Derivatives of q－analogues of multiple zeta values

Henrik Bachmann
名古屋大学

第10回多重ゼータ研究集会
18th February 2017
Slides are available here：www．henrikbachmann．com

Content of this talk

- Overview \& Multiple zeta values
- Different models of q-analogues of multiple zeta values
- Harmonic \& Shuffle product
- Shuffle product \leftrightarrow Derivatives
- Certain interesting subspaces and their derivatives

Multiple zeta values

Definition

For $k_{1}, \ldots, k_{r-1} \geq 1, k_{r} \geq 2$ define the multiple zeta value (MZV) by

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{0<m_{1}<\cdots<m_{r}} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}}
$$

By r we denote its depth and $k_{1}+\cdots+k_{r}$ will be called its weight. For the \mathbb{Q}-vector space spanned by all multiple zeta values we write \mathcal{Z}.

- The product of two MZV can be expressed as a linear combination of MZV with the same weight (harmonic product). e.g:

$$
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right)=\zeta\left(k_{1}, k_{2}\right)+\zeta\left(k_{2}, k_{1}\right)+\zeta\left(k_{1}+k_{2}\right)
$$

- MZV can be expressed as iterated integrals. This gives another way (shuffle product) to express the product of two MZV as a linear combination of MZV.
- These two products give a number of \mathbb{Q}-relations (double shuffle relations) between MZV.

q－analogues

＂Roughly speaking，in mathematics，specifically in the areas of combinatorics and special functions，a q－analogue of a theorem，identity or expression is a generalization involving a new parameter q that returns the original theorem， identity or expression in the limit as $q \rightarrow 1$ ．＂
ウィキペディア先生
－The easiest example is the q－analogue of a natural number m given by

$$
[m]_{q}=\frac{1-q^{m}}{1-q}=1+q+\cdots+q^{m-1}, \quad \lim _{q \rightarrow 1}[m]_{q}=m
$$

－One approach to get an q－analogue of multiple zeta values is to replace $\frac{1}{m^{k}}$ by $\frac{q^{(k-1) m}}{[m]_{q}^{k}}$ ．

q-analogues of multiple zeta values

Definition (Bradley, Zhao)

For $k_{1}, \ldots, k_{r-1} \geq 1, k_{r} \geq 2$ define the q-multiple zeta value by

$$
\zeta_{q}\left(k_{1}, \ldots, k_{r}\right)=\sum_{0<m_{1}<\cdots<m_{r}} \frac{q^{\left(k_{1}-1\right) m_{1}} \ldots q^{\left(k_{r}-1\right) m_{r}}}{\left[m_{1}\right]_{q}^{k_{1}} \cdots\left[m_{r}\right]_{q}^{k_{r}}}
$$

- Clearly it is $\lim _{q \rightarrow 1} \zeta_{q}\left(k_{1}, \ldots, k_{r}\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)$.
- The \mathbb{Q}-vector space spanned by these series form a $\mathbb{Q}[q]$-algebra.

$$
\zeta_{q}(2) \zeta_{q}(3)=\zeta_{q}(2,3)+\zeta_{q}(3,2)+\zeta_{q}(5)+(1-q) \zeta_{q}(4)
$$

q-analogues of multiple zeta values

The algebraic description of q-analogues become easier by removing the factors $(1-q)^{k}$.

Definition (Okuda-Takeyama)

- For $k_{1}, \ldots, k_{r-1} \geq 1, k_{r} \geq 2$ define the (modified) q-multiple zeta value by

$$
\begin{aligned}
\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right) & =\sum_{0<m_{1}<\cdots<m_{r}} \frac{q^{\left(k_{1}-1\right) m_{1}} \cdots q^{\left(k_{r}-1\right) m_{r}}}{\left(1-q^{m_{1}}\right)^{k_{1}} \cdots\left(1-q^{m_{r}}\right)^{k_{r}}} \\
& =(1-q)^{-k} \zeta_{q}\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Q}[[q]]
\end{aligned}
$$

with $k=k_{1}+\cdots+k_{r}$.

- For the \mathbb{Q}-vector space spanned by these series we write

$$
\mathcal{Z}_{q}:=\left\langle\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 0, k_{1}, \ldots, k_{r-1} \geq 1, k_{r} \geq 2\right\rangle_{\mathbb{Q}}
$$

and set $\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right)=1$ for $r=0$.

- Clearly it is $\lim _{q \rightarrow 1}(1-q)^{k} \bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)$.
- The \mathbb{Q}-vector space \mathcal{Z}_{q} is a \mathbb{Q}-algebra.

q-analogues of multiple zeta values

More generally: Given a family of polynomials $Q_{k}(X)$ for $k \geq 1$ with $Q_{k}(1)=1$ one can define a q-analogue of multiple zeta values by

$$
\sum_{0<m_{1}<\cdots<m_{r}} \frac{Q_{k_{1}}\left(q^{m_{1}}\right) \cdots Q_{k_{r}}\left(q^{m_{r}}\right)}{\left(1-q^{m_{1}}\right)^{k_{1}} \cdots\left(1-q^{m_{r}}\right)^{k_{r}}}
$$

- In the case $\bar{\zeta}_{q}$ the polynomials $Q_{k}(X)=X^{k-1}$ are used.
- To study the connection to modular forms the following polynomials are more useful

$$
\frac{Q_{k}(X)}{(1-X)^{k}}:=\sum_{d>0} \frac{d^{k-1}}{(k-1)!} X^{d}
$$

- In special cases (all $k_{j} \geq 2$) both models are basically the same.

q-analogues of multiple zeta values

Definition

- For $k_{1}, \ldots, k_{r} \geq 1$ we define the following q-series in $\mathbb{Q}[[q]]$

$$
g_{k_{1}, \ldots, k_{r}}(q):=\sum_{\substack{0<u_{1}<\cdots<u_{r} \\ 0<v_{1}, \ldots, v_{r}}} \frac{v_{1}^{k_{1}-1} \ldots v_{l}^{k_{r}-1}}{\left(k_{1}-1\right)!\ldots\left(k_{r}-1\right)!} \cdot q^{u_{1} v_{1}+\cdots+u_{r} v_{r}}
$$

By $k_{1}+\cdots+k_{r}$ we denote its weight and by r its depth.

