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Multiple zeta values

Forkq,...,k._1 > 1, k. > 2 define the multiple zeta value (MZV) by

1
C(kh'"ak’r): Z ﬁ

0<my<---<m,. ey gl

By 7 we denote its depth and k1 + - - - + k. will be called its weight. For the (Q-vector space
spanned by all multiple zeta values we write 2.

@ The product of two MZV can be expressed as a linear combination of MZV with the same
weight (harmonic product ). e.g:

C(k1) - C(k2) = C(k1, k2) + C(ka, k1) + C(k1 + k2) .

@ MZV can be expressed as iterated integrals. This gives another way (shuffle product) to
express the product of two MZV as a linear combination of MZV.

@ These two products give a number of Q-relations (double shuffle relations) between MZV.



"Roughly speaking, in mathematics, specifically in the areas of combinatorics and
special functions, a q-analogue of a theorem, identity or expression is a
generalization involving a new parameter q that returns the original theorem,

identity or expression in the limitas q — 1. "
74 xRT 4 TRAE

@ The easiest example is the g-analogue of a natural number 1M given by

[m)] *1_qm:1+ 4o gt lim[m], =m
a 1-— q q q ’ q—1 q ’
(k—1)m
[m]§

@ One approach to get an g-analogue of multiple zeta values is to replace pro s by



@-analogues of multiple zeta values

Definition (Bradley, Zhao)

Forki,...,kr—1 > 1, k. > 2 define the g-multiple zeta value by
q(kl_l)ml . q(kr_l)mr
Cq(kla“-,kr): Z kl kr
0<my < -—-<m [ml]q T [mT]q

o Clearlyitis lim (g4 (k1,..., k) = ((k1,..., k;).
q—1

o The (Q-vector space spanned by these series form a Q[q] -algebra.

Ca(2)6q(3) = G4(2,3) + G4(3,2) + (o (5) + (1 = 9)¢y(4) -



g-analogues of multiple zeta values

The algebraic description of g-analogues become easier by removing the factors (1 — q)k.

Definition (Okuda-Takeyama)

@ Forky,...,k._1 > 1,k,. > 2 define the (modified) g-multiple zeta value by
(k1—1)mq (kr—1)m,
_ q ... q
Colkry o kyr) = —
! 0<m1;-<mr (1 N qml)kl o (1 4 T)kr
= (1 =) "¢k, .-, k) € Qllg)] -
withk = k1 + -+ + k.

o For the (Q-vector space spanned by these series we write

Zq = <Zq(k17"'7k7")|T207k1a"'akr—1 Zlvk'r‘22>©7
andsetzq(k‘l,...,kr)z 1forr = 0.

e Clearlyitis lim (1 — q)kzq(kl, ceyke) =Clky, o Ky
q—1

o The Q-vector space Z, is a Q-algebra.




g-analogues of multiple zeta values

More generally: Given a family of polynomials @ (X ) for & > 1 with Q. (1) = 1 one can
define a g-analogue of multiple zeta values by

3 Qr, (™) - - Qk,(¢™")

0<my <o <m, (1 —gmi)ka... (1 —qgmr)ke

o Inthe case C, the polynomials Qj, (X ) = X 1 are used.
q

@ To study the connection to modular forms the following polynomials are more useful

Qr(X) ,_Z dkt yd

(1—-X)k " L= (k—1)!

d>0

@ In special cases (all kj > 2) both models are basically the same.
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g-analogues of multiple zeta values

@ Forkq, ...,k > 1 we define the following ¢-series in Q[[q]]
k1—1 k.—1
vy .Y s
gkl,...,kT(Q) = E . qU1v1+ Furvr

—1)! 1
0<uy <+ <up (kl 1)(kr 1)
0<v1,...,0p

By k1 + - - - + k;- we denote its weight and by 7" its depth.

@ Forthe Q-vector space spanned by these series we write
g o= <gk1,.‘.,kr(q) | r> 07 kla cey k’l‘ > 1>Qa

where we also set gk, ...k, (¢) =1lforr =0.



g-analogues of multiple zeta values

o Forky,...,k, > 1 we define the following g-series in Q[[q]]

,Ukrlf Uk —1
. 1 ! )
Gorke(@) =D (ki — D). (k- 1)1 7
0521<‘“<Ur
ViyeeeyUp

ULV F UV

By k1 + - - - + k;- we denote its weight and by 7" its depth.

@ For the (Q-vector space spanned by these series we write
G = (Ghryoer (@) | 72 0,1, B 2 1)

where we also set gk, ...k, (¢) =1lforr =0.

