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Multiple zeta values

Forky,...,k._1 > 1, k. > 2 define the multiple zeta value by

1
C(k1y. . k) = Z —

0<my <---<my. ™ < © ey

By 7 we denote its depth and k1 + - - - + k,. will be called its weight. For the Q—vector space
spanned by all multiple zeta values we write 2.

@ The product of two MZV can be expressed as a linear combination of MZV with the
same weight (harmonic product). e.g:

C(k1) - C(k2) = C(k1, k2) + C(k2, k1) + C(k1 + k2) .

@ MZV can be expressed as iterated integrals. This gives another way (shuffle product)
to express the product of two MZV as a linear combination of MZV.

@ These two products give a number of (Q-relations (double shuffle relations) between
MzV.



Multiple zeta values - Example for the double shuffle relations

Example:
((3,2) +3¢(2,3) +6¢(1,4) "= ¢(2) - ¢(3) "= ((2,3) +¢(3,2) +{(5).

= 2((2,3) +6¢(1,4) "= ().

But there are more relations between MZV. e.g.:

¢(1,2) = ¢(3).

These follow from the extended double shuffle relations.



Multiple Eisenstein series

@ There are several connections of multiple zeta values to modular forms.

@ One of them is given by multiple Eisenstein series G| ;. (7). Indepth 1 these
are the classical Eisenstein series

G (r) = C(k) + ,f’” zakl (g = emim),

which are modular forms for even k > 2. (kal(n) = Zd|n dk_l).

@ These functions satisfy some of the double shuffle relations. For example it is
L L L
2G5 5(1) +6GT (1) = G5 (T),

but

G () — Ga(r) = —mi e GP(r) £0.

@ There are a lot of open questions regarding multiple Eisenstein series.



Plan

Is the space spanned by all multiple Eisenstein series closed under % = (271'1')(]i ?

e The multiple Eisenstein series G'j.) (7) can be written as a Z[27]-linear

(¢) € Qllg]]. A\ = 2mi)

ceay

ko
combination of certain g-series g;"l' Lk

o

5:3(7) = ((2,3) + 3C(3)A%g5" (a) + 2¢(2)N°g57(q) + N g35(a) -

. diye.dy
o The g-series gi) ;. () can be written in terms of other g-series g,(cllm r )(q).

0,0 1 @ 1 o
9@ = 4% (@) + §g§ '(q) - 59& '(q).

. . dy,....dr
@ Most of the algebraic structure and the behavior of g,gll___ k. ) under the operator

qd% is well-understood.






Algebraic setup - Classical case

Denote by ) = Q(eg, e1) the noncommutative polynomial algebra of
indeterminates eg and €1 over Q.

o Define its subalgebras $° and ' by
=Q 14+eHepCH =Q-1+e1HCTH.

@ Setey = 616’8_1 fork > 1.
@ The monomials €, . .. €g,  form a basis of sl

@ The monomials €y, . . . e, with k. > 2 form a basis of Y.



Algebraic setup - Classical case - shuffle product

Shuffle product

Define the (Q-bilinear commutative product LLI on $) for a, b € {60, 61} and v, w € ) by

lWww=wwl=w,
av W bw = a(v W dbw) + b(av W w).

@ The space §) equipped with this product becomes a commutative Q—algebra which we
denote by $,,.

o Both $)! and $3° are closed under LU and by ﬁ&u and YJEU we denote the
corresponding subalgebras.



Algebraic setup - Classical case - harmonic product

Harmonic (stuffle) product

Define the Q-bilinear commutative product * on $* for k1, ko > 1 and v, w € H' by

lxw=wx1l=w,

€y U % €W = €p, (U % e, W) + ep, (ep, U * W) + gy 4k, (VW) .

@ The space f_)l equipped with this product becomes a commutative (Q-algebra which
we denote by ..