- For the \mathbb{Q}-vector space spanned by these series we write

$$
\mathcal{G}:=\left\langle g_{k_{1}, \ldots, k_{r}}(q) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 1\right\rangle_{\mathbb{Q}}
$$

where we also set $g_{k_{1}, \ldots, k_{r}}(q)=1$ for $r=0$.

q-analogues of multiple zeta values

Definition

- For $k_{1}, \ldots, k_{r} \geq 1$ we define the following q-series in $\mathbb{Q}[[q]]$

$$
g_{k_{1}, \ldots, k_{r}}(q):=\sum_{\substack{0<u_{1}<\cdots<u_{r} \\ 0<v_{1}, \ldots, v_{r}}} \frac{v_{1}^{k_{1}-1} \ldots v_{l}^{k_{r}-1}}{\left(k_{1}-1\right)!\ldots\left(k_{r}-1\right)!} \cdot q^{u_{1} v_{1}+\cdots+u_{r} v_{r}}
$$

By $k_{1}+\cdots+k_{r}$ we denote its weight and by r its depth.

- For the \mathbb{Q}-vector space spanned by these series we write

$$
\mathcal{G}:=\left\langle g_{k_{1}, \ldots, k_{r}}(q) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 1\right\rangle_{\mathbb{Q}}
$$

where we also set $g_{k_{1}, \ldots, k_{r}}(q)=1$ for $r=0$.
In depth one these are just the generating series of the divisor-sum $\sigma_{k-1}(n)=\sum_{d \mid n} d^{k-1}$:

$$
g_{k}(q)=\sum_{\substack{0<u_{1} \\ 0<v_{1}}} \frac{v_{1}^{k-1}}{(k-1)!} q^{u_{1} v_{1}}=\frac{1}{(k-1)!} \sum_{n>0} \sigma_{k-1}(n) q^{n}
$$

q-analogues of multiple zeta values

For the generating function of the q-series $g_{k_{1}, \ldots, k_{r}}$ we write

$$
\mathfrak{g}\left(x_{1}, \ldots, x_{r}\right):=\sum_{k_{1}, \ldots, k_{r} \geq 1} g_{k_{1}, \ldots, k_{r}}(q) x_{1}^{k_{1}-1} \ldots x_{r}^{k_{r}-1}
$$

Lemma

The series \mathfrak{g} can be written as

$$
\mathfrak{g}\left(x_{1}, \ldots, x_{r}\right)=\sum_{0<u_{1}<\cdots<u_{r}} L_{u_{1}}\left(x_{1}\right) \ldots L_{u_{r}}\left(x_{r}\right)
$$

where

$$
L_{u}(x)=\frac{q^{u} e^{x}}{1-q^{u} e^{x}}
$$

The series $L_{u}(x)$ satisfy the equation

$$
L_{u}(x) \cdot L_{u}(y)=\frac{L_{u}(x)-L_{u}(y)}{x-y}+B(x-y) L_{u}(x)+B(y-x) L_{u}(y)
$$

with $B(T)=\sum_{k=1}^{\infty} \frac{B_{k}}{k!} T^{k-1}$.

q-analogues of multiple zeta values : harmonic product

MZV: Recall that the generating series of the harmonic multiple zeta values

$$
\begin{gathered}
\qquad \mathfrak{T}^{*}\left(x_{1}, \ldots, x_{r}\right)=\sum_{k_{1}, \ldots, k_{r} \geq 1} \zeta^{*}\left(k_{1}, \ldots, k_{r}\right) x_{1}^{k_{1}-1} \ldots x_{r}^{k_{r}-1} \\
\text { satisfy } \quad \mathfrak{T}^{*}(x) \cdot \mathfrak{T}^{*}(y)=\mathfrak{T}^{*}(x, y)+\mathfrak{T}^{*}(y, x)+\frac{\mathfrak{T}^{*}(x)-\mathfrak{T}^{*}(y)}{x-y} .
\end{gathered}
$$

qMZV: The generating series $\mathfrak{g}\left(x_{1}, \ldots, x_{r}\right)$ satisfies similar equations, e.g.

$$
\begin{aligned}
\mathfrak{g}(x) \cdot \mathfrak{g}(y) & =\mathfrak{g}(x, y)+\mathfrak{g}(y, x)+\frac{\mathfrak{g}(x)-\mathfrak{g}(y)}{x-y} \\
& +B(x-y) \cdot \mathfrak{g}(x)+B(y-x) \cdot \mathfrak{g}(y)
\end{aligned}
$$

with $B(T)=\sum_{k=1}^{\infty} \frac{B_{k}}{k!} T^{k-1}$.

q-analogues of multiple zeta values : harmonic \& shuffle product

Let \mathbb{k}_{1} and \mathbb{K}_{2} be two arbitrary index sets.