In depth one these are just the generating series of the divisor-sum o1 (n) = Zd|n dF-1.

k-1

9r(q) = Z ﬁqulvl = G- ZJk 1

0<uy
0<vy



@-analogues of multiple zeta values

For the generating function of the g-series g,

.....

g(x1, ..., 2p) = Z Goyoke, (@) 71 gkt

Lemma

The series g can be written as

g(z1,..om) = Y, Ly (@1)... Ly, (2,),
O<uy <+ <up
where .
q-e

The series L,, () satisfy the equation

r—y
with B(T) = Y 5, Be1h—1,



g-analogues of multiple zeta values : harmonic product

MZV: Recall that the generating series of the harmonic multiple zeta values

(X1, ey y) = Z ki, k)=t gkt
k1,... kr2>1

satisty  T(2) - T(y) = Tz, ) + Ty, 7) + T (92 - j*(y) .

qMZV: The generating series g(xl, . ,xr) satisfies similar equations, e.g.

a(z) —9(y)
r—y

+B(z—y)-9(x)+Bly—2)-9(y),

o(z) - 9(y) = 9(z,y) +o8(y, z) +

with B(T) = Y5, Be1h—1,
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alogues of multiple zeta values : harmonic & shuffle product

Let ky and ko be two arbitrary index sets.

We have just seen the following rough picture:
Harmonic product *

Ik, ((J) " Jko (q) = Jlk; ko (q) —+ lower weight terms .

Now we want to explain that something similar is true for the shuffle product:
Shuffle product LLI

¢H(k1) - €M (ko) = ¢M(kq Wko)
Ik, (q) * kg (q) = Ok wiks (q) <+ lower weight terms 4 "derivatives" .



@-analogues of multiple zeta values : harmonic & shuffle product

Let ky and ko be two arbitrary index sets.

We have just seen the following rough picture:
Harmonic product *

Ik, (Q) " Jko (q) = Jlk; ko (q) —+ lower weight terms .

Now we want to explain that something similar is true for the shuffle product:

Shuffle product LLI

¢H(k1) - €M (ko) = ¢M(kq Wko)
Ik, (q) * kg (q) = Gk wiks (q) <+ lower weight terms 4 "derivatives" .

"derivatives” = g1, (q) - 9k, (q) — Gk, k, () — lower weight terms .



The operator D

Today we will be interested in the operator D on @Q[[¢]] defined by
d
D :=q—.
qdq

@ For a g-analogue the operator DD increases the weight by 2 and the depth by 1.
o Givennumbers k1,..., k., > lwithk =k +--- + k. itis

: k+2
lim (1 - ¢)***Dgy, . x,(9) =0,
q—1
i.e. formulas for the derivative of g-analogues give relations between MZV.
@ The sub algebra Q[G'2, G4, G| C G of quasi-modular forms is closed under D.

~ 1 By,
Gan(q) == f% +92n(q) €G.



g-analogues of multiple zeta values : shuffle product

Define for g, . .., N, > 1 the series
d ni dr (2
Ar) = 2 e () e ()
— — .
il g o 0 0 5B <z 1—gq 1—g¢q

Notice that this series "satisfies" the harmonic product formula. For example:

H(m) H(”z) _ H(”lﬂ”@) +H(n2’n1) +H(n1 +n2> .
T T3 T1,T2 T2,T1 r1 + X2



g-analogues of multiple zeta values : shuffle product

Define for g, . .., N, > 1 the series
d ni dr (2
Ar) = 2 e () e ()
— — .
il g o 0 0 5B <z 1—gq 1—g¢q

Notice that this series "satisfies" the harmonic product formula. For example:

n n ny,n ng, N ny+n
1 T2 T1,T2 T2, 1+ T2
The connection to the series g is given by

..., 1,1
g(xl,...,xr)—H( >,

Ty —Tp—1y-..,T2 — 1,21

or equivalently

1,...,1
H( T )—g(ymyr_1+yr,---,y1+~-~+yr)-
Y, Yr



g-analogues of multiple zeta values : shuffle product

So if we multiply the generating series in depth one we get

) -a) = 1( 1) 1))
=) (o) v, 2L)

2
=gz, z+y) +oly,z+y)+H .
g(x,z+y) +o(y,z+y) (m +y>
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g-analogues of multiple zeta values : shuffle product

MZV: Recall that the generating series of the shuffle regularized multiple zeta values

TH (21, xy) = Z CH(ky, .. k)t
T >1

ki,....kr
satisfy
T (z) T (y) =T (r, o +y) + T (y,x + y).
qMZV: The generating series g(ml, . ,xr) satisfies similar equations, e.g.

