (words) it is given by

1 ∗⋄ w = w ∗⋄ 1 = w,

and
aw ∗⋄ bv = a(w ∗⋄ bv) + b(aw ∗⋄ v) + (a ⋄ b)(w ∗⋄ v), (4)

for arbitrary words w, v ∈ A∗ and symbols a, b ∈ A. α ∗⋄ β is then given for general α, β ∈ k⟨A⟩
by extending the above bilinearly.

Lemma 2.2. ∗⋄ as defined above is commutative and associative whenever ⋄ is. Thus (k⟨A⟩, ∗⋄)
is a commutative k-algebra.

Proof. Let us start with commutativity. It suffices to show that w ∗⋄ v = v ∗⋄ w for words
w, v ∈ A∗. The proof is by induction in the total length of the words ℓ(w) + ℓ(v). Note that the
commutativity is obvious when either w or v is the empty word, so this gives us the base-case for
free, and for the inductive step we may assume that w = aw′, v = bv′ for some symbols a, b ∈ A
and words w, v ∈ A∗. Then using the inductive hypothesis, as well as the commutativity of ⋄,
we get

w ∗⋄ v − v ∗⋄ w = a(w′ ∗⋄ bv′) + b(aw′ ∗⋄ v′) + (a ⋄ b)(w′ ∗⋄ v′)
−b(v′ ∗⋄ aw′)− a(bv′ ∗⋄ w′)− (b ⋄ a)(v′ ∗⋄ w′)

= a(w′ ∗⋄ bv′) + b(aw′ ∗⋄ v′) + (a ⋄ b)(w′ ∗⋄ v′)
−b(aw′′ ∗⋄ v′)− a(w′ ∗⋄ bv′)− (a ⋄ b)(w′ ∗⋄ v′)

= 0.

The proof of associativity is similar, though the calculation gets slightly more cumbersome.
We show w ∗⋄ (v ∗⋄ u) = (w ∗⋄ v) ∗⋄ u for words w, v, u ∈ A∗ by induction in ℓ(w) + ℓ(v) + ℓ(u).
Again this is trivial when either of the three words is empty, so we get the base case for free and
can assume for the inductive step that w = aw′, v = bv′, u = cu′ for some symbols a, b, c ∈ A
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and words w, v, u ∈ A∗. Then

w ∗⋄ (v ∗⋄ u)− (w ∗⋄ v) ∗⋄ u = aw′ ∗⋄ (b(v′ ∗⋄ cu′) + c(bv′ ∗⋄ u′) + (b ⋄ c)(v′ ∗⋄ u′))
−(a(w′ ∗⋄ bv′) + b(aw′ ∗⋄ v′) + (a ⋄ b)(w′ ∗⋄ v′)) ∗⋄ cu′

= a(w′ ∗⋄ b(v′ ∗⋄ cu′)) + b(aw′ ∗⋄ (v′ ∗⋄ cu′)) + (a ⋄ b)(w′ ∗⋄ (v′ ∗⋄ cu′))
+a(w′ ∗⋄ c(bv′ ∗⋄ u′)) + c(aw′ ∗⋄ (bv′ ∗⋄ u′)) + (a ⋄ c)(w′ ∗⋄ (bv′ ∗⋄ u′))
+a(w′ ∗⋄ (b ⋄ c)(v′ ∗⋄ u′)) + (b ⋄ c)(aw′ ∗⋄ (v′ ∗⋄ u′)) + (a ⋄ (b ⋄ c))(w′ ∗⋄ (v′ ∗⋄ u′))
−a((w′ ∗⋄ bv′) ∗⋄ cu′)− c(a(w′ ∗⋄ bv′) ∗⋄ u′)− (a ⋄ c)((w′ ∗⋄ bv′) ∗⋄ u′)
−b((aw′ ∗⋄ v′) ∗⋄ cu′)− c(b(aw′ ∗⋄ v′) ∗⋄ u′)− (b ⋄ c)((aw′ ∗⋄ v′) ∗⋄ u′)
−(a ⋄ b)((w′ ∗⋄ v′) ∗⋄ cu′)− c((a ⋄ b)(w′ ∗⋄ v′) ∗⋄ u′)− ((a ⋄ b) ⋄ c)((w′ ∗⋄ v′) ∗⋄ u′)

= a(w′ ∗⋄ b(v′ ∗⋄ cu′))
+a(w′ ∗⋄ c(bv′ ∗⋄ u′)) + c(aw′ ∗⋄ (bv′ ∗⋄ u′))
+a(w′ ∗⋄ (b ⋄ c)(v′ ∗⋄ u′))
−a((w′ ∗⋄ bv′) ∗⋄ cu′)− c(a(w′ ∗⋄ bv′) ∗⋄ u′)
−c(b(aw′ ∗⋄ v′) ∗⋄ u′)
−c((a ⋄ b)(w′ ∗⋄ v′) ∗⋄ u′)

= a(w′ ∗⋄ (bv′ ∗⋄ cu′)) + c(aw′ ∗⋄ (bv′ ∗⋄ u′))
−a((w′ ∗⋄ bv′) ∗⋄ cu′)− c((aw′ ∗⋄ bv′) ∗⋄ u′)

= 0.

In the third equality above, we cancel several terms using the induction hypothesis along with
the associativity of ⋄. The next equality is by recombining the +a-terms and the −c-terms using
the recursive definition of ∗⋄. The cancellation in the final equality is then again by the inductive
hypothesis.

Example 2.3. Our main examples of quasi-shuffle products will be the following.

(i) Let A = {x, y} and ⋄ = 0. The associated quasi-shuffle product ∗⋄, which is typically
denoted � is then given recursively by

1� w = w� 1 = w, aw� bv = a(w� bv) + b(aw� v),

for words w, v ∈ A∗ and symbols a, b ∈ A. One can think of a word w ∈ A∗ as a “deck of
cards” with an x or a y written on each card. w� v is then the sum of all possible (riffle)
shuffles of the two decks w and v. For this reason, � is also known as the shuffle-product.
Quasi-shuffle products are then so named because they generalize the shuffle-product with
the extra ⋄-term in the recursion. Note also that this card-shuffling interpretation of �
gives a combinatorial proof of the equation (3).

(ii) Let A = {zk | k ≥ 1}, and define ⋄ on the symbols by zk ⋄ zℓ = zk+ℓ. The associated
quasi-shuffle product ∗⋄ is known as the stuffle-product and is simply denoted by ∗.
Thus

w ∗ 1 = 1 ∗ w = w, zkw ∗ zℓv = zk(w ∗ zℓv) + zℓ(zk ∗ v) + zk+ℓ(w ∗ v),

for k, ℓ ≥ 1 and w, v ∈ A∗.
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Let us remark that quasi-shuffle algebras are in fact bialgebras. Define a linear map ∆ :
k⟨A⟩ → k⟨A⟩ ⊗ k⟨A⟩ (called the deconcatenation coproduct) on words w ∈ A∗ by

∆(w) =
∑
uv=w

u⊗ v,

where the sum runs over all ways of writing w as the concatenation of two subwords u, v (either
of which is allowed to be the empty word). This in turns the quasi-shuffle algebra (k⟨A⟩, ∗⋄) into
a bialgebra with coproduct ∆ and counit

ε(w) =

{
1 w = 1,

0 ℓ(w) ≥ 1.

In fact, there is even a unique antipodal map turning (k⟨A⟩, ∗⋄) into a Hopf-algebra (though we
will not be making much use of this fact), see [Hof, HI] for details.

2.1 Double-shuffle relations for multiple zeta-values

One of the main applications of quasi-shuffle products is to find relations among multiple zeta
values (MZV). MZV are numbers of the form

ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

,

where k1, . . . , kr are positive integers with k1 ≥ 2. The condition k1 ≥ 2 is to ensure convergence.
Indeed, by comparing with the harmonic series, one sees that the sum above diverges when k1 = 1,
whereas for k1, . . . , kr real with kj ≥ 1 and k1 ≥ 1 + ε > 1∣∣∣∣∣ ∑

m1>···>mr>0

1

mk1
1 · · ·mkr

r

∣∣∣∣∣ ≤ ∑
m1>···>mr>0

1

m1+ε
1 m2 · · ·mr

=
∑
m>0

1

m1+ε

∑
m>m2>···>mr>0

1

m2 · · ·mr

≤
∑
m>0

1

m1+ε

∑
m>m2>0

...
m>mr>0

1

m2 · · ·mr

=
∑
m>0

1

m1+ε

(
m−1∑
n=1

1

n

)r−1

.

(5)

Upon comparing with an integral, one then sees that
∑m−1

n=1
1
n = O(log(m)) = O(m

ε/2
r−1 ), so that

the sum converges absolutely.
Let us introduce a bit of terminology. An index is a tuple k = (k1, . . . , kr) of positive

integers, allowing the empty index k = ∅∅∅. We say k is admissible if k = ∅∅∅ or k1 ≥ 2, so that
ζ(k) makes sense (by convention, ζ(∅∅∅) = 1). The weight of k is wt(k) = k1 + · · ·+ kr, and the
depth of k is dep(k) = r, with the convention that wt(∅∅∅) = dep(∅∅∅) = 0. We will study the
vector spaces

Z := SpanQ{ζ(k) | k admissible}
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and
Zk := SpanQ{ζ(k) | k admissible with wt(k) = k}

for k ≥ 0. It is clear by definition that Z =
∑

k≥0 Zk. One of the main conjectures about
multiple zeta values is that in fact

Z =
⊕
k≥0

Zk,

i.e. that the space Z is graded by weight. Another way of phrasing this is that there should be
no Q-linear relations between multiple zeta values of different weight other than those that can
be obtained as sums of weight-homogeneous relations. This is a rather strong conjecture; for
example, since Z0 = Q, it would immediately imply that all MZV of positive weight are irrational.
In fact, it would imply that they are transcendental: We will show that Z is a Q-algebra, with
the product respecting the (conjectured) grading, so in particular, algebraic relations reduce to
linear relations. On the other hand, there are plenty of weight-homogeneous relations among
MZV. In this section, we will apply quasi-shuffle products to produce one family of relations,
namely the (finite) double-shuffle relations.