We have just seen the following rough picture:

Harmonic product *

$$
\begin{aligned}
& \zeta^{*}\left(\mathbb{k}_{1}\right) \cdot \zeta^{*}\left(\mathbb{k}_{2}\right)=\zeta^{*}\left(\mathbb{k}_{1} * \mathbb{k}_{2}\right) \\
& g_{\mathfrak{k}_{1}}(q) \cdot g_{\mathbb{k}_{2}}(q)=g_{\mathbb{k}_{1} * \mathbb{k}_{2}}(q)+\text { lower weight terms }
\end{aligned}
$$

Now we want to explain that something similar is true for the shuffle product:

Shuffle product \amalg

$$
\begin{aligned}
\zeta^{\amalg}\left(\mathbb{k}_{1}\right) \cdot \zeta^{Ш}\left(\mathbb{k}_{2}\right) & =\zeta^{\amalg}\left(\mathbb{k}_{1} \amalg \mathbb{k}_{2}\right) \\
g_{\mathfrak{k}_{1}}(q) \cdot g_{\mathbb{k}_{2}}(q) & =g_{\mathfrak{k}_{1} ш \mathbb{k}_{2}}(q)+\text { lower weight terms }+ \text { "derivatives" }
\end{aligned}
$$

q-analogues of multiple zeta values : harmonic \& shuffle product

Let \mathbb{k}_{1} and \mathbb{K}_{2} be two arbitrary index sets.

We have just seen the following rough picture:

Harmonic product *

$$
\begin{aligned}
& \zeta^{*}\left(\mathbb{k}_{1}\right) \cdot \zeta^{*}\left(\mathbb{k}_{2}\right)=\zeta^{*}\left(\mathbb{k}_{1} * \mathbb{k}_{2}\right) \\
& g_{\mathfrak{k}_{1}}(q) \cdot g_{\mathbb{k}_{2}}(q)=g_{\mathbb{k}_{1} * \mathbb{k}_{2}}(q)+\text { lower weight terms }
\end{aligned}
$$

Now we want to explain that something similar is true for the shuffle product:

Shuffle product \amalg

$$
\begin{aligned}
\zeta^{\amalg}\left(\mathbb{k}_{1}\right) \cdot \zeta^{Ш}\left(\mathbb{k}_{2}\right) & =\zeta^{\amalg}\left(\mathbb{k}_{1} \amalg \mathbb{k}_{2}\right) \\
g_{\mathfrak{k}_{1}}(q) \cdot g_{\mathbb{k}_{2}}(q) & =g_{\mathfrak{k}_{1} ш \mathbb{k}_{2}}(q)+\text { lower weight terms }+ \text { "derivatives" }
\end{aligned}
$$

$$
\text { "derivatives" }=g_{\mathfrak{k}_{1}}(q) \cdot g_{\mathbb{k}_{2}}(q)-g_{\mathbb{k}_{1} ш \mathbb{k}_{2}}(q)-\text { lower weight terms } .
$$

The operator D

Today we will be interested in the operator D on $\mathbb{Q}[[q]]$ defined by

$$
D:=q \frac{d}{d q}
$$

- For a q-analogue the operator D increases the weight by 2 and the depth by 1 .
- Given numbers $k_{1}, \ldots, k_{r} \geq 1$ with $k=k_{1}+\cdots+k_{r}$ it is

$$
\lim _{q \rightarrow 1}(1-q)^{k+2} D g_{k_{1}, \ldots, k_{r}}(q)=0
$$

i.e. formulas for the derivative of q-analogues give relations between MZV.

- The sub algebra $\mathbb{Q}\left[\widetilde{G}_{2}, \widetilde{G}_{4}, \widetilde{G}_{6}\right] \subset \mathcal{G}$ of quasi-modular forms is closed under D.

$$
\widetilde{G}_{2 n}(q):=\frac{1}{2} \frac{B_{2 n}}{(2 n)!}+g_{2 n}(q) \in \mathcal{G} .
$$

q-analogues of multiple zeta values : shuffle product

Definition

Define for $n_{1}, \ldots, n_{r} \geq 1$ the series

$$
H\binom{n_{1}, \ldots, n_{r}}{x_{1}, \ldots, x_{r}}=\sum_{0<d_{1}<\cdots<d_{r}} e^{d_{1} x_{1}}\left(\frac{q^{d_{1}}}{1-q^{d_{1}}}\right)^{n_{1}} \ldots e^{d_{r} x_{r}}\left(\frac{q^{d_{r}}}{1-q^{d_{r}}}\right)^{n_{r}}
$$

Notice that this series "satisfies" the harmonic product formula. For example:

$$
H\binom{n_{1}}{x_{1}} \cdot H\binom{n_{2}}{x_{2}}=H\binom{n_{1}, n_{2}}{x_{1}, x_{2}}+H\binom{n_{2}, n_{1}}{x_{2}, x_{1}}+H\binom{n_{1}+n_{2}}{x_{1}+x_{2}}
$$

q-analogues of multiple zeta values : shuffle product

Definition

Define for $n_{1}, \ldots, n_{r} \geq 1$ the series

$$
H\binom{n_{1}, \ldots, n_{r}}{x_{1}, \ldots, x_{r}}=\sum_{0<d_{1}<\cdots<d_{r}} e^{d_{1} x_{1}}\left(\frac{q^{d_{1}}}{1-q^{d_{1}}}\right)^{n_{1}} \ldots e^{d_{r} x_{r}}\left(\frac{q^{d_{r}}}{1-q^{d_{r}}}\right)^{n_{r}}
$$

Notice that this series "satisfies" the harmonic product formula. For example:

$$
H\binom{n_{1}}{x_{1}} \cdot H\binom{n_{2}}{x_{2}}=H\binom{n_{1}, n_{2}}{x_{1}, x_{2}}+H\binom{n_{2}, n_{1}}{x_{2}, x_{1}}+H\binom{n_{1}+n_{2}}{x_{1}+x_{2}}
$$