@ The subspace 5’)0 is also closed under * and by 5’)2 we denote the corresponding
subalgebra.
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Algebraic setup - Classical case - MZV as a map

o View ( as a Q-linear map from HY to Z C R which sends the monomials
€k, --- €, 10 C(k‘l, ey k‘r)..
o ( is an algebra homomorphism from both 53& and .62 to Z,ie. forw,v € H°
C(w W) =((w) ¢(v) = (w*v).
@ The map C can be extended to algebra homomorphisms
¢Minl, = 2

and
Cinl oz,

which are uniquely determined by ("' (e1) = (*(e1) = O and
¢*(w) = ¢*(w) = ((w) forw € H°.
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Algebraic setup - Classical case - Extended double shuffle relations

Define for words u, v € ' the element ds(u, v) € H' by
ds(u,v) =u*v—u W v.

It both u, v € H° we have ¢ (ds(u,v)) = 0.

But more generally we have the following Theorem, which conjecturally gives all linear
relations between multiple zeta values.

Theorem (Extended double shuffle relations)

Foru € H%andv € Hlitis

¢ (ds(u,v)) = ¢*(ds(u,v)) =0.



Algebraic setup - g-analogue case

. . . ) di,...,dr
@ Now we want to introduce a similar algebraic setup for our g-series g,(cll___ k. )(q).

@ For this consider the space .832 spanned by words in the double-indiced letters e,(cd)
withk > 1landd > 0, i.e. let

2
9 =Q(4)
be the noncommutative polynomial algebra of indeterminates
A= {eéd) |k >1,d>0}overQ

@ In the following we will define two products ¥ and [:] on H2.
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Algebraic setup - g-analogue case - "harmonic product analog"

Definition - The product & on H2
Forw,v € H2,d1,ds > 0andk, ko > ldefinel Bw = w @ 1 = w and

(dl)v 3 elgdz)w = e(dl)(v 3 e(dQ) )+ e(dZ)( (dl)v & w)

d d
+ ( 1; 2)6,&?1_11(22)(1)10)
1

(dl + d2> Z )\kl k2 §d1+d2 (’U U})
Jj=1

d d
( 2 2>Dkz e (W),

where the numbers )\i p € Qforl < j < a are defined by

: b—j—1\ Bays_;
iyt ) _Davey
Aap = (=) ( a—3j (a+b— )
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Algebraic setup - g-analogue case - "harmonic product"

Theorem

The space 5’)2 equipped with the product & becomes a commutative Q-algebra 5’).

For example we have

1
e B el = el +eel) el — el

egl) egz) = 651)652) + e§2) (1) + 36(3) 3€§3) .

()

Notice that up to the term — the first line looks exactly like the harmonic product
€ * €3 = ege3 + e3€2 + €5

inHL.



Algebraic setup - g-analogue case - "shuffle product"?

@ Recall: The product LLI on S’_')l was defined by writing €5, = €1 61571 and using the
shuffle product on Q{eq, €1).
@ For the second product [] on 532 we will use a different approach.

o We will define an involution P : $%2 — $32 and then set for u, v € $2

wEv = P(P(u)® P(v)).
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Algebraic setup - g-analogue case - The map P

Define the following element in $2[[ X1, ..., X, Y1,...,Y,]]

X17...7Xr . (dl) (d'r) ki1—1 kr—1 d d,
M(Yl,...,Yr> .:k Zk>1ek1 "'ekr Xll "'Xr 'Yll'--Y; .

diodr >0

Definition

Forki,...,k.>1,dy,...,d; > O0andw = e(dl) e ,e,(c'ir) define P(w) as the
coefficients of X{“*l .. Xf =1 Y1d1 .. .YTdT in

M YT’YT_1+}/"'7"'a}/1+"‘+YT
XT‘_XT—l,Xr_l _XT‘—27"'7X1 ’

Define the Q-linear map P : $? — $? by setting P(1) = 1 and extending the above
definition on monomials linearly to .62.