Define the following three Q-vector spaces H ⊃ H1 ⊃ H0:

H := Q⟨x, y⟩,
H1 := Q+ Hy,

H0 := Q+ xHy,

i.e. H is generated by all words in the symbols x and y (including the empty word 1), H1 is the
subspace generated by the empty word and words ending in y, and H0 is the subspace generated
by the empty word and words beginning in x and ending in y. Note that H can be equipped with
the shuffle product �, and that (H1,�) and (H0,�) are easily seen to be subalgebras of (H,�).

Note further that if we define zk = xk−1y for k ≥ 1, then H1 = Q
〈
(zk)k≥1

〉
. We can then equip

H1 with the stuffle-product ∗, and again it is easy to see that (H0, ∗) is a subalgebra of (H1, ∗).
We will usually write H0

�
, H0

∗ etc. to denote the quasi-shuffle algebras (H0,�), (H0, ∗) etc.
An index k = (k1, . . . , kr) may be identified with the generator zk := zk1

· · · zkr
in H1. Note

then that zk ∈ H0 if and only if either k = ∅∅∅ or k1 ≥ 1, i.e. if the index is admissible. It therefore
makes sense to extend the multizeta map to a linear map ζ : H0 → Z defined on the basis vectors
by

ζ(zk) := ζ(k).

The aim of this section is to show the following:

Theorem 2.4. The map ζ : H0 → Z is a Q-algebra homomorphism, both with respect to the
shuffle-product �, and with respect to the stuffle-product ∗.

Technically, we haven’t proven yet that Z is even a Q-algebra (i.e. we don’t know yet that
the product of two MZV’s is a Q-linear combination of MZV’s). A more proper formulation of
Theorem 2.4 is then that ζ is a homomorphism from H0

�
(resp. H0

∗) to R. It then follows that
the image ζ(H0) = Z is in fact a Q-subalgebra of R. Theorem 2.4 immediately gives us a family
of linear relations among MZVs:

Corollary 2.5 (Finite double-shuffle relations). For any w, v ∈ H0, we have

ζ(w� v − w ∗ v) = 0.
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Proof. By Theorem 2.4 we have

ζ(w� v − w ∗ v) = ζ(w� v)− ζ(w ∗ v) = ζ(w)ζ(v)− ζ(w)ζ(v) = 0.

To prove Theorem 2.4, we will have to work on the larger space H1 instead of H0. To do this,
we need some analogue of ζ that makes sense on this larger space. In the case of the stuffle-
product, this will be the truncated multiple zeta function ζM (defined in (8)), and in the case
of the shuffle-product it will be the multiple polylogarithm Li−(z) (defined by (6) below). In
both cases, we will prove that these give homomorphisms onto some Q-algebra (respectively Q
itself and the Q-algebra H(D(0, 1)) of holomorphic functions on the open unit disk) that, when
restricted to the subalgebra H0, yield ζ in some limit (respectively M → ∞ and z → 1).

Let us start with the shuffle-product. For any index k = (k1, . . . , kr) (not necessarily admis-
sible), define the multiple polylogarithm Lik by

Lik(z) :=
∑

m1>···>mr>0

zm1

mk1
1 · · ·mkr

r

, |z| < 1, (6)

for r ≥ 1 and
Li∅∅∅ := 1.

The power-series above does indeed have radius of convergence 1 (or ∞ in the case of Li∅∅∅), so Lik
defines a holomomorphic function on the open unit disk D(0, 1). Note that when k is admissible,
the power-series is in fact convergent at z = 1, and we have limz→1 Lik(z) = ζ(k).

If we see Lik(z) as a function of k, then that gives a map from the set of indices to the space
H(D(0, 1)) of holomorphic functions on the unit disk. Analogously to ζ, we can extend this to a
linear map on H1:

Li− : H1 → H(D(0, 1))

zk 7→ Lik.

Our goal is to show that this is a homomorphism with respect to the shuffle product. The key
to proving this is that the multiple polylogarithm satisfies a certain differential equation:

Lemma 2.6. For any symbol a ∈ {x, y} and any word w ∈ H1, we have

d

dz
Liaw(z) = fa(z)Liw(z),

where

fx(z) =
1

z
, fy(z) =

1

1− z
.

Proof. Suppose aw = zk1
· · · zkr

. Then

d

dz
Liaw(z) =

∑
m1>···>mr>0

m1z
m1−1

mk1
1 · · ·mkr

r

=
∑

m1>···>mr>0

zm1−1

mk1−1
1 mk2

2 · · ·mkr
r

. (7)

There are then two cases to check:

Case 1: Suppose a = x. This means that k1 ≥ 2, so w = zk1−1zk2 · · · zkr . But then (7) says
exactly that

d

dz
Liaw(z) =

1

z
Lizk1−1zk2

···zkr
(z) =

1

z
Liw(z),

as claimed
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Case 2: Suppose a = y. This means that k1 = 1, so w = zk2 · · · zkr . But then we can rewrite
(7) to

d

dz
Liaw(z) =

∑
m2>···>mr>0

(
1

mk2
2 · · ·mkr

r

∑
m1>m2

zm1−1

)

=
∑

m2>···>mr>0

1

mk2
2 · · ·mkr

r

· z
m2

1− z

=
1

1− z
Lizk2

···zkr
(z) =

1

1− z
Liw(z),

where we used the fact that the geometric series
∑

m1>m2
zm1−1 with initial term zm2 and

common ratio z converges to zm2

1−z for |z| < 1.

Proposition 2.7. Li− : H1
�

→ H(D(0, 1)) is a homomorphism of Q-algebras.

Proof. We prove that Liw�v(z) = Liw(z)Liv(z) for words w, v ∈ H1 by induction in ℓ(w) + ℓ(v).
As usual, this is trivial when either word is empty, so we get the base case for free, and can
assume for the induction step that w = aw′ and v = bv′ for some symbols a, b ∈ x, y and words
w′, v′ ∈ H1. Then using Lemma 2.6, the induction hypothesis, and then Lemma 2.6 again, we
get

d

dz
Liw(z)Liv(z) = fa(z)Liw′(z)Libv′(z) + fb(z)Liaw′(z)Liv′(z)

= fa(z)Liw′
�bv′(z) + fb(z)Liaw′

�v′(z)

=
d

dz

(
Lia(w′

�bv′) + Lib(aw′
�v′)(z)

)
=

d

dz
(Lia(w′

�bv′)+b(aw′
�v′)(z)

=
d

dz
Liw�v(z).

Thus Liw(z)Liv(z)− Liw�v(z) is constant, and since

Liw(0) =

{
1 w = 1,

0 ℓ(w) ≥ 1,

and similarly for Liv and Liw�v, we see that this constant is zero.

From this, we get the first half of Theorem 2.4:

Corollary 2.8. ζ : H0
�

→ Z is a homomorphism of Q-algebras.

Proof. We have Liw�v(z) = Liw(z)Liv(z) for any w, v ∈ H1, so this holds in particular if we
restrict to w, v ∈ H0. Taking the limit z → 1 then yields ζ(w� v) = ζ(w)ζ(v).

Let us now turn to the stuffle product. Given a positive integerM , we define the Truncated
Multiple Zeta Value ζM (k) for any index k = (k1, . . . , kr) by

ζM (k) =
∑

M>m1>···>mr>0

1

mk1
1 · · ·mkr

r

∈ Q (8)

9



for r ≥ 1, and
ζM (∅∅∅) = 1.

As usual, we can extend ζM to a linear map ζM : H1 → Q. Our goal is then to show that
this is a homomorphism with respect to the stuffle product, which upon restricting to H0 and
taking the limit M → ∞ implies that ζ is a homomorphism from H0

∗ to Z. It is actually quite
straightforward to show this by induction in M . However, we will here take a different, more
abstract approach, which has the advantage of being applicable in many other settings (for
example, we will make extensive use of it in Section 3). The idea will be to use the following
simple fact:

Lemma 2.9. Let A be a k-bialgebra with coproduct ∆ : A→ A⊗A, and let B be a commutative
k-algebra with product m : B ⊗B. If f, g : A→ B are homomorphisms of k-algebras, then so is
their convolution

f ⋆ g = m ◦ (f ⊗ g) ◦∆.

Proof. This simply follows from the fact that f ⋆g is a composition of homomorphisms: ∆ : A→
A⊗A is a homomorphism because it is the coproduct of the bialgebra A, f⊗g : A⊗A→ B⊗B is
a homomorphism because f and g are homomorphisms, and m : B⊗B → B is a homomorphism
because B is commutative: For any a, b, c, d ∈ B we have

m((a⊗ b)(c⊗ d)) = m(ac⊗ bd) = acbd = abcd = m(ab⊗ cd) = m((a⊗ c)(b⊗ d)).

It thus suffices to realize ζM as a convolution of homomorphisms. We can produce these
homomorphisms using the following lemma:

Lemma 2.10. Suppose f̃ : (kA, ⋄) → B is a homomorphism from the semialgebra of symbols to
some k-algebra B. Then the linear map f : (k⟨A⟩, ∗⋄) → B given on a word a1 · · · ar ∈ A∗ by

f(a1 · · · ar) =


1 r = 0,

f̃(a1) r = 1,

0 r ≥ 2,

is a homomorphism of k-algebras.

Proof. It suffices to verify that f(w ∗⋄ v) = f(w)f(v) for words w, v ∈ A∗. This is obvious in the
case when either word is empty. It is also clear in the case when either word has length at least
2: Note that when we expand w ∗⋄ v using the recursive definition (4), all the terms that we get
will have length at least max{ℓ(w), ℓ(v)} ≥ 2, so f(w ∗⋄ v) = 0 = f(w)f(v). This leaves only the
case when w and v are both single symbols, say w = a and v = b. Then

f(w ∗⋄ v) = f(wv) + f(vw) + f(w ∗⋄ v) = 0 + 0 + f̃(w ∗⋄ v) = f̃(w)f̃(v) = f(w)f(v).

Proposition 2.11. For every M > 0, ζM : H1
∗ → Q is a homomorphism of Q-algebras.