The connection to the series \mathfrak{g} is given by

$$
\mathfrak{g}\left(x_{1}, \ldots, x_{r}\right)=H\binom{1, \ldots, 1,1}{x_{r}-x_{r-1}, \ldots, x_{2}-x_{1}, x_{1}}
$$

or equivalently

$$
H\binom{1, \ldots, 1}{y_{1}, \ldots, y_{r}}=\mathfrak{g}\left(y_{r}, y_{r-1}+y_{r}, \ldots, y_{1}+\cdots+y_{r}\right)
$$

q-analogues of multiple zeta values : shuffle product

So if we multiply the generating series in depth one we get

$$
\begin{aligned}
\mathfrak{g}(x) \cdot \mathfrak{g}(y) & =H\binom{1}{x} \cdot H\binom{1}{y} \\
& =H\binom{1,1}{x, y}+H\binom{1,1}{y, x}+H\binom{2}{x_{1}+x_{2}} \\
& =\mathfrak{g}(x, x+y)+\mathfrak{g}(y, x+y)+H\binom{2}{x+y} .
\end{aligned}
$$

q-analogues of multiple zeta values : shuffle product

MZV: Recall that the generating series of the shuffle regularized multiple zeta values

$$
\mathfrak{T}^{Ш}\left(x_{1}, \ldots, x_{r}\right)=\sum_{k_{1}, \ldots, k_{r} \geq 1} \zeta^{\amalg}\left(k_{1}, \ldots, k_{r}\right) x_{1}^{k_{1}-1} \ldots x_{r}^{k_{r}-1}
$$

satisfy

$$
\mathfrak{T}^{\amalg}(x) \cdot \mathfrak{T}^{\amalg}(y)=\mathfrak{T}^{\amalg}(x, x+y)+\mathfrak{T}^{\amalg}(y, x+y) .
$$

qMZV: The generating series $\mathfrak{g}\left(x_{1}, \ldots, x_{r}\right)$ satisfies similar equations, e.g.

$$
\mathfrak{g}(x) \cdot \mathfrak{g}(y)=\mathfrak{g}(x, x+y)+\mathfrak{g}(y, x+y)+H\binom{2}{x+y}
$$

q-analogues of multiple zeta values : shuffle product

MZV: Recall that the generating series of the shuffle regularized multiple zeta values

$$
\mathfrak{T}^{Ш}\left(x_{1}, \ldots, x_{r}\right)=\sum_{k_{1}, \ldots, k_{r} \geq 1} \zeta^{\amalg}\left(k_{1}, \ldots, k_{r}\right) x_{1}^{k_{1}-1} \ldots x_{r}^{k_{r}-1}
$$

satisfy

$$
\mathfrak{T}^{\amalg}(x) \cdot \mathfrak{T}^{\amalg}(y)=\mathfrak{T}^{\amalg}(x, x+y)+\mathfrak{T}^{\amalg}(y, x+y) .
$$

qMZV: The generating series $\mathfrak{g}\left(x_{1}, \ldots, x_{r}\right)$ satisfies similar equations, e.g.

$$
\mathfrak{g}(x) \cdot \mathfrak{g}(y)=\mathfrak{g}(x, x+y)+\mathfrak{g}(y, x+y)+H\binom{2}{x+y}
$$

- The properties of the function H can be used to define series g^{\amalg} satisfying the shuffle product formula of MZV.
- We now want to explain the connection of $H\binom{2}{x+y}$ and the operator $D=q \frac{d}{d q}$.

q-analogues of multiple zeta values : shuffle product \& derivative

First notice that

$$
D \frac{q^{d}}{1-q^{d}}=q \frac{d}{d q} \frac{q^{d}}{1-q^{d}}=d\left(\frac{q^{d}}{1-q^{d}}\right)^{2}+d \frac{q^{d}}{1-q^{d}}
$$

which leads to

$$
\begin{aligned}
\sum_{k>0} D g_{k}(q) x^{k-1}=D \mathfrak{g}(x) & =D H\binom{1}{x}=D \sum_{0<d} e^{d x} \frac{q^{d}}{1-q^{d}} \\
& =\sum_{0<d} d e^{d x}\left(\frac{q^{d}}{1-q^{d}}\right)^{2}+\sum_{0<d} d e^{d x} \frac{q^{d}}{1-q^{d}} \\
& =\left.\frac{d}{d y}(H\binom{2}{x+y}+\underbrace{H\binom{1}{x+y}}_{=\mathfrak{g}(x+y)})\right|_{y=0}
\end{aligned}
$$

q-analogues of multiple zeta values : shuffle product \& derivative

With $H\binom{2}{x+y}=\mathfrak{g}(x) \cdot \mathfrak{g}(y)-\mathfrak{g}(x, x+y)-\mathfrak{g}(y, x+y)$ we get
$\sum_{k>0} D g_{k}(q) x^{k-1}=\frac{d}{d y}(\mathfrak{g}(x) \cdot \mathfrak{g}(y)-\mathfrak{g}(x, x+y)-\mathfrak{g}(y, x+y)+\mathfrak{g}(x+y))_{\mid y=0}$.
In particular this proves that $D g_{k}(q) \in \mathcal{G}$.

q-analogues of multiple zeta values : shuffle product \& derivative

With $H\binom{2}{x+y}=\mathfrak{g}(x) \cdot \mathfrak{g}(y)-\mathfrak{g}(x, x+y)-\mathfrak{g}(y, x+y)$ we get
$\sum_{k>0} D g_{k}(q) x^{k-1}=\frac{d}{d y}(\mathfrak{g}(x) \cdot \mathfrak{g}(y)-\mathfrak{g}(x, x+y)-\mathfrak{g}(y, x+y)+\mathfrak{g}(x+y))_{\mid y=0}$. In particular this proves that $D g_{k}(q) \in \mathcal{G}$.