Notice that the map P is an involution on )2, i.e. P(P(w)) = w forallw € $H?.
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Algebraic setup - g-analogue case - The map P

For = 1 the definition reads

d - Yy d)v ki —1 yod
S Pt =) = 3 vt
k1>1
d120 d1>0

(di)y _ (k1—1)
and therefore P(e;. ") = ey ' 1.

Other examples are
P(e?)egl)) = ego)eéo) + Sego)eio) ,
P(e(ll)e?)) = ego)ego) + 2e§0)e§0) + 3650)64(10)

which can be obtained by calculation the coefficient of X XJY2Y3! (resp.

0yv0y1v2); Y2,Y1+Y2
XlX?Yl}/Q)mM(Xg—Xl,XI)'
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Algebraic setup - g-analogue case - "shuffle product”

Definition - The product ] on §)2

Define on $)2 the product [ for U,V € 2 by

uBv=P(P(u)® P(v)).

Theorem

The space 5’)2 equipped with the product [-] becomes a commutative Q-algebra S’JQE,.

That this product is commutative and associative which follows from the fact that P is an
involution together with the properties of (.
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Algebraic setup - g-analogue case - "shuffle product”

We have seen before that
( ) & 652) _ (1) ( ) 4 (2) (1) +36(3) _ 3653)7
P(ef)egl)) (0) ( ) 4 36(0) )
P(egl)ef)) = ego)eg]) + 2€§0)e§0) + 36(10)6510)

dy k1—1
and P(ef™) = {17

Example

(0)

The product € OF

Hes in $?2 is therefore given by

ey’ By’ = P(P(ef”) @ P(ey”)) = Ple @ el?)
P(eVel 1 P 4 30 _ 3.0y

(0) (O) 4F 36(0) (0) + 6650)64(10) + 36511) 36(0) .

Compare this to the shuffle product es LI e3 = egeq + 3eses + 6ejey on ﬁ&u-
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g-analogues

In analogy to ¢~ and {*, which are algebra homomorphism from jﬁh (resp. H1)to R, we
will now define a map

g: 95> — Q[lq]]

which will be an algebra homomorphism from both S’J and 5’)25 to Q[[q]]-
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g-analogues - the series g,(fl

Forki, ..., k. > 1,dy,...,d; > 0 we define the following g-series in Q[[¢]]

d ki1 Er—1
(dl,---,dr)( )= uy’ ugr . vty gVt
ryooler > G =Dl (b —1)!

0<uy <---<up
0<vy,...,0p

Byki +---+ Kk, +di + -+ d, we denote its weight and by 7 its depth.

. ) diyeendy) di,....dy,
Since ¢ will be fixed the whole time we will also write gkﬁu.,kr ) instead of gl(clf...,kr )(q).



g-analogues - the series g,(fl

Definition

Forki, ..., k. > 1,dy,...,d; > 0 we define the following g-series in Q[[¢]]

uh d, I B

(d1,---,dr) -1 Uy U1 U ULV + UV
k1,.. Jﬁ 0<u1;'<ur dll dr' (kl — 1) A (k'r — 1)'
0<vy,...,0p

Byki +---+ Kk, +di + -+ d, we denote its weight and by 7 its depth.

) (dh ,d )(

. . . . . . di,...,dr
Since ¢ will be fixed the whole time we will also write gkll‘ kr instead of g, q).
Example: In depth one we have

k—1

0) _ U1 .
9~ = Z (k_l)!qu“)l _1|Zak 1 )
0<uy n>0
0<vy

where o—1(n) = de dF-1,



g-analogues - the space §

For the (Q-vector space spanned by all of these @-series we write

dy,...,dr
g .= <g( 1 kr)|7'207k1""’k7”Zl7d1""’d7”ZO>Q7

kiyeees
di,od
where we set g,(ﬁl_“ kTT) = 1forr =0.
Inthecase d; = - - - = d,, = 0 we write
. (0,...,0)
Jka,eokr = gktl,...,lcr

and denote the subspace spanned by all of these by

GO =gy, ok |7 >0,k ke > 1), CG.
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g-analogues - the map g

We now consider the following Q—Iinear map from 5’)2 to G which we define on the
monomials by

g: 52 — gv
d dr di...dr
w = e,(cll) . ..eéT NN g(w) := g,(ﬂfv_ﬂkr )

Setg(1) = 1 and extend it linearly to §72.
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g-analogues - the map g

We have the following statements for the map g.