In fact, we will prove something more general:
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Lemma 2.12. Let B be a commutative k-algebra, and let N be a finite set equipped with a total
order ≻. Suppose we are given a family of homomorphisms f̃m : (k⟨A⟩, ⋄) → B for m ∈ N .
Then the linear map FN : k⟨A⟩ → B given on words a1 · · · ar ∈ A∗ by

FN (a1 · · · ar) =
∑

m1,...,mr∈N
m1≻···≻mr

f̃m1
(a1) · · · f̃mr

(ar) (9)

for r ≥ 1, and
FN (1) = 1

is a homomorphism from (k⟨a⟩, ∗⋄) to B.

Proof. Note that in the case N = ∅, we have

F∅(w) =

{
1 w = 1,

0 ℓ(w) ≥ 1,

which is clearly a homomorphism. Let us therefore restrict ourselves to the cases where N ̸= ∅.
The idea for the proof is to realize FN as a convolution of homomorphisms. For every m ∈ N ,

define a linear map fm : H1
∗ → Q on words by

f(a1 · · · ar) =


1 r = 0,

f̃(a1) r = 1,

0 r ≥ 2.

By Lemma 2.10, fm is a homomorphism for every m. Therefore, by Lemma 2.9, so is the map

⋆
m∈N

fm,

where the convolution is to be taken in decreasing order, i.e. if n1 ≻ · · · ≻ nM are all the elements
of N , then ⋆m∈N fm = fn1 ⋆ · · · ⋆ fnM

. The claim is now that in fact FN = ⋆m∈N fm, from
which the proposition immediately follows (note that F∅ is in fact equal to the unit u ◦ ε for the
convolution product ⋆, so we can also think of F∅ as the “empty convolutoin”). Let w = a1 · · · ar.
Then (

⋆
m∈N

fm

)
(w) =

∑
w1···wM=w

fn1
(w1) · · · fnM

(wM ),

where n1 ≻ · · · ≻ nM are all the elements of N in decreasing order, and the sum runs
over all ways of splitting w into M subwords, allowing the empty word. Consider some term
fn1

(w1) · · · fnM
(wM ) in this sum. If ℓ(wj) ≥ 2 for some j, then fnj

(wj) = 0, so the whole term
vanishes. We may therefore restrict the sum to only run over ways of splitting w up into M
subwords, each of which is either empty or a single symbol. The number of single symbol words
in each term must be r, and said single symbol words must be wm1 = a1, . . . , wmr = ar for some
m1 ≻ · · · ≻ mr. Any remaining empty words just contribute factors of 1 to the term, and can
thus be disregarded. We therefore have(

⋆
m∈N

fm

)
(w) =

∑
m1,...,mr∈N
m1≻···≻mr

fm1(a1) · · · fmr (ar)

=
∑

m1,...,mr∈N
m1≻···≻mr

f̃m1
(a1) · · · f̃mr

(ar)

= FN (w),
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as claimed, which finishes the proof.

Note that Proposition 2.11 follows from Lemma 2.12 by taking N = {1, . . . ,M−1} (equipped
with its usual ordering), and f̃m(zk) = 1

mk , which is indeed a homomorphism for ⋄, since

f̃m(zk)f̃m(zℓ) = 1
mk

1
mℓ = 1

mk+ℓ = f̃m(zk+ℓ) = f̃m(zk ⋄ zℓ). As before, we can restrict ζM to
H0, which upon taking the limit M → ∞ yields the second part of Theorem 2.4:

Corollary 2.13. ζ : H0
∗ → Z is a homomorphism of Q-algebras.

With this, we have finally proven Theorem 2.4 and Corollary 2.5.

2.2 Regularization and the extended double-shuffle relations

The finite double shuffle relations ζ(w�v−w∗v) = 0 do not give us all relations among multiple
zeta values. For one thing, if w, v are nonempty words in H0, then they each represent indices of
weight at least 2, so there is no way to achieve any relations in weight 3 such as ζ(2, 1) = ζ(3).
On the other hand, if we forget about the fact that z1 /∈ H0, we could simply try to compute

z1 � z2 − z1 ∗ z2 = z2z1 − z3,

and noting that the right-hand side is in H0 we “conclude” that ζ(z2z1−z3) = 0. In this section,
we shall make sense of calculations like this. The key will be to extend the map ζ from H0 to H1 in
a way that preserves its homomorphism property with respect to the stuffle and shuffle product.
This will yield two different homomorphisms ζ� and ζ∗ with respect to � and ∗ respectively,
but somewhat miraculously, we still have ζ�(w� v − w ∗ v) = ζ∗(w� v − w ∗ v) = 0 whenever
w ∈ H0 and v ∈ H1. The exposition given here follows [Bac2, section 2.3-2.4].

Let us first fix some notation. Let Q = k⟨A⟩ be a quasi-shuffle algebra with respect to the
quasi-shuffle product ∗⋄, and let L,R be subsets of the alphabet A. We will denote by QR

L the
subspace

QR
L := k+ Spank({a1 · · · ar | a1, . . . , ar ∈ A, a1 ∈ L, ar ∈ R})

of Q, which is generated by the empty word, as well as words starting with a symbol from L
and ending with a symbol from R. Note that if kL and kR are closed under ⋄, then QR

L is a
subalgebra of Q.

Theorem 2.14. Let L,R ⊂ A and a ∈ A be such that kL and kR are closed under ⋄, and such
that A ⋄A \ {A} ⊆ kA \ {a}.

(i) If a ∈ R, then we have an isomorphism of k-algebras

QR
A\{a}[X]

∼−→ QR
A

n∑
j=0

αjX
j 7→

n∑
j=0

αj ∗⋄ a∗⋄j .

(ii) If a ∈ L, then we have an isomorphism of k-algebras

Q
A\{a}
L [X]

∼−→ QA
L

n∑
j=0

αjX
j 7→

n∑
j=0

αj ∗⋄ a∗⋄j .

12



Proof. We only prove (i), as (ii) is similar. Let F : QR
A\{a}[X] → QR

A be the map sending∑n
j=0 αjX

j to
∑n

j=0 αj ∗⋄ a∗⋄j . This is clearly a homomorphism, so we only need to show that
it is bijective.

For surjectivity, let w be a word in QR
A, so we can write w on the form anw′ with w′ ∈ QR

A\{a}.
We shal prove by induction in n that w is in the image of F . The base case n = 0 is trivial, as
then w = w′ = F (w′). For the induction step, we let n > 0 and note that

a ∗⋄ an−1w′ = nanw′ + (terms starting with < n a’s). (10)

The n copies of the word anw′ comes from the n ways the a can be inserted into initial string of
a’s in w. Inserting a later in the word yields words starting with n−1 a’s (since the first letter of
w′ is not a). The terms coming from “diamonding” a with one of the first n− 1 a’s, give linear
combinations of words starting with ≤ n−1 a’s for the same reason, and similarly diamonding a
with a letter of w′ other than the first one give linear combinations of words starting with n− 1
a’s. This leaves the terms coming from diamonding a with the first letter of w. Since this letter
is an element of A\{a}, and we assumed A⋄ (A\{a}) ⊆ kA\{a}, this also yields terms starting
with n− 1 a’s, thus proving (10).

By induction, all terms on the right-hand side of (10) except nanw′ are in the image of F .
Also by induction, an−1w′ is in the image of F , say an−1w′ = F (v). Then F (Xv) = a ∗⋄ an−1w′,
so the left-hand side of (10) is also in the image of F . Upon rearranging, this shows that anw′

is in the image of F , which finishes the proof that F is surjective.

For the injectivity, we assume that F
(∑n

j=0 αjX
j
)
= 0. We will show, by induction in n,

that this implies that α0 = · · · = αn = 0. From (10), it follows that

αj ∗⋄ a∗⋄j = j!ajαj + (terms starting with < n a’s).

In particular, the only term in F
(∑n

j=0 αjX
j
)
= 0 that can contribute words starting with n

a’s is αn ∗⋄ a∗⋄n, so we must have n!anαn = 0, which implies αn = 0. Thus

0 = F

 n∑
j=0

αjX
j

 = F

n−1∑
j=0

αjX
j

 ,

which inductively implies α0 = · · · = αn−1 = 0.

As special cases, we have

Corollary 2.15. We have isomorphisms

H0
∗[X]

∼−→ H1
∗ H0

�
[X]

∼−→ H1
�

n∑
j=0

αjX
j 7→

n∑
j=0

αj ∗ z∗j1 ,
n∑

j=0

αjX
j 7→

n∑
j=0

αj � y�j .

Proof. This follows from Theorem 2.14(i) by taking respectively A = R = {zk | k ≥ 1}, a = z1
and A = R = {x, y}, a = y.

From this, we get a general way of extending any shuffle/stuffle-homomorphism of H0 to a
shuffle/stuffle-homomorphism of H1:
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Lemma 2.16. Let • ∈ {∗,�}, and let F : H0
• → B be an algebra homomorphism for some

k-algebra B. Then for any β ∈ B, there exists a unique homomorphism F • : H1
• → B such that

F •|H0 = F and F •(z1) = β.

Proof. This follows from the universal property of the polynomial ring: Any homomorphism
F : H0

• → B can be extended uniquely to H0
•[X] by choosing where X goes, so by Corollary 2.15,

it can be extended uniquely to H1
• by choosing where z1 = y goes.

Note that the extension of F depends on the choice of F •(z1). However, one can avoid making
this choice by considering F as a homomorphism H0

• → B ↪→ B[X] and then setting F •(z1) = X.
One can then always make the choice later by evaluating at X = β for some β ∈ B. We use this
to define extensions ζ∗ and ζ� of ζ in the most general way.

Definition 2.17. Let • ∈ {∗,�}. Using Lemma 2.16, we define a homomorphism ζ• : H1 →
Z[X] by ζ•(w;X) = ζ(w) when w ∈ H0, and ζ•(z1;X) = X. We use the notation ζ•(w) :=
ζ•(w; 0) to denote its evaluation at X = 0.