Since $\left.\frac{d}{d y} \mathfrak{g}(y)\right|_{y=0}$ equals $g_{2}(q)$ this can be interpreted as

Derivative of $g_{k}(q)=\begin{aligned} & \text { Failure of the shuffle product } \\ & \text { formula for } g_{k}(q) \cdot g_{2}(q)\end{aligned}+$ Lower weight terms

q-analogues of multiple zeta values : shuffle product \& derivative

$$
\text { Derivative of } g_{k}(q)=\begin{aligned}
& \text { Failure of the shuffle product } \\
& \text { formula for } g_{k}(q) \cdot g_{2}(q)
\end{aligned}+\text { Lower weight terms }
$$

Example

The shuffle product formula of $\zeta(3) \cdot \zeta(2)$ reads

$$
\begin{equation*}
\zeta(3) \cdot \zeta(2)=\zeta(3,2)+3 \zeta(2,3)+6 \zeta(1,4) \tag{1}
\end{equation*}
$$

The derivative of $g_{3}(q)$ is given by

$$
\begin{equation*}
D g_{3}(q)=g_{3}(q) \cdot g_{2}(q)-g_{3,2}(q)-3 g_{2,3}(q)-6 g_{1,4}(q)+3 g_{4}(q) \tag{2}
\end{equation*}
$$

Notice: Multiplying (2) by $(1-q)^{5}$ and taking the limit $q \rightarrow 1$ one obtains (1).

q-analogues of multiple zeta values : derivative

This can be done for arbitrary depth:

Theorem

The derivative of the generating series \mathfrak{g} can be written as

$$
\begin{aligned}
& D \mathfrak{g}\left(x_{1}, \ldots, x_{r}\right)=\mathfrak{g}\left(x_{1}, \ldots, x_{r}\right) \cdot g_{2}(q) \\
& \quad-\frac{d}{d y}\left(\sum_{j=0}^{r} \mathfrak{g}\left(x_{1}, x_{2}, \ldots, x_{r-j}, x_{r-j}+y, x_{r-j+1}+y, \ldots, x_{r}+y\right)\right)_{\mid y=0} \\
& \quad-\frac{d}{d y}\left(\sum_{j=1}^{r} \mathfrak{g}\left(x_{1}, \ldots, x_{j-1}, x_{j}+y, \ldots, x_{r}+y\right)\right)_{\mid y=0}
\end{aligned}
$$

In particular the space \mathcal{G} is closed under D.

q-analogues of multiple zeta values : derivative

This can be done for arbitrary depth:

Theorem

The derivative of the generating series \mathfrak{g} can be written as

$$
D \mathfrak{g}\left(x_{1}, \ldots, x_{r}\right)=\mathfrak{g}\left(x_{1}, \ldots, x_{r}\right) \cdot g_{2}(q)
$$

$$
\begin{aligned}
& -\frac{d}{d y}\left(\sum_{j=0}^{r} \mathfrak{g}\left(x_{1}, x_{2}, \ldots, x_{r-j}, x_{r-j}+y, x_{r-j+1}+y, \ldots, x_{r}+y\right)\right)_{\mid y=0} \\
& -\frac{d}{d y}\left(\sum_{j=1}^{r} \mathfrak{g}\left(x_{1}, \ldots, x_{j-1}, x_{j}+y, \ldots, x_{r}+y\right)\right)_{\mid y=0}
\end{aligned}
$$

In particular the space \mathcal{G} is closed under D.

Derivative of $g_{k_{1}, \ldots, k_{r}}(q)=\begin{gathered}\text { Failure of the shuffle product } \\ \text { formula for } g_{k_{1}, \ldots, k_{r}}(q) \cdot g_{2}(q)\end{gathered}+$ Lower weight \& depth terms

q-analogues of multiple zeta values: A certain subspace

We now want to study certain subspaces of our q-analogues which we denote by

$$
\begin{array}{r}
\mathcal{G}^{\geq 2}:=\left\langle g_{k_{1}, \ldots, k_{r}}(q) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{G}, \\
\mathcal{Z}_{q}^{\geq 2}:=\left\langle\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{Z}_{q} .
\end{array}
$$

Even though $\mathcal{Z}_{q} \neq \mathcal{G}$ it is easy to prove that $\mathcal{G}^{\geq 2}=\mathcal{Z}_{q}^{\geq 2}$.

q-analogues of multiple zeta values: A certain subspace

We now want to study certain subspaces of our q-analogues which we denote by

$$
\begin{array}{r}
\mathcal{G}^{\geq 2}:=\left\langle g_{k_{1}, \ldots, k_{r}}(q) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{G} \\
\mathcal{Z}_{q}^{\geq 2}:=\left\langle\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{Z}_{q}
\end{array}
$$

Even though $\mathcal{Z}_{q} \neq \mathcal{G}$ it is easy to prove that $\mathcal{G}^{\geq 2}=\mathcal{Z}_{q}^{\geq 2}$.

Theorem

Define for $2 \leq s \leq k$ the numbers $\alpha_{s, k} \in \mathbb{Q}$ by

$$
\sum_{s=2}^{k} \frac{\alpha_{s, k}}{(s-1)!} X^{s-1}:=\binom{X}{k-1}=\frac{X(X-1) \ldots(X-k+2)}{(k-1)!}
$$

Then we have for $k_{1}, \ldots, k_{r} \geq 2$

$$
\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right)=\sum_{\substack{2 \leq s_{j} \leq k_{j} \\ 1 \leq j \leq r}} \alpha_{s_{1}, k_{1}} \ldots \alpha_{s_{r}, k_{r}} g_{s_{1}, \ldots, s_{r}}(q)
$$

q-analogues of multiple zeta values: A certain subspace

We now want to study certain subspaces of our q-analogues which we denote by

$$
\begin{array}{r}
\mathcal{G}^{\geq 2}:=\left\langle g_{k_{1}, \ldots, k_{r}}(q) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{G} \\
\mathcal{Z}_{q}^{\geq 2}:=\left\langle\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{Z}_{q}
\end{array}
$$

Even though $\mathcal{Z}_{q} \neq \mathcal{G}$ it is easy to prove that $\mathcal{G}^{\geq 2}=\mathcal{Z}_{\bar{q}}{ }^{2}$.