@ The map g is invariant under P, ie foralw € .62 itis

g(P(w)) = g(w) -

@ g is an algebra homorphism from H%t0 Q[[q]] with respect to both products [ and [,
i.e. we have for all u, v € H?

g(uBv) =g(u)-8(v) = guBv),

where - denotes the usual multiplication of formal g-series in Q[[¢]]

o In particular the space G = g($?) C Q[[q]] is an Q-algebra.



g-analogues - the map g

@ The invariance under the map P can be explained by interpreting the coefficients of the series

dy,...,d .
g,(ﬁlm kf) as a sum over partitions.

gw)=> | Y@ " =D | > fE) | " =9(Pw)).
n>0 ?:n n>0 ?:n

The action of PP on the coefficient correspond to conjugating (# — #) the partitions.
) . di,...,dy
o Forg(u) - g(v) = g(u B v) we use explicit formulas for the generating functions of g,(ﬁlm . ),

o Finally g(u I v) = g(u) - g(v) follows from the two statement above, since

g(uBv) = g(P(P(u) B P(v))) = g(P(u) 8 P(v)) = g(P(u)) - 6(P(v)) = g(u) - g(v) .
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g-analogues - Double shuffle relations

(di,...,dr)

The Theorem provides a large family of linear relations between the g-series Iky,. kT .
We have seen before that

650) e:()’O) = €éo)e§0) + 6(0) (0) + 6(0) 36 (0) 7
eéo) © eéo) = eéo)eéo) + Sego)ego) + 66(0) o 36( ) 36510)

and therefore we obtain the relation

0=g(e” mei”) — gl(e)” mei)

1
= g5 — 2923 — 6914 — 394(1 ) 4+ 394 — 298

as an analogue of 0 = ((5) — 2{(2,3) — 6¢(1,4).
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g-analogues - Subalgebra g(m

$H' and $H° have a natural embedding in $32, by sending a monomial €ky - --Ck, tO

eg‘z) o 653). We view both ) and $° as subspaces of $)2, i.e.

f'cHtchH.

Proposition

The spaces S’_')l and ,530 are closed under (¥ and therefore we also have for u, v € 531 (resp.
$9) that
g(u) - g(v) = g(uB@v).

In particular the space G(9) is a subalgebra of G.

Notice that the analogue statement for the product [] is false, since ea [] e3 ¢ ,61.
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g-analogues - Connection to MZV

Define for k € N the map Z; : Q[[¢]] = R U {oo} by

Zi(f) = lim (1 — ¢)* f(q) .

q—1

Proposition
ltky, —dr > 2andk; —d; > 1forj =1,...,7 — 1, then

duserrdy 1
Lkt (gl(mf...,k:r )) = m@(kl —dy,... .k —dy).

In particular for k. > 2 we have

_ ((k17"‘7kr)7 kl++k7‘:k,
Zy, (gk1,...,kr) —{ 0, ki4+-+ k. <k.
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g-analogues - g

We will now introduce the second g-series g“", which appear in the Fourier expansion of
Multiple Eisenstein series. For this we need the following series:

Definition
Define for 1, ..., n, > 1 the series
ni 2
d d
H(nl? N ’n’"> - Z @ 4 ...edrar _ar )
Ti,...,T 1 —qd 1 — qdr
llpoeopiir 0<dy <-++<d, q q

Notice that this series "satisfies" the harmonic product formula. For example:

H(m) .H<ﬂ2> _ H<n17n2> —|—H<n2’nl) +H<Tl1 —|—n2> .
T T2 T1,T2 T2, 21 1+ X2
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g-analogues - g

o Forky,..., k. > 1define the g-series gi.! ;. (q) € Q[[g]] as the coefficients of the
following generating function:

g (1, ... ) = Z g,:"l'w7kr(q)x1f171...x’ﬁr_l
Kiyeorkip>1

T . . .
::Z Z : 1 : H( 11,225+ 5Um )
L T, ST,

: — Tr—iy s Tr—iy — Lr—ij—igs - -
m=141+-+iym=r 1 1 172
117--<7im21

Again we also write g/ ;. instead of - 1 (q).

o Define the Q-linear map g~ from ' to Q[[g]] on the monomials by

g o' — Qllal],
W =€y ...Ck. —> gm(w) = gzléul,...,kr

and set g*'(1) = 1.
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g-analogues - g

o Forallky,... k. >1we haveg,'ji.._,kT €g.
@ Inthecasesky,..., k.1 >2 k. >1 itisg,';"l'w__’kr = Gky,...k, € GO,

e The map g™ is an algebra homomorphism from ﬁ&u toG.



g-analogues - g

o Forallky,... k. > 1wehavegy, , €G.
@ Inthecasesky,..., k.1 >2 k. >1 itisylgll,...,kr = Gky,...k, € GO,

e The map g™ is an algebra homomorphism from ﬁ&u toG.

Proof ideas:
@ The first two statements follow again by using explicit expressions for the generating
. . dy,...,d,)
functions of the g-series g;,, ok
@ The third statement uses results (Exponentialmap) by Hoffman on quasi-shuffle
products to turn the "harmonic" product of H into the "shuffle" product.

We then use the general case of the following fact

gu_l(e/ﬁ) : gu_l(e/%) = gm (ek1 L ek2)

!

gl (1) - g8 (w2) = gby (w1, 22) + gy (w2, 21)

wheregﬂ_l(xl,...,ajr) =gu(r1, 21+ 22, ... 21 + -+ 2,).
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g-analogues - g

There are explicit formulas to write gIJJ in terms of g.

Proposition

@ Indepthtwoitis

1/ @
Tr ks = Tha ko T Oky 1+ 3 (91(62) - gkz)
@ And in depth three it is
w L/ 10
Ik ko ks = her ko sks + Ok 1 - 3 (ka,kg - gkz,ke,)
1/ 01 1,0
+ 576271 ’ 5 (glcl,k)g, - glgl,kl - gkl,k3>

1 1 1
+ Ok kp 1 - (gg;(cg) - 19;(63) 4= 69;:3) :
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Derivatives of g

We will now focus on the action of the operator d = qdiq.

Proposition

Forki,..., k. > 1,dy,...,d, > 0 wehave

.
di,....dy (d,...,dj+1,....dy)
dgl(clf...,kr )= Z(df + 1) ki gk ke
j=1

In particular the space G is closed under d.
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Derivatives of g

We will now focus on the action of the operator d = qdiq.

Proposition
Forki,..., k. > 1,dy,...,d, > 0 wehave

r
(dl,...,dr) _ . . (dl,...,dj-‘rl,‘.”dr)
dgi i) =D (di+ 1) kg
Jj=1
In particular the space G is closed under d.
Proof: This is an easy consequence of the definition

dy d, ki—1 k,.—1

(dlw";dr) R Z ul Uy . Ul ce Ul . qu1v1+~~-+urvr
kiyeokr 0 17 d) —1)! — 1)
e, T (R =) (ke — 1)!
0<v1,...,0p
together with

dZanq":Zn'anq”.

n>0 n>0
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Derivatives of g

Even though it is

_ 4,00 _ (1,0 (0,1)
d gk, ks = dgkl,kg = klgk1+17k2 + k29k171€2+1 )

we have the following result:

Theorem

The subalgebra G(°) C G is closed under the operator d = qd%.