In general, ζ∗(w;X) and ζ�(w;X) differ. They are however related in the following way:

Theorem 2.18 ([IKZ, Theorem 1]). There exists a bijective R-linear map ρ : R[X] → R[X]
such that

ζ�(k;X) = ρ(ζ∗(k;X))

for all indices k.

We shall not prove this theorem here. The map ρ is defined by the equation

ρ(exp(uX)) = A(u) exp(uX),

where

A(u) = exp

( ∞∑
n=2

(−1)n

n
ζ(n)un

)
.

Taking for granted the existence of ρ, we now get a large family of relations, called extended
double-shuffle relations among multiple zeta values.

Theorem 2.19 (Extended double-shuffle relations). For w ∈ H1 and v ∈ H0, we have

ζ�(w� v − w ∗ v;X) = ζ∗(w� v − w ∗ v;X) = 0.

Proof. Using Theorem 2.18, the linearity of ρ, and the fact that ζ�(v;X) = ζ∗(v;X) = ζ(v), we
get

ζ�(w� v;X) = ζ�(w;X)ζ(v) = ρ(ζ∗(w;X))ζ(v)

= ρ(ζ∗(w;X)ζ(v)) = ρ(ζ∗(w ∗ v;X)) = ζ�(w ∗ v;X),

so ζ�(w� v − w ∗ v;X) = 0. Applying ρ−1 gives ζ∗(w� v − w ∗ v;X) = 0.

It is conjectured that the extended double-shuffle relations generate all linear relations among
multiple zeta values. More precisely, for • ∈ {�, ∗}, let regX• : H1

•
∼−→ H0

•[X] be the inverse of
the isomorphism from Corollary 2.15, and let reg• = reg0• : H1 → H0 be the composition of regX•
with the evaluation map at X = 0. Then it is conjectured that

ker(ζ) = SpanQ{reg�(w�v−w∗v) | w ∈ H1, v ∈ H0} = SpanQ{reg∗(w�v−w∗v) | w ∈ H1, v ∈ H0}.

This would for example immediately imply that the Q-algebra Z is graded by weight, since the
shuffle and stuffle products are weight-homogeneous.
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3 Multiple Eisenstein series and their regularizations

In this section, we will use the algebraic machinery we have built up in the previous section to
study multiple Eisenstein series (MES). Before we define what these are, let us briefly discuss
(single) Eisenstein series, of which MES are a generalization.

Let H = {τ ∈ C | Im(τ) > 0} be the upper half-plane. For an even integer k ≥ 4, the
Eisenstein series Gk ∈ H(H) is given by

Gk(τ) =
1

2

∑
λ∈Zτ+Z

λ̸=0

1

λk
=

1

2

∑
m,n∈Z

(m,n) ̸=(0,0)

1

(mz + n)k
. (11)

It is not hard to check that this sum converges absolutely and locally uniformly whenever k > 2,
so that the limit function is holomorphic, see e.g. [BGHZ, p. 14]. The main reason for excluding
odd k is simply that it is not very interesting: When k is odd each λ-term in the sum is cancelled
by the −λ-term, so the whole sum is zero (in a moment, we will give a different definition under
which Gk does not vanish for odd k). When k is even, λ and −λ contribute the same to the sum,
which is the reason for the normalizing factor of 1

2 . Let us remark that we can still make sense
of the non-absolutely convergent case k = 2, if we agree to define

G2(τ) := lim
M→∞

lim
N→∞

1

2

∑
λ∈ZMτ+ZN

λ̸=0

1

λ2
,

where ZM := {−(M − 1), . . . ,M − 1}.
The reason why Eisenstein series are interesting is that they provide the main examples of

modular forms.

Definition 3.1. Let k be an integer. Amodular form of weight k (and level 1) is a holomorphic
function f ∈ H(H) such that

(i) f
(

aτ+b
cτ+d

)
= (cτ + d)kf(τ) for

(
a b
c c

)
∈ SL(2,Z), and

(ii) f(τ) is bounded as τ → i∞.

In the case of Gk where k ≥ 4 is even, condition (i) follows by rearranging the absolutely

convergent sum (11): For

(
a b
c d

)
∈ SL(2,Z)

Gk

(
aτ + b

cτ + d

)
=

∑
m,n∈Z

(m,n)̸=(0,0)

1

(maτ+b
cτ+d + n)k

= (cτ + d)k
∑

m,n∈Z
(m,n)̸=(0,0)

1

((am+ cn)τ + (bm+ dn))k

= (cτ + d)kGk(τ),

since the map (m,n) 7→ (am+ cn, bm+ dn) maps Z2 \ {(0, 0)} bijectively to itself for

(
a b
c d

)
∈

SL(2,Z). In the case of G2, we cannot rearrange the order of summation freely, so the above
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argument does not work. Indeed, G2 is not a modular form, though it turns out to have the
quasi-modular property

G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− πic(cτ + d),

see [BGHZ, Prop. 6]. If one does attempt to change the order of summation, one then gets

lim
N→∞

lim
M→∞

1

2

∑
m∈ZM ,n∈ZN

(m,n)̸=0

1

(mτ + n)2
= lim

N→∞
lim

M→∞

1

2τ2

∑
m∈ZM ,n∈ZN

(m,n)̸=0

1

(m+ nτ−1)2

= lim
N→∞

lim
M→∞

1

2τ2

∑
m∈ZM ,n∈ZN

(m,n)̸=0

1

(m− nτ−1)2

= τ−2G2

(
−1

τ

)
= G2(τ)−

πi

τ
.

As for condition (ii), note that the matrix

(
1 1
0 1

)
∈ SL(2,Z) corresponds to the Möbius

transformation τ → τ +1, so by condition (i), a modular form is 1-periodic in the real direction.
It can thus be expressed as a Fourier series f(τ) =

∑
n∈Z anq

n, where q = e2πiτ (this notation
is standard, and will be used throughout this chapter). The condition that f(τ) is bounded as
τ → i∞ is then equivalent to an = 0 for all n < 0; in other words that f has a Fourier series of
the form

f(τ) =
∑
n≥0

anq
n.

In the case of Eisenstein series, we have the following remarkable result:

Theorem 3.2. For k ≥ 2 even,

Gk(τ) = ζ(k) +
(−2πi)k

(k − 1)!

∑
n>0

σk−1(n)q
n,

where ζ is the Riemann zeta function, and σk−1 is the sum-of-divisors function given by

σk−1(n) =
∑
d |n

dk−1.

The proof relies on the following formula:

Proposition 3.3 (Lipschitz‘s formula). For k ≥ 2, and τ ∈ C \ Z

∑
n∈Z

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∑
r>0

rk−1qr.

Proof. We start with the well-known formula∑
n∈Z

1

τ + n
=

π

tanπτ
, τ ∈ C \ Z,
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where the conditionally convergent series on the left-hand side should be interpreted as limN→∞
∑

n∈ZN
.

Note that

π

tanπτ
= π

(eπiτ + e−πiτ )/2

(eπiτ − e−πiτ )/2i
= −πi

(
1 + e2πiτ

1− e2πiτ

)
= −πi

(
1 + q

1− q

)
= −πi

(
1 +

2q

1− q

)
= −πi− 2πi

∑
r>0

qr. (12)

Now differentiate both sides of the equation∑
n∈Z

1

τ + n
= −2πi

∑
r>0

qr

k − 1 times with respect to τ to get

(−1)k−1(k − 1)!
∑
n∈Z

1

(τ + n)k
= (−2πi)(2πi)k−1

∑
r>0

rk−1qr

(note that d
dτ q

r = d
dτ e

2πirτ = 2πirqr). Dividing by (−1)k−1(k − 1)! on both sides gives the
claimed formula.

Proof of Theorem 3.2. We can split up the sum (11) into terms with m = 0 and with m ̸= 0,
taking care to take the limits in the correct order, so that our calculations remain valid for G2:

Gk(τ) =
1

2

∑
n ̸=0

1

nk
+

1

2

∑
m ̸=0

∑
n∈Z

1

(mτ + n)k
.

Since k is even, the first sum is

1

2

∑
n ̸=0

1

nk
=
∑
n>0

1

nk
= ζ(k). (13)

As for the second sum, we use again the fact that k is even, as well as Lipschitz formula (with
mτ substituted for τ) to see that

1

2

∑
m̸=0

∑
n∈Z

1

(mτ + n)k
=
∑
m>0

∑
n∈Z

1

(mτ + n)k

=
(−2πi)k

(k − 1)!

∑
m>0

∑
r>0

rk−1qmr

=
(−2πi)k

(k − 1)!

∑
n>0

∑
mr=n

rk−1qn

=
(−2πi)k

(k − 1)!

∑
n>0

σk−1(n)q
n. (14)

Theorem 3.2 gives one of the main motivations for multiple Eisenstein series: The regular
Eisenstein series Gk have ζ(k) as the constant term in its q-series, so one might hope that a
suitably defined “multiple” version of Eisenstein series G(k; τ) will have a q-series with the MZV
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ζ(k) as its constant term. We will show that this is indeed the case; in fact all the Fourier
coefficients turn out to be certain Q[2πi]-linear combinations of multiple zeta values.

The idea for the definition of multiple Eisenstein series is to replace the sum (11) over λ with
an ordered sum over λ1 ≻ · · · ≻ λr ≻ 0 for a suitable total order on the lattice Zτ + Z.

Definition 3.4. Let τ ∈ H. We define a relation ≻ the lattice Zτ + Z as follows:

m1τ + n1τ > m2τ + n2 ⇔ (m1 > m2) ∨ (m1 = m2 ∧ n1 > n2).

Note that this is indeed a total ordering: It is the lexicographical ordering of Zτ +Z = {mτ +n |
m,n ∈ Z} with m having precedence over n. Note also that this makes ZMτ + ZN into a finite
totally ordered set, which will allow us to make use of Lemma 2.12.

Definition 3.5. Let k = (k1, . . . , kr) be any index. For M,N > 0, we define the truncated
multiple Eisenstein series GM,N (k; τ) ∈ H(H) by

GM,N (k; τ) =
∑

λ1≻···≻λr≻0
λj∈ZMτ+ZN

1

λk1
1 · · ·λkr

r

,

and GM,N (∅∅∅; τ) = 1. If k1, . . . , kr ≥ 2, we define the multiple Eisenstein series G(k; τ) ∈
H(H) by

G(k; τ) = lim
M→∞

lim
N→∞

GM,N (k; τ).