Theorem

Define for $2 \leq s \leq k$ the numbers $\beta_{k, s} \in \mathbb{Q}$ by

$$
\sum_{2 \leq s \leq k<\infty} \beta_{k, s} T^{k-s} X^{k}=\frac{X T}{T+1-e^{X T}}-X
$$

Then we have for $k_{1}, \ldots, k_{r} \geq 2$

$$
g_{k_{1}, \ldots, k_{r}}(q)=\sum_{\substack{2 \leq s_{j} \leq k_{j} \\ 1 \leq j \leq r}} \beta_{s_{1}, k_{1}} \ldots \beta_{s_{r}, k_{r}} \bar{\zeta}_{q}\left(s_{1}, \ldots, s_{r}\right)
$$

q-analogues of multiple zeta values: A certain subspace

We now want to study certain subspaces of our q-analogues which we denote by

$$
\begin{aligned}
& \mathcal{G}^{\geq 2}:=\left\langle g_{k_{1}, \ldots, k_{r}}(q) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{G}, \\
& \mathcal{Z}_{q}^{\geq 2}:=\left\langle\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{Z}_{q} .
\end{aligned}
$$

Even though $\mathcal{Z}_{q} \neq \mathcal{G}$ it is easy to prove that $\mathcal{G}^{\geq 2}=\mathcal{Z}_{q}^{\geq 2}$.

q-analogues of multiple zeta values : A certain subspace

We now want to study certain subspaces of our q-analogues which we denote by

$$
\begin{aligned}
& \mathcal{G}^{\geq 2}:=\left\langle g_{k_{1}, \ldots, k_{r}}(q) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{G}, \\
& \mathcal{Z}_{q}^{\geq 2}:=\left\langle\bar{\zeta}_{q}\left(k_{1}, \ldots, k_{r}\right) \mid r \geq 0, k_{1}, \ldots, k_{r} \geq 2\right\rangle_{\mathbb{Q}} \subset \mathcal{Z}_{q} .
\end{aligned}
$$

Even though $\mathcal{Z}_{q} \neq \mathcal{G}$ it is easy to prove that $\mathcal{G}^{\geq 2}=\mathcal{Z}_{\bar{q}}{ }^{2}$.

Conjecture

The space $\mathcal{G} \geq^{2}$ is close under $D=q \frac{q}{d q}$.

Motivation 1: Multiple Eisenstein series

For $k_{1}, \ldots, k_{r} \geq 2$ the multiple Eisenstein series $G_{k_{1}, \ldots, k_{r}}(\tau)$ is defined by

$$
G_{k_{1}, \ldots, k_{r}}(\tau)=\sum_{\substack{0 \prec \lambda_{1} \prec \cdots \prec \lambda_{r} \\ \lambda_{i} \in \mathbb{Z} \tau+\mathbb{Z}}} \frac{1}{\lambda_{1}^{k_{1}} \cdots \lambda_{r}^{k_{r}}}
$$

where $\tau \in\{x+i y \in \mathbb{C} \mid y>0\}$ is an element in the upper half plane and the order \prec on $\mathbb{Z} \tau+\mathbb{Z}$ is defined by

$$
m_{1} \tau+n_{1} \prec m_{2} \tau+n_{2}: \Leftrightarrow\left(m_{1}<m_{2}\right) \vee\left(m_{1}=m_{2} \wedge n_{1}<n_{2}\right)
$$

Motivation 1: Multiple Eisenstein series

For $k_{1}, \ldots, k_{r} \geq 2$ the multiple Eisenstein series $G_{k_{1}, \ldots, k_{r}}(\tau)$ is defined by

$$
G_{k_{1}, \ldots, k_{r}}(\tau)=\sum_{\substack{0 \prec \lambda_{1} \prec \cdots \prec \lambda_{r} \\ \lambda_{i} \in \mathbb{Z} \tau+\mathbb{Z}}} \frac{1}{\lambda_{1}^{k_{1}} \cdots \lambda_{r}^{k_{r}}}
$$

where $\tau \in\{x+i y \in \mathbb{C} \mid y>0\}$ is an element in the upper half plane and the order \prec on $\mathbb{Z} \tau+\mathbb{Z}$ is defined by

$$
m_{1} \tau+n_{1} \prec m_{2} \tau+n_{2}: \Leftrightarrow\left(m_{1}<m_{2}\right) \vee\left(m_{1}=m_{2} \wedge n_{1}<n_{2}\right)
$$

Theorem

Setting $q=\exp (2 \pi i \tau)$ the \mathbb{C}-vector space spanned by all multiple Eisenstein series $G_{k_{1}, \ldots, k_{r}}(\tau)$ with $k_{1}, \ldots, k_{r} \geq 2$ equals $\mathbb{C} \otimes \mathcal{G}^{\geq 2}$.

Conjecture

The \mathbb{C}-vector space spanned by all $G_{k_{1}, \ldots, k_{r}}(\tau)$ with $k_{1}, \ldots, k_{r} \geq 2$ is closed under

$$
\frac{1}{2 \pi i} \frac{d}{d \tau}=q \frac{d}{d q}=D
$$

Motivation 2: Hilbert Scheme of surfaces

q-analogues of multiple zeta values also appear in algebraic geometry.