0(e) o) = stz + )+ gl + )+ 11, 2 ).
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g-analogues of multiple zeta values : shuffle product

MZV: Recall that the generating series of the shuffle regularized multiple zeta values

TH (21, xy) = Z CH(ky, .. k)t
T >1

ki,....kr
satisfy
T (z) T (y) =T (r, o +y) + T (y,x + y).
qMZV: The generating series g(ml, . ,xr) satisfies similar equations, e.g.

0(e) o) = stz + )+ gl + )+ 11, 2 ).

@ The properties of the function H can be used to define series gu satisfying the shuffle

product formula of MZV.

2

@ We now want to explain the connection of H ($+

y) and the operator D = qd%.

18/36



g-analogues of multiple zeta values : shuffle product & derivative

First notice that
q* d q° ¢\’ q*
1— g dq 1 — g 1—q? 1—qd’
which leads to

—1 1 T ¢
Y Dar@)e*~' = Dg(a) = DH (x) =D} ¢ lg—qd

k>0 0<d

d 2
= Zdedm ( d d) —l—Zdedz—qd i
1—g¢q 1—g¢q

0<d 0<d

- d%<H<wiy> +H<x-1ky>>|y=0'

=g(z+y)
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g-analogues of multiple zeta values : shuffle product & derivative

with H (3 ) = a(2) - 0(y) — 9(z, @ + ) — 0(y, = + y) we get

> Dgula)a = - (o) 8(0) ~ale 2 ) ~aly.a-+) +ola-+0))

k>0 ‘y:O .

In particular this proves that D gy, (q) €q.

20/36



g-analogues of multiple zeta values : shuffle product & derivative

with H (3 ) = a(2) - 0(y) — 9(z, @ + ) — 0(y, = + y) we get

> Dgr(g)ak~" = d%(g(:v) “0(y) —o(z,z +y) — oy, x +y)+olr + :u))
k>0

In particular this proves that D gy, (q) €qg.

Since d%g(y) |y=0 equals gg(q) this can be interpreted as

Failure of the shuffle product

Derivative of gx(g) = formula for gk(q) : 92(Q)

+ Lower weight terms

o’

20/36



g-analogues of multiple zeta values : shuffle product & derivative

Failure of the shuffle product

L igh
formula for g (q) - g2(q) + Lower weight terms

Derivative of g, (q) =

The shuffle product formula of {(3) - ¢(2) reads
¢(3)-€(2) = ¢(3,2) +3¢(2,3) + 6¢(1,4) . )
The derivative of g3(q) is given by
Dgs(q) = 93(q) - 92(q) — 93,2(0) — 392,3(¢) — 691,4(q) +3ga(q) . (@

Notice: Multiplying (2) by (1 — ¢)® and taking the limit ¢ — 1 one obtains (1).



alogues of multiple zeta values : derivative

This can be done for arbitrary depth:

Theorem

The derivative of the generating series g can be written as

Dg(z1,...,z.) = g(z1,...,2) - 92(q)

<

d
~ {81 @, o o Borm ity B == By B g A= Y e o 0, 8 4= W)
Y \i=o =
y=0
d i
- o(z1,.. ., zi—n,2; 4y, T+ Y)
v\ 4

-

In particular the space G is closed under D.




g-analogues of multiple zeta values : derivative

This can be done for arbitrary depth:

The derivative of the generating series g can be written as

Dg(z1,...,2,) = g(x1,..., %) - g2(q)

3

d
_@ g(xlvx%'ﬂaxrfjvxrfj +yaxr7j+1 +Y,oo s Tr +y)
=0 =0
d [
df gTlv"'axjfhxj+ya"'7$7'+y)
v\ =

=0

In particular the space G is closed under D.

Failure of the shuffle product

Derivative of g, ... k,. (q) = formula for g ( ) g2(q
1,--

) + Lower weight & depth terms

8




g-analogues of multiple zeta values : A certain subspace

We now want to study certain subspaces of our g-analogues which we denote by

gZQ = <gk1,...,kr(Q) ‘ T Z Oa kla .. ~7k'r‘ Z 2>Q C g7
Z22 = (Cy(ky, .. k) |7 >0, kyoo ke > 2>Q C Z,.

Even though Z, # G itis easy to prove that G22 = Zqz2.

aMzZV + “partial
derivatives”

?

23/36



g-analogues of multiple zeta values : A certain subspace

We now want to study certain subspaces of our g-analogues which we denote by

G=% = (Ghy,ob (@) | 72 0, Fiyo ke > 2) 0 C G,
Z22 = (Cy(ky, .. k) 720, ki Ky > 2>Q C Z,.