Note that if k = (k) is of depth 1 with k even, then this agrees with the regular Eisenstein
series (instead of summing over all nonzero lattice points and dividing by 2, we sum only the
“positive” lattice points, namely those with λ ≻ 0). However, when k is odd the lattice point
λ ≻ 0 is not cancelled by −λ anymore, since 0 ≻ −λ, so the latter does not appear in the sum.
Thus, G(k; τ) is not identically 0 for k odd, unlike Gk. In fact G(k; τ) satisfies Theorem 3.2 for
all k ≥ 2, since the calculations (13) and (14) (skipping the first equality of both) remain valid
when k is odd.

We extend GM,N to linear maps H1 → H(H) in the usual way. Letting

H2 := Q⟨(zk)k≥2⟩,

we can also extend G to a linear map H2 → H(H). Note that H2 is in fact closed under the
stuffle-product and thus a subalgebra of H0

∗ (which is in turn a subalgebra of H1
∗). Applying

Lemma 2.12 with N = ZMτ + ZN and f̃λ(zk) =
1
λk we see that the GM,N are homomorphisms

with respect to the stuffle product, so upon restricting to H2
∗ and taking limits, we see that G is

a homomorphism H2
∗ → H(H).

To state our goals for the remainder of this section, we need to define a couple of auxiliary
functions.

Definition 3.6. For an index k = (k1, . . . , kr) we define

(i)

g(k; τ) =
∑

m1>···>mr
n1,...,nr>0

nk1−1

(k1 − 1)!
· · · nkr−1

(kr − 1)!
qm1n1+···+mrnr ,

(ii)
ĝ(k; τ) = (−2πi)k1+···+krg(k; τ).
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The g-functions can be seen as q-analogues of multiple zeta values, in the sense that as
functions of q they satisfy

lim
q→1

(1− q)k1+···+krg(k) = ζ(k)

when k is an admissible index, see [BK, Prop. 6.4].
Our first goal, which we will achieve in Section 3.2, is to prove the following

Theorem 3.7 ([GKZ] in depth 2, [Bac3] in general). For k = k1, . . . , kr ≥ 2, G(k; τ) has a
q-series of the form

G(k; τ) = ζ(k) +
∑
n>0

ak(n)q
n,

where ak(n) ∈ Z[πi]. More precisely, G(k; τ) can be written as a Z-linear combination of the
q-series ĝ.

The proof given here will be that of [Bac4]. The idea will be to write G(k; τ) in a different way
using convolutions of certain functions. In doing so, we will also get most of the way towards our
second goal, which we will achieve in Section 3.3: To produce a “natural” stuffle-regularization
for multiple Eisenstein series.

3.1 Multitangent functions and other ingredients

In preparation for the proof of Theorem 3.7, we will need to define several families of functions.

Definition 3.8. Let k = (k1, . . . , kr) be any index. For N > 0, we define the truncated
Hurwitz multiple zeta functions ζN (k;x), ζN (k;x) ∈ H(H) by1

ζN (k;x) =
∑

N>n1>···>nr>0

1

(x+ n1)k1 · · · (x+ nr)kr
,

ζN (k;x) =
∑

0>n1>···>nr>−N

1

(x+ n1)k1 · · · (x+ nr)kr
= (−1)k1+···+krζN (kr, . . . , k1;−x),

and ζN (∅∅∅;x) = ζN (∅∅∅;x) = 1. When k is admissible, we define the Hurwitz multiple zeta
function ζ ∈ H(H) by

ζ(k;x) = lim
N→∞

ζN (k;x) =
∑

n1>···>nr>0

1

(x+ n1)k1 · · · (x+ nr)kr
,

and similarly when the reverse of k is admissible, we define ζ(k;x) = limN→∞ ζN (k;x).

The proof that the series converge absolutely for (reverses of) admissible indices is analogous to
that for the multiple zeta function, and since the convergence is locally uniform in x, we do indeed
get holomorphic functions. We extend ζN , ζN to linear maps H1 → H in the usual way. If we
define H0 to be the subspace of H1 generated by words not ending with z1, including the empty
word (note that this is a subalgebra under the stuffle-product), then ζ and ζ are well-defined
on H0 and H0 respectively. Analogously to multiple zeta values, an application of Lemma 2.12
shows that ζN , ζN , ζ and ζ are homomorphisms with respect to the stuffle-product.

The next family of functions to define are multitangent functions:

1In fact, ζN and ζN are holomorphic functions on C \ (−N) and C \ N respectively, as are ζ and ζ. Similarly,
the multitangent functions defined below are holomorphic functions on C \Z. However, to keep things consistent,
we will restrict all our functions to the upper half-plane.
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Definition 3.9. Let k = (k1, . . . , kr) be any index. For N > 0, we define the truncated
multitangent function ΨN (k;x) ∈ H(H) by

ΨN (k;x) =
∑

N>n1>···>nr>−N

1

(x+ n1)k1 · · · (x+ nr)kr
,

and Ψ(∅∅∅, x) = 1. When k1 ≥ 2 and kr ≥ 2, we define the multitangent function Ψ(k;x) ∈
H(H) by

Ψ(k;x) = lim
N→∞

ΨN (x) =
∑

n1>···>nr

1

(x+ n1)k1 · · · (x+ nr)kr
,

and we set Ψ(∅∅∅;x) = 1.

The multitangent functions were studied extensively by [Bou]. Note that if we extend ΨN to H1

in the usual way, we have

ΨN (−;x) = ζN (−;x) ⋆ C(−;x) ⋆ ζN (−;x), (15)

where C(−;x) : H1 → H(H) is defined on words by

C(w;x) =


0 ℓ(w) ≥ 2,
1
xk w = zk,

1 w = 1.

In particular, this makes it clear that Ψ(k1, . . . , kr;x) converges when just k1 ≥ 2 and kr ≥ 2, so
Ψ can naturally be defined on H0 ∩ H0, and we get

Ψ(−;x) = ζ(−;x) ⋆ C ⋆ ζ(−;x). (16)

Using Lemma 2.10 and Lemma 2.9, this also shows that ΨN and Ψ are homomorphisms with
respect to the stuffle product (one can also see this directly from Lemma 2.12).

The depth 1 case of multitangents, Ψ(k;x) for k ≥ 2, are called monotangents. Note that
by the Lipschitz formula, we have

Ψ(k;x) =
(−2πi)k

(k − 1)!

∑
n>0

nk−1qn, (k ≥ 2, q = e2πix). (17)

Comparing this with the definition of ĝ, we immediately get

Lemma 3.10. For k1, . . . , kr ≥ 2,

ĝ(k1, . . . , kr; τ) =
∑

m1>···>mr>0

Ψ(k1;m1τ) · · ·Ψ(kr;mrτ).

An important property of multitangents proven by [Bou] (and here stated in the equivalent
form stated in [Bac4]), is that they can be written in terms of monotangents:

Theorem 3.11 ([Bou, Theorem 3]). For any nonempty index k = (k1, . . . , kr) with k1, kr ≥ 2
of weight k = k1 + · · ·+ kr,

Ψ(k;x) =
∑

1≤j<r
l1+···+lr=k

(−1)l1+···+lj−1+kj+k

 ∏
1≤i≤r
i̸=j

(
li − 1

ki − 1

) ζ(l1, . . . , lj−1)Ψ(lj ;x)ζ(lr, lr−1, . . . , lj+1).

Moreover, the terms with Ψ(1;x) vanish.
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Note that if l1 = 1 or lr = 1, then the binomial coefficient
(
l1−1
k2−1

)
or
(
lr−1
kr−1

)
is zero, since k1 ≥ 2

and kr ≥ 2, so the formula does not involve multiple zeta-values with non-admissible indices.
The fact that it does not involve Ψ(1;x) is less obvious; it turns out to be a consequence of the
antipodal relation with respect to the shuffle product, see [Bac4, Prop. 3.3] (alternatively, it
can be proven analytically, which we do in a more general form in Theorem 3.18). We will not
actually need the exact formula for reduction into monotangents; all that matters to us it that
is of the form

Ψ(k;x) =

wt(k)∑
j=2

bk(j)Ψ(j;x), (18)

for certain coefficients bk(j) ∈ Zwt(k)−j , as long as the first and last entry in k are both greater
than or equal to 2. A particular consequence of this, and of (17), is that all multitangents have q-
series with MZV-coefficients. Interestingly, we also see that the constant terms vanish, except of
course in the case of Ψ(∅∅∅;x). We shall later define a stuffle-regularized version of multitangents
which also have q-series with MZV-coefficients, and where the constant terms vanish in most
cases (see Definition 3.15 and Theorem 3.18).

We need to define just one more family of functions before we can get on with the proof of
Theorem 3.7.

Definition 3.12. For an index k = (k1, . . . , kr) and M,N > 0, we define g̃M,N (k; τ) ∈ H(H) by

g̃M,N (k) =
∑

λ1≻···≻λr≻0
λj∈(ZMτ+ZN )∩H

1

λk1
1 · · ·λkr

r

,

and gM,N (∅∅∅; τ) = 1. If k1, . . . , kr ≥ 2, we define g̃(k; τ) ∈ H(H) by

g̃(k; τ) = lim
M→∞

lim
N→∞

g̃M,N (k; τ).

We extend g̃M,N (resp. g̃) to linear maps H1 → H(H) (resp. H2 → H(H)) in the usual way. Note
that the definition of g̃ resembles that of G, the only difference is that in the former we only sum
over lattice points strictly in the upper half-plane, while in the latter we also include the lattice
points on the positive real axis.

3.2 q-series expansion of MES

With all the ingredients in place, we are now ready to prove Theorem 3.7.

Lemma 3.13. For M,N > 0,
GM,N = g̃M,N ⋆ ζN ,

where ζN is the truncated multizeta-map ζN : H1 → Q, seen as a map ζN : H1 → H(H) by
including Q in H(H) as constant functions. Thus,

G = g̃ ⋆ ζ,

where ζ is the multizeta-map ζ : H0 → Z, seen as a map ζ : H2 → H(H).