- S : nonsingular quasi-projective surface
- $\operatorname{Hilb}(S, n)$: Hilbert scheme (parametrizes 0-dim. length n subschemes of S) In a recent work A. Okounkov introduces for a characteristic class f on S a q-series

$$
\langle f\rangle=\sum_{n>0}\left(\int_{\operatorname{Hilb}(S, n)} \cdots\right) q^{n}
$$

Conjecture (Okounkov)

For every characteristic class f on S it is $\langle f\rangle \in \mathcal{G} \geq 2$.
Using geometric arguments one can show that for a certain characteristic class c on S it is

$$
D\langle f\rangle=q \frac{d}{d q}\langle f\rangle=\langle f \cdot c\rangle-g_{2}(q)
$$

which also lead Okounkov to the Conjecture that $\mathcal{G} \geq 2$ is closed under D.

Derivatives in $\mathcal{G}^{\geq 2}$

We can not use the formula from the Theorem before, since we have for example

$$
D g_{3}(q)=g_{3}(q) \cdot g_{2}(q)-g_{3,2}(q)-3 g_{2,3}(q)-6 g_{1,4}(q)+3 g_{4}(q)
$$

All elements on the right side are in $\mathcal{G} \geq 2$ except for $g_{1,4}(q)$.

Derivatives in $\mathcal{G}^{\geq 2}$

$$
D g_{3}(q)=g_{3}(q) \cdot g_{2}(q)-g_{3,2}(q)-3 g_{2,3}(q)-6 g_{1,4}(q)+3 g_{4}(q)
$$

All elements on the right side are in $\mathcal{G} \geq 2$ except for $g_{1,4}(q)$.
Above formula was obtained by considering the coefficient of x^{2} in

$$
\begin{aligned}
D \mathfrak{g}(x) & =\sum_{0<d} d e^{d x}\left(\frac{q^{d}}{1-q^{d}}\right)^{2}+\sum_{0<d} d e^{d x} \frac{q^{d}}{1-q^{d}} \\
& =\left.\frac{d}{d y}\left(H\binom{2}{x+y}+H\binom{1}{x+y}\right)\right|_{y=0} \\
& =\frac{d}{d y}(\mathfrak{g}(x) \cdot \mathfrak{g}(y)-\mathfrak{g}(x, x+y)-\mathfrak{g}(y, x+y)+\mathfrak{g}(x+y))_{\mid y=0}
\end{aligned}
$$

Derivatives in $\mathcal{G}^{\geq 2}$

$$
D g_{3}(q)=3 g_{1}(q) \cdot g_{4}(q)-6 g_{1,4}(q)-3 g_{2,3}(q)-3 g_{3,2}(q)-3 g_{4,1}(q)+3 g_{4}(q) .
$$

All elements on the right side are in $\mathcal{G} \geq 2$ except for $g_{1,4}(q), g_{4,1}(q)$ and $g_{1}(q) \cdot g_{4}(q)$.
Above formula was obtained by considering the coefficient of x^{2} in

$$
\begin{aligned}
D \mathfrak{g}(x) & =\sum_{0<d} d e^{d x}\left(\frac{q^{d}}{1-q^{d}}\right)^{2}+\sum_{0<d} d e^{d x} \frac{q^{d}}{1-q^{d}} \\
& =\frac{d}{d x}\left(H\binom{2}{x+y}+H\binom{1}{x+y}\right)_{\mid y=0} \\
& =\frac{d}{d x}(\mathfrak{g}(x) \cdot \mathfrak{g}(y)-\mathfrak{g}(x, x+y)-\mathfrak{g}(y, x+y)+\mathfrak{g}(x+y))_{\mid y=0} .
\end{aligned}
$$

Clearly the $\frac{d}{d y}$ can also be replaced by $\frac{d}{d x}$.

Derivatives in $\mathcal{G} \geq 2$

$$
D g_{3}(q)=5 g_{5}(q)-4 g_{2,3}(q)-6 g_{3,2}(q)+\frac{7}{12} g_{3}(q) .
$$

All the elements on the right side are in $\mathcal{G} \geq 2$.

Above formula was obtained by considering the coefficient of x^{2} in

$$
\begin{aligned}
& D \mathfrak{g}(x)=\sum_{0<d} d e^{d x}\left(\frac{q^{d}}{1-q^{d}}\right)^{2}+\sum_{0<d} d e^{d x} \frac{q^{d}}{1-q^{d}} \\
& \quad=\left.\left(2 \frac{d}{d x}-\frac{d}{d y}\right)\left(H\binom{2}{x+y}+H\binom{1}{x+y}\right)\right|_{y=0} \\
& \quad=\left(2 \frac{d}{d x}-\frac{d}{d y}\right)(\mathfrak{g}(x) \cdot \mathfrak{g}(y)-\mathfrak{g}(x, x+y)-\mathfrak{g}(y, x+y)+\mathfrak{g}(x+y))_{\mid y=0}
\end{aligned}
$$

Instead of $\frac{d}{d y}$ and $\frac{d}{d x}$ we can also use $2 \frac{d}{d x}-\frac{d}{d y}$.
(and evaluate the product by using the harmonic product).