Even though Z, 7# G itis easy to prove that G=2 = 21122.

Theorem

Define for 2 < s < k the numbers a5, € Q by

R A ¢ X(X-1)...(X-k+2)
Y= () - ] |

s=2
Then we have for k1, ..., k. > 2
Zq(klv ceey kr) = Z sy ky -+ - Qs ky Gsy,y.o sy (Q) o

QSSJ' Sk}J
1<j<r




g-analogues of multiple zeta values : A certain subspace

We now want to study certain subspaces of our g-analogues which we denote by

g>2 <9k1, Lk ()‘rzouklﬂkﬂ“22>@cgv

Z22 = (Cy(k1,. ... k) |7 >0, kl,...7kr22>Qch.

Even though Z, # G itis easy to prove that G2 = Z>2

Define for 2 < s < k the numbers 31, s € Q by

Y BrTEXF =

2<s<k<oo

XT B
T+1—eXT

Then we have for k1, ..., k. > 2

Garoi @ =S Burs By Syt vs0).
2<s;<k;j
1<j<r



g-analogues of multiple zeta values : A certain subspace

We now want to study certain subspaces of our g-analogues which we denote by

G=% = (Ghy,ob (@) | 72 0, kis ke > 2) 0 C G,
Z22 = (Cylky, .. k) |7 >0, kyoo ke > 2>Q C Z,.

Even though Z, # G itis easy to prove that G=2 = ZqZZ.
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g-analogues of multiple zeta values : A certain subspace

We now want to study certain subspaces of our g-analogues which we denote by
gZQ = <gk17~--,kr(Q) ‘ T Oa kla .. ~7k'r > 2>Q C gv
N _
Z2% = (k1o k) [ 7 >0, Ky, > 2>Q C Z,.

Even though Z, # G itis easy to prove that G2 = Zng.

The space QZQ is close under D = qdiq.




Motivation 1: Multiple Eisenstein series

For k1, ..., k, > 2 the multiple Eisenstein series Gk, ... k,.(T) is defined by
1
Gon Y
0<A1<-=<A, 71 T
N €EZT+Z

where 7 € {x 4 iy € C | y > 0} is an element in the upper half plane and the order < on
Z7 + Zis defined by

miT + N1 < MaT +ng & (Mg < ma) V(M =ma Any < ng).

27/36



Motivation 1: Multiple Eisenstein series

For k1, ..., k, > 2 the multiple Eisenstein series Gk, ... k,.(T) is defined by
1
G = X i
0<A1 << Ap 1 r
N €ELZTHTL

where 7 € {x 4 iy € C | y > 0} is an element in the upper half plane and the order < on
Z7 + Zis defined by

miT +ny < MoT + Ng & (m1<m2)\/(m1:m2/\n1<n2).

Theorem

Setting ¢ = exp(2miT) the C-vector space spanned by all multiple Eisenstein series
Gry.... b (T)with k1, ..., k. > 2 equals C @ G=2.

The C-vector space spanned by all G, ..k, (T) with k1, ..., k. > 2 /s closed under
1 d d
—— =q—=2D.



Motivation 2: Hilbert Scheme of surfaces

@-analogues of multiple zeta values also appear in algebraic geometry.
@ S : nonsingular quasi-projective surface
o Hilb(.5, n) : Hilbert scheme (parametrizes 0-dim. length 7 subschemes of .S)

In a recent work A. Okounkov introduces for a characteristic class f on S a g-series

= Z% /Hilb(S,n)”. “

n>

Conjecture (Okounkov)

For every characteristic class f on S'itis (f) € G=2.

Using geometric arguments one can show that for a certain characteristic class ¢ on .S it is

D(f) = diq<f>=<f-c>—g2<q>,

which also lead Okounkov to the Conjecture that 922 is closed under D.



. . . 9
Derivatives in G=?

We can not use the formula from the Theorem before, since we have for example

Dg3(q) = 93(q) - 92(q) — 93,2(q) — 392.3(¢) — 691,4(q) + 3g4(q) -

All elements on the right side are in QZQ except for 91’4(q).

29/36



. . . 9
Derivatives in G=?

Dg3(q) = 93(q) - 92(q) — 93,2(q) — 392.3(¢) — 691,4(q) + 3g4(q) -

All elements on the right side are in G=2 except for g1 4(q).
Above formula was obtained by considering the coefficient of 22 in

. q° 2 q°
Dg(l‘) :Zde o (1—qd> +Zd€dx1_—qd

0<d 0<d

i) )

- d%(g(x) caly) —g(z,z+y) —gly,z+y) + oz + y)>

o’

29/36



. . . 9
Derivatives in G=?