Proof. Let w = zk1
· · · zkr

be a word in H1. We can write GM,N (w; τ) as a sum over m1, . . . ,mr

and n1, . . . , nr as

GM,N (w; τ) =
∑

M>m1≥···≥mr≥0
n1,...,nr∈ZN

m1τ+n1≻···≻mrτ+nr≻0

1

(m1τ + n1)k1 · · · (mrτ + nr)kr
,
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Split this sum into r + 1 cases according to how many mj are zero:

GM,N (w; τ) =


∑

M>m1≥···≥mr>0
n1,...,nr∈ZN

m1τ+n1≻···≻mrτ+nr≻0

+
∑

M>m1≥···≥mr−1>mr=0
n1,...,nr∈ZN

m1τ+n1≻···≻mrτ+nr≻0

+ . . .+
∑

m1=···=mr=0
n1,...,nr∈ZN

m1τ+n1≻···≻mrτ+nr≻0

 1

(m1τ + n1)k1 · · · (mrτ + nr)kr

The sum with M > m1 ≥ · · · ≥ mr > 0 is nothing but g̃M,N (w; τ), as requiring all mj to be
strictly possitive is equivalent to requiring that all mjτ + nj lie strictly in the upper half-plane.
In the sum with m1 = · · · = mr = 0, the requirement that m1τ + n1 ≻ · · · ≻ mrτ + nr ≻ 0 is
equivalent to n1 > . . . nr > 0, so we have∑

m1=···=mr=0
n1,...,nr∈ZN

m1τ+n1≻···≻mrτ+nr≻0

1

(m1τ + n1)k1 · · · (mrτ + nr)kr
=

∑
N>n1>···>nr>0

1

nk1
1 · · ·nkr

r

= ζN (w).

In general, the sum with M > m1 ≥ · · · ≥ mℓ > mℓ+1 = · · · = mr = 0 is∑
M>m1≥···≥mℓ>mℓ+1=···=mr=0

n1,...,nr∈ZN
m1τ+n1≻···≻mrτ+nr≻0

1

(m1τ + n1)k1 · · · (mrτ + nr)kr
=

∑
λ1≻···≻λℓ≻0

λ1,...,λℓ∈(ZMτ+ZN )∩H
N>nℓ+1>···>nr>0

1

λk1
1 · · ·λkℓ

ℓ n
kℓ+1

ℓ+1 · · ·nkr
r

= g̃M,N (zk1 · · · zkℓ
; τ)ζN (zkℓ+1

· · · zkr ),

so we get

GM,N (w; τ) = g̃M,N (zk1
· · · zkr

; τ) + g̃M,N (zk1
· · · zkr−1

; τ)ζN (zkr
) + · · ·+ ζN (zk1

· · · zkr
)

= (g̃M,N ⋆ ζ)(w).

Thus GM,N = g̃M,N ⋆ ζN . Restricting to H2 and taking limits gives G = g̃ ⋆ ζ.

Lemma 3.14. For M,N > 0,

g̃M,N (−; τ) =

M−1

⋆
m=1

ΨN (−;mτ),

where the convolution should be taken in decreasing order, ie

M−1

⋆
m=1

ΨN (−;mτ) := ΨN (−; (M − 1)τ) ⋆ · · · ⋆ΨN (−; τ).

Proof. For a word w = zk1
· · · zkr

in H0, we can write g̃M,N (w; τ) as a sum over mj and nj :

g̃M,N (w; τ) =
∑

M>m1≥···≥mr>0
n1,...,nr∈ZN

mjτ+nj≻mj+1τ+nj+1≻0

1

(m1τ + n1)k1 · · · (mrτ + nr)kr
.
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Again, we will split this up into several sums, this time into 2r−1 sums according to which
inequalities mj ≥ mj+1 are “>” and which are “=”. Each of these sums will correspond to a
way of splitting w up into nonempty subwords. Namely, if we have a string of equalities mj−1 >
mj = · · · = mj+ℓ > mj+ℓ+1, then the requirement that mj−1τ +nj−1 ≻ · · · ≻ mj+ℓ+1τ +nj+ℓ+1

is equivalent to nj > · · · > nj+ℓ, so the sum will have a factor of∑
M>mj=···=mj+ℓ>0
N>nj>···>nj+ℓ>−N

1

(mjτ + nj)kj · · · (mj+ℓτ + nj+ℓ)kj+ℓ
=

∑
M>m>0

N>nj>···>nj+ℓ>−N

1

(mτ + nj)kj · · · (mτ + nj+ℓ)kj+ℓ

=
∑

M>m>0

ΨN (zkj
· · · zkj+ℓ

;mτ).

In general, if our string of inequalities is

M > m1 = · · · = mℓ1 > mℓ1+1 = · · · = mℓ1+ℓ2 > · · · > mℓ1+···+ℓs−1+1 = · · · = mℓ1+···+ℓs > 0,

where ℓ1 + · · ·+ ℓs = r, then the corresponding sum over the nj is∑
M>m̃1>···>m̃s>0

∑
N>n1>···>nℓ1

>−N
N>nℓ1+1>···>nℓ1+ℓ2

>−N

...
N>nℓ1+···+ℓs−1+1>···>nℓ1+···+ℓs>−N

s∏
i=1

1

(m̃iτ + nℓ1+···+ℓi−1+1)
kℓ1+···+ℓi−1+1 · · · (m̃iτ + nℓ1+···+ℓi)

kℓ1+···+ℓi

=
∑

M>m̃1>···>m̃s>0

s∏
i=1

ψN (zkℓ1+···+ℓi−1+1
· · · zkℓ1+···+ℓi

; m̃iτ)

where m̃j = mℓ1+···+ℓj . This corresponds exactly to the terms in the convolution⋆M−1
m=1 ΨN (−;mτ)

coming from splitting up w into s nonempty words of lengths ℓ1, . . . , ℓs, with the m̃j telling us
at which indices to insert these nonempty words (i.e. w = w1 · · ·wM−1 with ℓ(wm̃j

) = ℓj , and
all other words being empty). Adding up all the 2r−1 sums of this type thus gives us exactly(
⋆M−1

m=1 ΨN (−;mτ)
)
(w).

Proof of Theorem 3.7. Let w = zk1
· · · zkr

be a nonempty word in H2. From Lemma 3.14, we
have

g̃M,N (w; τ) =
∑

wM−1···w1=w

M−1∏
m=1

ΨN (wj ; jτ) =

r∑
s=1

∑
w1···ws=w

wj ̸=1

∑
M>m1>···>ms>0

s∏
j=1

ΨN (wj ;mjτ),

where the second equality is since Ψ(1; jτ) just contributes a factor of 1 to the product, so we
can instead do the sum only over ways of splitting w into s nonempty words for w1, . . . , ws, with
M > m1 > · · · > ms > 0 telling us at which indices to place these nonempty words. Taking
limits, we get

g̃(w; τ) =

r∑
s=1

∑
w1···ws=w

wj ̸=1

∑
m1>···>ms>0

s∏
j=1

Ψ(wj ;mjτ).

By Theorem 3.11, we can write each Ψ(wj ;mjτ) as a Z-linear combination of monotangents
Ψ(ℓ;mjτ) with ℓ ≥ 2, so g̃(w; τ) is a Z-linear combination of terms of the form∑

m1>···>ms>0

s∏
j=1

Ψ(ℓj ;mjτ) = ĝ(ℓ1, . . . , ℓs; τ), ℓ1, . . . , ℓs ≥ 2,
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where the second equality is by Lemma 3.10.
It follows from Lemma 3.13 that G(w; τ) is a Z-linear combination of g̃-functions, and there-

fore, by the above, it is a Z-linear combination of ĝ-functions, as claimed. In particular, G(w; τ)
has a q-series with coefficients in Z[πi]. As for the constant term, we observe in (17) that the
monotangents have no constant term in their q-series, so neither does g̃(w; τ) for nonempty words
w in H2. Thus, the only contribution to the constant term of G(w; τ) = (g̃ ⋆ ζ) (w) is

g̃(∅∅∅; τ)ζ(w) = ζ(w).

3.3 Stuffle-regularized MES

By Lemmas 3.13 and 3.14, the MES-map G : H2
∗ → H(H) is a convolution of the MZV-map ζ with

the map g̃, which is in turn a limit of convolutions of multitangents, which are in turn convolutions
of the Hurwitz zeta functions by (16). The Hurwitz zeta functions ζ, ζ are homomorphisms
of H0

∗ and H0
∗ respectively, so using2 Lemma 2.16, they can be extended to homomorphisms

ζ∗, ζ
∗
: H1

∗ → H(H) by choosing values for ζ∗(1;x) and ζ
∗
(1;x). Working from the bottom up,

we will use this to regularize G by regularizing its convolution ingredients.

Definition 3.15. We define the following homomorphisms H1
∗ → H(H).

(i) For N > 0, define ζN ∗(−;x), ζ∗(−;x) : H1
∗ → H(H) by ζ∗N (w;x) = ζN (w;x) and ζ∗(w;x) =

ζ(w;x) for w ∈ H0; and

ζN (z1;x) =
∑

N>n>0

(
1

x+ n
− 1

n

)
,

ζ(z1;x) =
∑
n>0

(
1

x+ n
− 1

n

)
.

(ii) For N > 0, define ζN ∗(−;x), ζ
∗
(−;x) : H1

∗ → H(H) by ζ
∗
N (w;x) = ζN (w;x) and ζ

∗
(w;x) =

ζ(w;x) for w ∈ H0; and

ζN (z1;x) =
∑

0>n>−N

(
1

x+ n
− 1

n

)
,

ζ(z1;x) =
∑
0>n

(
1

x+ n
− 1

n

)
.

(iii) Define

Ψ∗
N (−;x) = ζ∗N (−;x) ⋆ C(−;x) ⋆ ζ

∗
N (−;x)

for N > 0, and
Ψ∗(−;x) = ζ∗(−;x) ⋆ C ⋆ ζ(−;x).