Derivatives in $\mathcal{G} \geq 2$: Depth one

Theorem

For $k \geq 1$ the derivative of $g_{k}(q)$ is given by

$$
\begin{aligned}
D g_{k}(q)=q \frac{d}{d q} g_{k}(q) & =(2 k-1) g_{k+2}(q)-\sum_{j=2}^{k}(k+j-1) g_{j, k+2-j}(q)-g_{k, 2}(q) \\
& +\sum_{j=2}^{k} \frac{B_{k+2-j}}{(k+2-j)!}(3 k-j+1) g_{j}(q)+(-1)^{k} \frac{B_{k}}{k!} g_{2}(q)
\end{aligned}
$$

In particular $D g_{k}(q) \in \mathcal{G}^{\geq 2}$ for $k \geq 2$.

Example:

$$
q \frac{d}{d q} g_{2}(q)=3 g_{4}(q)-4 g_{2,2}(q)+\frac{1}{2} g_{2}(q)
$$

Notice that by multiplying both sides with $(1-q)^{k+2}$ and taking the limit $q \rightarrow 1$ we obtain

$$
(2 k-1) \zeta(k+2)=\sum_{j=2}^{k}(k+j-1) \zeta(j, k+2-j)+\zeta(k, 2)
$$

Derivatives of $\mathcal{G}^{\geq 2}$: Higher depths

From the Theorem we obtain inductively the following corollary

Corollary

For every $k \geq 2$ we have $D g_{k, \ldots, k}(q) \in \mathcal{G}^{\geq 2}$.

Derivatives of $\mathcal{G}^{\geq 2}$: Higher depths

From the Theorem we obtain inductively the following corollary

Corollary

For every $k \geq 2$ we have $D g_{k, \ldots, k}(q) \in \mathcal{G}^{\geq 2}$.
For even k this can also proven without the Theorem by showing that

$$
g_{k, \ldots, k}(q) \in \mathbb{Q}\left[\widetilde{G}_{2}(q), \widetilde{G}_{4}(q), \widetilde{G}_{6}(q)\right]
$$

Theorem

The series $g_{\{2\}^{r}}(q)=g_{2, \ldots, 2}(q)$ is the coefficient of $X^{2 r+1}$ in

$$
2 \arcsin \left(\frac{X}{2}\right) \exp \left(\sum_{j \geq 1} \frac{(-1)^{j-1}}{j} \widetilde{G}_{2 j}(q)\left(2 \arcsin \left(\frac{X}{2}\right)\right)^{2 j}\right)
$$

Proof idea: Use an explicit formula for the Fourier expansion of Multiple Eisenstein series.

Derivatives of $\mathcal{G}^{\geq 2}$: Depth one for $\bar{\zeta}_{q}$

We can also obtain the $\bar{\zeta}_{q}$ version of our Theorem:

Theorem

For $k \geq 3$ the derivative of $\bar{\zeta}_{q}(k)$ is given by

$$
\begin{aligned}
D \bar{\zeta}_{q}(k) & =(2 k-1) \bar{\zeta}_{q}(k+2)+3(k-1) \bar{\zeta}_{q}(k+1)+(k-1) \bar{\zeta}_{q}(k) \\
& -\sum_{j=2}^{k-2}(k+j-1)\left(\bar{\zeta}_{q}(j, k+2-j)+\bar{\zeta}_{q}(j+1, k-j)\right) \\
& -2 k \bar{\zeta}_{q}(k, 2)-(2 k-2) \bar{\zeta}_{q}(k-1,3)-k \bar{\zeta}_{q}(2, k-1)
\end{aligned}
$$

and for $k=2$ it is

$$
D \bar{\zeta}_{q}(2)=3 \bar{\zeta}_{q}(4)+3 \bar{\zeta}_{q}(3)+\bar{\zeta}_{q}(2)-4 \bar{\zeta}_{q}(2,2)
$$

In particular $D \bar{\zeta}_{q}(k) \in \mathcal{Z}_{q}^{\geq 2}=\mathcal{G} \geq 2$ for $k \geq 2$.
Notice that the depth one part is simpler but the depth two part is in weight $k+2$ and $k+1$.

Derivatives of $\mathcal{G}^{\geq 2}$ ：Open questions

－Except for the example before and numerical experiments，there are no results（that I am aware of）in higher depths．

Questions

－Can we use the a similar idea for higher depth by using our formula for $D \mathfrak{g}\left(x_{1}, \ldots, x_{r}\right)$ ？
－Are there results on the derivatives in \mathcal{Z}_{q} or $\mathcal{Z}_{q}^{\geq 2}$ for higher depths？（日本語で？）
－Is there another（better？）model to study the operator $D=q \frac{d}{d q}$ ？

Dimensions of $\mathcal{G}^{\geq 2}$

In his work Okounkov also proposes a conjecture for the dimension of the associated graded algebra of $\mathcal{G} \geq 2$. For this let

$$
\mathcal{G}_{k}^{\geq 2}=\left\langle g_{k_{1}, \ldots, k_{r}}(q) \in \mathcal{G}^{\geq 2} \mid r \geq 0, k_{1}+\cdots+k_{r}=k\right\rangle_{\mathbb{Q}}
$$

and set $\operatorname{gr}_{0} \mathcal{G}^{\geq 2}=\mathbb{Q}$ and for $k \geq 1$

$$
\operatorname{gr}_{k} \mathcal{G}^{\geq 2}=\mathcal{G}_{k}^{\geq 2} / \mathcal{G}_{k-1}^{\geq 2}
$$

Conjecture (Okounkov)

The dimension $d_{k}=\operatorname{dim}_{\mathbb{Q}} \operatorname{gr}_{k} \mathcal{G}^{\geq 2}$ is given by

$$
\sum_{k \geq 0} d_{k} x^{k}=\frac{1}{1-x^{2}-x^{3}-x^{4}-x^{5}+x^{8}+x^{9}+x^{10}+x^{11}+x^{12}}
$$

ありがとうございます

Slides are available here：www．henrikbachmann．com