Dgs(q) = 391(q) - 94(q) — 691,4(q) — 392,3(q) — 393,2(a) — 394,1(q) + 394(q) -
All elements on the right side are in G=2 except for g1.4(q), g4,1(q) and g1(q) - g4(q).
Above formula was obtained by considering the coefficient of 22 in

0= e (7] S L

0<d 0<d

=$<H(xiy)+ﬂ(xiy)>|y=o

= (o) - ov) — 0.7 +9) ~ 0(y. 7 +9) + 0l +))

o’

d d
Clearly the dy can also be replaced by e
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. . . 9
Derivatives in G=?

7
Dgs(q) = 595(a) — 492,3(q) — 6gs,2(q) + 1593(0) -
All the elements on the right side are in QZQ.
Above formula was obtained by considering the coefficient of 22 in
d q* ’ 4"
— X xT
0<d 0<d
d d 2 1
- (2 - ) (1 +H )
dr dy r+y r+y ‘y:O
(2~ ) (o)) — st +9) o+ ) + 860 +9)
= _— - — x) - —glx, 2 — , T X .
dx dy g aly g Yy gy Y g Y |y:0
Instead of d% and % we can also use 2% — d%'

(and evaluate the product by using the harmonic product).
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Derivatives in G=2 : Depth one

For k > 1 the derivative of Ik (q) is given by

k
d
Dgr(q) = Q@Qk( q) = (2k — 1)gr12(q E (k+J—1)gjkt+2—5(q) — gr,2(q)
Jj=2

k Bk

k
Bk+2J _
+J§::2 Frzo i sF =it g+ () 7).

In particular Dgy,(q) € G2 fork > 2.

Example:

d 1

= - -y - .
dqu(Q) 394(q) —492.2(q) + 292((1)

Notice that by multiplying both sides with (1 —q and taking the limit ¢ — 1 we obtain

q

)k+2

k
2k —1)¢(k+2) =Y (k+7—1)¢0k+2—5)+¢(k,2).
j=2



Derivatives of G=2: Higher depths

From the Theorem we obtain inductively the following corollary

Corollary

For every k > 2 we have Dy, x(q) € G=2.



Derivatives of G=2: Higher depths

From the Theorem we obtain inductively the following corollary

Corollary

For every k > 2 we have Dy, x(q) € G=2.

For even k this can also proven without the Theorem by showing that

9h,...x(q) € Q[Ga(q), Ga(q), Go(q)] -

Theorem

The series {23+ (q) = go,...,2(q) is the coefficient of X2 +Lin
X —1)3-1 - xX\\*¥
2 arcsin <5) exp ng %ng(q) (2 arcsin <?)>

Proof idea: Use an explicit formula for the Fourier expansion of Multiple Eisenstein series.



Derivatives of G=2: Depth one for Eq

We can also obtain the Cq version of our Theorem:

Theorem

For k > 3 the derivative of Zq(k) is given by
DC, (k) = (2k — 1){ (k+2) +3(k — 1)(,(k+ 1) + (k — 1), (k)
Z k+j—1)(CG.k+2—35)+C,G+1k—3j))
=2
2k, (k,2) — (2k — 2)Cy(k — 1,3) — k(,(2,k — 1)
and for k = 2itis
In particular qu(k) € Zq22 =G>2%fork > 2.

Notice that the depth one part is simpler but the depth two part is in weight & + 2 and k + 1.




Derivatives of G=2: Open questions

@ Except for the example before and numerical experiments, there are no results (that | am
aware of) in higher depths.

Questions

@ Can we use the a similar idea for higher depth by using our formula for Dg(ml, coog xr)?
@ Are there results on the derivatives in Zq or Zqz2 for higher depths? (E] ZIKEE"C“ ?)

@ Is there another (better?) model to study the operator D = qd%?



Dimensions of G=2

In his work Okounkov also proposes a conjecture for the dimension of the associated graded
algebra of G=2. For this let

G = (G () €GZ2 | 120, ki 4+ ke = k)

and set gr G2%2 = Qandfork > 1

>2
gr, 622 = Yk /gzz .
k—1

Conjecture (Okounkov)

The dimension dj, = dimg gry, G=2 is given by

k 1
dem = 2 3 2 5 3 9 10 11 2
= 1—a2?—a3—a* —ax>+ 28+ 2+ 20+ 2 + 2
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