2Lemma 2.16 remains valid if one replaces H0 with H0. The proof is the same, except that one should use
Theorem 2.14(ii) instead of Theorem 2.14(i)
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(iv) For M,N > 0, define

g̃∗M,N (−; τ) =

M−1

⋆
m=1

Ψ∗
N (−;mτ),

and for M > 0, define

g̃∗M (−; τ) =

M−1

⋆
m=1

Ψ∗(−;mτ),

where, as in Lemma 3.14, the convolutions should be taken in decreasing order.

Note that all the truncated maps defined above converge to their untruncated versions (or,
in the case of g̃∗M,N , to a version that is only truncated by M) as N → ∞. In the case of Ψ∗

N

and g̃∗M,N , this is clear. In the case of ζ∗ and ζ, it follows from the uniqueness in Lemma 2.16,
as both ζ∗(−;x) and limN→∞ ζ∗N (−;x) are homomorphic extensions of ζ(−;x) that map z1 to∑

n>0

(
1

x+n − 1
n

)
(and similarly for ζ).

Our choice of regularization of the Hurwitz zeta functions, and thus of the multitangent
functions, is the main one studied in [Bou]. While we could in principle have made any choice
of ζ(z1;x) and ζ(z1;x), this particular choice is natural in many ways, as many of the properties
of multitangents are retained. Importantly, we keep the reduction into monotangents.

Theorem 3.16 ([Bou, Theorem 6]). For any index k = (k1, . . . , kr), there exist coefficients
bk(j) ∈ Zwt(k)−j such that

Ψ∗(k;x) = δk +

wt(k)∑
j=1

bk(j)Ψ
∗(j;x),

where

δk =


(iπ)r

r! if k = (1, . . . , 1︸ ︷︷ ︸
r

) and r is even,

0 otherwise.

The coefficients bk(j) are in fact the same as in Theorem 3.11, except that ζ should be replaced
with ζ�. The difference from Theorem 3.11, then, is the occasional presence of a constant term
δk, as well as the presence of Ψ∗(1;x). Note that with out choice of regularization

Ψ∗(1;x) = ζ(1;x) +
1

x
+ ζ(1;x)

=
1

x
+ lim

N→∞

[ ∑
N>n>0

(
1

x+ n
− 1

n

)
+

∑
0>n>−N

(
1

x+ n
− 1

n

)]

=
1

x
+ lim

N→∞

[ ∑
N>n>0

1

x+ n
+

∑
0>n>−N

1

x+ n

]

= lim
N→∞

∑
N>n>−N

1

x+ n

=
π

tanπx
,

so by (12), we have

Ψ∗(1;x) = −πi− 2πi
∑
r>0

qr. (19)
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Since the other monotangents also have q-series by (17), it follows from the monotangent decom-
position that all our regularized multitangents have q-series. We shall show that the q0-term in
fact vanishes in most cases, which will be crucial for the convergence of g̃∗M as M → ∞.

Lemma 3.17. As x→ i∞ along the imaginary axis, we have the following asymptotics for any
ε > 0:

(i) If k is admissible, then ζ(k;x) = o(x−wt(k)+dep(k)+ε). If the reverse of k is admissible,
then ζ(k;x) = o(x−wt(k)+dep(k)+ε)

(ii) For any index k, ζ(k;x) = o(xε) and ζ(k;x) = o(xε).

(iii) if k = (k1, . . . , kr) with kj > 1 for at least one j, then ζ∗(k;x) = o(x−1+ε) and ζ
∗
(k;x) =

o(x−1+ε)

Proof. We only prove the statements about ζ, as the statements about ζ are similar.

(i) For k = ∅∅∅, this is clear, since 1 = o(xε) as x→ i∞. Suppose then that k = (k1, . . . , kr) with
k1 ≥ 2. Let k = k1 + · · ·+ kr. Then for x on the imaginary axis, we have

∣∣xk−r−εζ(k;x)
∣∣ =

∣∣∣∣∣x−ε/2
∑

n1>···>nr>0

xk1−1−ε/2xk2−1 · · ·xkr−1

(x+ n1)k1(x+ n2)k2 · · · (x+ nr)kr

∣∣∣∣∣
≤

∣∣∣x−ε/2
∣∣∣ ∑
n1>···>nr>0

|x|k1−1−ε/2|x|k2−1 · · · |x|kr−1

|x+ n1|k1 |x+ n2|k2 · · · |x+ nr|kr

≤
∣∣∣x−ε/2

∣∣∣ ∑
n1>···>nr>0

|x+ n1|k1−1−ε/2|x+ n2|k2−1 · · · |x+ nr|kr−1

|x+ n1|k1 |x+ n2|k2 · · · |x+ nr|kr

=
∣∣∣x−ε/2

∣∣∣ ∑
n1>···>nr>0

1

|x+ n1|1+ε/2|x+ n2| · · · |x+ nr|

≤
∣∣∣x−ε/2

∣∣∣ ∑
n1>···>nr>0

1

|n1|1+ε/2|n2| · · · |nr|
x→i∞−−−−→ 0,

since the sum on the last line converges to a finite value by (5), while of course x−ε/2 → 0 as
x → i∞ along the imaginary axis. Thus ζ(k;x) = o(x−k+r+ε) as x → i∞ along the imaginary
axis.

(ii) Note that by termwise differentiation, d
dxζ

∗(1;x) = −ζ(2;x). Thus, by L’Hopital’s rule and
(i),

lim
x→i∞
Re(x)=0

ζ∗(1;x)

xε
= lim

x→i∞
Re(x)=0

−ζ(2;x)
εx−1+ε

= 0,

so ζ∗(1;x) = o(xε) as x→ i∞ along the imaginary axis. Since in general ζ∗(k;x) is a polynomial
in ζ∗(1;x) = o(xε) whose coefficients are linear combinations of terms of the form ζ(k′;x) = o(xε)
for admissible indices k′, we see that ζ∗(k;x) = o(xmε) for some integer m > 0 as x→ i∞ along
the imaginary axis. As ε can be picked arbitrarily small, we get ζ∗(k;x) = o(xε) as x → i∞
along the imaginary axis.

(iii) Let k = k1+ · · ·+kr. Note that since at least one kj is greater than 1, we have k > r. Write

zk1
· · · zkr

=
∑r

j=0 αjz
j
1 with αj ∈ H0. Each αj is a weight-homogeneous linear combination of
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words zk′ ∈ H0 of weight k − j > r − j ≥ 0. In particular, each zk′ is a nonempty word, so
−wt(k′) + dep(k′) ≤ −1. It then follows from (i) that

ζ(αj ;x) = o(x−1+ε)

as x→ i∞ along the imaginary axis. From this and (ii), we get

ζ∗(k;x) =

r∑
j=0

ζ(αj ;x)ζ
∗(1;x)j = o(x−1+(r+1)ε)

as x→ i∞ along the imaginary axis.. Since ε can be picked arbitrarily small, we get ζ∗(k;x) =
o(x−1+x) as x→ i∞ along the imaginary axis.

Theorem 3.18. If k = (k1, . . . , kr) is an index with kj > 1 for at least one j, then the constant
term in the q-series of Ψ∗(k;x) is zero.

Proof. The constant term can be extracted from Ψ∗(k;x) by taking the limit x → i∞. It will
suffice to take this limit along the imaginary axis. Letting w = zk1

· · · zkr
, we have

Ψ∗(w;x) =
∑

w1w2w3=w

ζ∗(w1;x)C(w2;x)ζ
∗
(w3;x).

In each term of the sum, all three factors are at worst o(xε) as x → i∞ along the imaginary
axis, and at least one of the factors is o(x−1+ε). Namely, whichever factor has a zkj

with

kj > 1 in its word will be o(x−1+ε): For ζ and ζ, this is by Lemma 3.17, and for C it is trivial.
Thus, Ψ∗(w;x) = o(x−1+3ε) as x → i∞ along the imaginary axis. Picking ε small enough that
−1 + 3ε ≤ 0, this shows that limx→i∞ Ψ∗(w;x) = 0.

Note that the only contributions to the q0-coefficient in the monotangent decomposition of
Ψ∗(k;x) come from δk and Ψ∗(1;x). In particular, it follows that the Ψ∗(1;x)-term vanishes
whenever k is not of the form (1, . . . , 1). This implies a relation among multiple zeta values,
namely [Bac3, Prop. 3.3] can be seen to hold for any index not of the form (1, . . . , 1), not just
when the first and last entry are greater than 1.

Returning to the matter of MES-regularization, Theorem 3.18 implies the following:

Proposition 3.19. If w ∈ H0, then g̃∗M (w; τ) converges to a holomorphic function on the upper
half-plane as M → ∞.

Proof. Let w = zk1
· · · zkr

with k1 ≥ 2. Then

g̃∗M (w; τ) =
∑

wM−1···w1=w

M−1∏
j=1

Ψ∗(wj ; jτ)

=
∑

M>m>0

r∑
ℓ=1

Ψ∗(zk1
· · · zkℓ

;mτ)
∑

wm−1···w1=zkℓ+1
···zkr

m−1∏
j=1

Ψ∗(wj ; jτ), (20)

where m and ℓ are the index and length of the first nonempty word. Since k1 ≥ 2, it follows from
Theorem 3.18 that the q-series of Ψ∗(zk1 · · · zkℓ

; τ) is of the form
∑

r≥1 arq
r, so the q-series of

Ψ∗(zk1
· · · zkℓ

;mτ) is of the form
∑

r≥1 arq
mr. Thus, when we let M → ∞, we get a sum

∑
m>0
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where only the first r terms can contribute to the coefficient of qr. This implies that the limit
exists as a formal power series

∑
r≥0 crq

r.
To see that it converges to a holomorphic function of the upper half-plane, we need to show

that this formal power series has radius of convergence at least 1, since Im(τ) > 0 is equivalent
to |q| < 1. To show this, it will suffice to show that the coefficients cr grow at most polynomially
in r. Note that, by (17) and (19), the q-series coefficients of monotangents are of polynomial
growth, and so it follows from Theorem 3.16 that the q-series coefficients of all multitangents are
of polynomial growth. Since only finitely many different multitangents appear in (20), we can
pick the implied constants so as to work for all of them. Noting also that the number of nonzero
terms in the inner sum of (20) is of polynomial growth in m, it follows that the coefficients cr
are of polynomial growth in r.

We can thus use Lemma 2.16 to extend g̃ to H1 by simply picking a value for g̃∗(1; τ). The
most general choice is to let g̃∗(1; τ) be a free variable.

Definition 3.20. We define the following homomorphisms:

(i) Define g̃∗ : H1
∗ → H(H)[Y ] by g̃∗(w; τ ;Y ) = limM→∞ g̃∗M (w; τ) for w ∈ H0, and g̃∗(z1; τ ;Y ) =

Y .

(ii) Define G∗ : H1
∗ → H(H)[X,Y ] by

G∗(−; τ ;X,Y ) = g̃∗(−; τ, Y ) ⋆ ζ∗(−;X),

where g̃∗ : H1
∗ → H(H)[Y ] ↪→ H(H)[X,Y ] is the map defined above, and ζ∗ : H1

∗ → Z[X] ↪→
H(H)[X,Y ] is the stuffle-regularized multizeta-map of Definition 2.17.

By construction, we have

Theorem 3.21. G∗(w; τ ;X,Y ) = G(w; τ) whenever w ∈ H2.

Even though we are formally free to choose any value for the variables X and Y , some values

are more “natural” than others. For example, since we picked the function
∑

n>0

(
1

x+n − 1
n

)
as

ζ∗(1;x) (Hurwitz multizeta function), setting X =
∑

n>0

(
1

0+n − 1
n

)
= 0 seems most natural,

as this preserves the property that evaluating a Hurwitz multiple zeta function at x = 0 gives
the corresponding multiple zeta value ζ∗(1) = 0. If one wants to retain this property while also
keeping the freedom of choice of X, one would need to pick a more general choice of ζ∗(1;x),

e.g. ζ∗(1;x;X) = X +
∑

n>0

(
1

x+n − 1
n

)
. However, this would change the behaviour of the

multitangent functions, and might thus cause issues with the convergence of g̃M asM → ∞. Still,
it is possible that other choices of ζ∗(1;x) and ζ

∗
(1;x) than the ones we made would preserve the

periodicity of the multitangent functions and the polynomial growth of their Fourier coefficients,
as well as the growth conditions of Lemma 3.17. In that case, the proofs of Theorem 3.18 and
Proposition 3.19 would remain valid, and one would thus obtain a different version of G∗.

As for Y , note that Theorem 3.2 can be restated as

G(k; τ) = ζ(k) + ĝ(k; τ)

for k ≥ 2 (including odd values). On the other hand, we have

G∗(k; τ ;X,Y ) = g̃∗(k; τ ;Y ) + ζ∗(k;X),

and in particular G∗(1; τ ;X,Y ) = X + Y , which suggests that the choice Y = ĝ(1; τ) would be
natural, as it extends Theorem 3.2 to also hold for k = 1.

Let us finish by calculating a few examples. We will express some stuffle-regularized MES in
terms of the following “double-indexed” g-functions, which were introduced in [Bac1].
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Definition 3.22. For integers k1, . . . , kr and d1, . . . , dr with kj ≥ 1 and dj ≥ 0, we define

g
(
k1,...,kr
d1,...,dr

; τ
)
=

∑
m1>···>mr>0
n1,...,nr>0

nk1−1
1 md1

1

(k1 − 1)!
· · · n

kr−1
r mdr

r

(kr − 1)!
qm1n1+···+mrnr ,

ĝ
(
k1,...,kr
d1,...,dr

; τ
)
= (−2πi)k1+d1+···+kr+drg

(
k1,...,kr
d1,...,dr

; τ
)
.

Note that the “single-indexed” g-functions of Definition 3.12 are the special cases d1 = · · · =
dr = 0.

Example 3.23.

(i) Let us start by calculating G∗(2, 1; τ ;X,Y ). We have

G∗(2, 1; τ ;X,Y ) = g̃∗(2, 1; τ ;Y ) + g̃∗(2; τ ;Y )ζ∗(1;X) + ζ∗(2, 1;X)

= lim
M→∞

g̃∗M (2, 1; τ) + ĝ(2; τ)X + ζ(2, 1) (21)

To compute limM→∞ g̃∗M (2, 1; τ), we note that

g̃∗M (2, 1; τ) =
∑

M>m1>m2>0

Ψ∗(2;m1τ)Ψ
∗(1;m2τ) +

∑
M>m1>0

Ψ∗(2, 1;m1τ),

where the two sums are over ways of splitting the word z2z1 up into two nonempty words and one
nonempty word respectively. It turns out that Ψ∗(2, 1;x) is identically zero, which can be seen
by explicitly computing its reduction into monotangents ([Bou, Table 7] gives the monotangent
reductions for divergent multitangent functions of weight 2, 3, 4, 5), so the second sum vanishes.
For the first sum, we can use the q-series (17) and (19) to get in the limit M → ∞

lim
M→∞

g̃∗M (2, 1; τ) = (−2πi)3
∑

m1>m2>0

(∑
n1>0

n1q
m1n1

)(
1

2
+
∑
n2>0

qm2n2

)

= (−2πi)3
∑

m1>m2>0
n1,n2>0

n1q
m1n1+m2n2 +

(−2πi)3

2

∑
m1>m2>0

n1>0

n1q
m1n1

= ĝ(2, 1; τ) +
(−2πi)3

2

∑
m1>0
n1>0

(m1 − 1)n1q
m1n1

= ĝ(2, 1; τ) +
1

2
ĝ (21; τ) + πiĝ(2; τ), (22)

Inserting this back into (21), we get

G∗(2, 1; τ ;X,Y ) = ĝ(2; τ)X + ζ(2, 1) + ĝ(2, 1; τ) +
1

2
ĝ (21; τ) + πiĝ(2; τ).

Note the presence of a “double-indexed ĝ” and of the apparently lower-weight term πiĝ(2) (we
can still think of this as having weight 3, if we think of πi as having weight 1). The presence of
these term can be traced back to the fact that Lemma 3.10 fails when the index contains a 1,
due to the presence of the constant term−πi in the q-series of Ψ∗(1;x).

29



(ii) Let us now calculate G∗(1, 2; τ ;X,Y ). Note that z1z2 = z1 ∗ z2 − z2z1 − z3, so

g̃∗(1, 2; τ ;Y ) = g̃∗(2; τ ;Y )g̃∗(1; τ ;Y )− g̃∗(2, 1; τ ;Y )− g̃∗(3; τ ;Y )

= ĝ(2; τ)Y − ĝ(2, 1; τ)− 1

2
ĝ (21; τ)− πiĝ(2; τ)− ĝ(3; τ)

and

ζ∗(1, 2;X) = ζ(2)X − ζ(2, 1)− ζ(3)

= ζ(2)X − 2ζ(3),

where we used ζ(2, 1) = ζ(3). We then get

G∗(1, 2; τ ;X,Y ) = g̃∗(1, 2; τ ;Y ) + g̃∗(1; τ ;Y )ζ∗(2;X) + ζ∗(1, 2;X)

= ĝ(2; τ)Y − ĝ(2, 1; τ)− 1

2
ĝ (21; τ)− πiĝ(2; τ)− ĝ(3; τ) + Y ζ(2) + ζ(2)X − 2ζ(3)

(iii) Let us finally calculate G∗(2, 1, 2; τ ;X,Y ). First note that

g̃∗M (2, 1, 2; τ) =
∑

M>m1>m2>m3>0

Ψ∗(2;m1τ)Ψ
∗(1;m2τ)Ψ

∗(2;m3τ)

+
∑

M>m1>m2>0

(
Ψ∗(2;m1τ)Ψ

∗(1, 2;m2τ) + Ψ∗(2, 1;m1τ)Ψ
∗(2;m1τ)

)
+

∑
M>m1>0

Ψ∗(2, 1, 2;m1τ),

where the three sums correspond to ways of splitting the word z2z1z2 into one, two and three
nonempty subwords respectively. Consulting [Bou, tables 1 and 7], we see that Ψ∗(2, 1;x),Ψ∗(1, 2;x)
and Ψ∗(2, 1, 2;x) are all identically zero, so only the first sum does not vanish. Similarly to (22),
we then get

lim
M→∞

g̃∗M (2, 1, 2; τ) = (−2πi)5
∑

m1>m2>m3>0

(∑
n1>0

n1q
m1n1

)(∑
n2>0

1

2
+
∑
n2>0

qm2n2

)(∑
n3>0

n3q
m3n3

)

= (−2πi)5
∑

m1>m2>m3>0
n1,n2,n3>0

n1n3q
m1n1+m2n2+m3n3 +

(−2πi)5

2

∑
m1>m2>m3>0

n1,n3>0

n1n3q
m1n1+m3n3

= ĝ(2, 1, 2; τ) +
(−2πi)5

2

∑
m1>m3>0
n1,n3>0

(m1 −m3 − 1)n1n3q
m1n1+m3n3

= ĝ(2, 1, 2; τ) +
1

2
ĝ
(
2,2
1,0; τ

)
− 1

2
ĝ
(
2,2
0,1; τ

)
+ πiĝ(2, 2).

Thus,

G∗(2, 1, 2; τ ;X,Y ) = g̃∗(2, 1, 2; τ ;Y ) + g̃∗(2, 1; τ ;Y )ζ∗(2, X) + g̃∗(2; τ ;Y )ζ∗(1, 2;X) + ζ∗(2, 1, 2;X)

= ĝ(2, 1, 2; τ) +
1

2
ĝ
(
2,2
1,0; τ

)
− 1

2
ĝ
(
2,2
0,1; τ

)
+ πiĝ(2, 2)

+ (ĝ(2, 1; τ) +
1

2
ĝ (21; τ) + πiĝ(2; τ))ζ(2)

+ ĝ(2; τ)(ζ(2)X − 2ζ(3))

+ ζ(2, 1, 2),
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cf. [Bac1, Example 6.15(i)] upon making the“natural” choice X = 0, and replacing ζ(3) with
ζ(2, 1).
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