The proof uses double shuffle relations for the functions g to show that (for example)

(1,0) (0,1) 0
klgkrl-l,kz + kzgkl,k2+1 € g( )



Derivatives of g

Even though it is

_ 3,00 _ 5 (1,0 (0,1)
Agri ke = dgp, , = k198,570 8, + K298, k15

we have the following result:

Theorem

The subalgebra G(°) C G is closed under the operator d = qd%.

The proof uses double shuffle relations for the functions g to show that (for example)

(1,0) (0,1) 0
klgk1+1,k2 + kzgkl,k2+1 € g( )

More generally we expect the following strong statement:

Conjecture

tis GO = g.




Derivatives of g™

Define for k > 1
g%_‘k = <91|;L1|7,,,’kr S g | kl + - +k7‘ S k>Qa
We expect that d g?k C Q?HQ, but so far we only know the following:

Theorem

Fork > 1andd = qd% we have
1 k+1
E dgléu = (k + l)glél_l+2 - 2(271 - 2)glbu+2fn,n .

n=2
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Multiple Eisenstein series <-> g

For the space spanned by all multiple Eisenstein series we write

gk:< ﬁ,...,kr |]€:k‘1++kr,k1,,k‘r21>(@

Expectation (Rough statement)

We expect that the map F’, given by

L
F:.& — ggk/g%k—l
L L
Ghyrobr 7 Gy ke,

is an isomorphism of (Q-algebras, which respects the action of d.

Good thing: It is easy to obtain results in the space g%'lk /gi—']ﬁl !
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Derivatives of g""' modulo lower weight - Depth 1

Proposition

For k > 1 we have

dgi’ = k- gy =2k - g*(ds(er, ex+1)) wod Gy
Proof: Notice that

1
gl‘fhkz = Gk1,ko =+ 6/6171 : igliz) mod g;-lkl-i-kg—l

and

L L L
Ity ko = k1 " ko = Gk ko T ko ky T Gk1+ko mod g§k1+k2—l :
With this we can "measure" the failure of the double shuffle relations for the series g
L L
m(ds(ekwekz)) =9 (ekl * €k2) -9 (ekl L ekQ)
L L L L L
= gk1,k2 + Ik k1 + k1 +ks — k1 " Ik
1 (1) w
= *51617191@2 + 55162,19191 mod Gy, 4k, -1
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Derivatives of g""' modulo lower weight - Depth 1

The analogue statement of

dgi = k- g}, = 2k g% (ds(er, ex11)) mod G2,

is also known for Eisenstein series:

Theorem (Kaneko)

For k > 1, the derivative of the Eisenstein series G;“ can be written as

(27Ti)2 d(;uJ = Glil_’lk+1 + G%{Fl,l + G%{FQ — G%{Fl . GIfJ
=2k - G (ds(e1, ery1)),

where in the last line we (by abuse of notation) interpret the multiple Eisenstein series as a map

GY : 9 — Cl[q])-
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Derivatives of g""' modulo lower weight - Depth 2

Lemma

Forky, ko, ks > 1 andk = k1 + ko + ks we have

1 0.1 1/ 01 1,0
g (ds(er,, erqery)) = 6k1,1§gl(c2,k)3 + 0k 15 (91(62,121 - 9122,131)
1 1
+ Oky k1 ggz(c? + Oy ks, 1 591(621) mod Gy -

For k1, ko > 2 we have
dgg, 5, = 2k1 (87 (ds(e1, exy+1€k,)) — 87 (ds(er,, ek, +1€1)))
+ 2k - g (ds(e1, ek, €xy+1)) mod Gy, 4 x,11
Proof: Use the lemma together with

1,0 0,1)
dglﬁ,kg =d gk, ks = klgl(cl+)1,k2 + k291(cl,k2+1 .
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Derivatives of g-analogues

We also have a similar result for d g,'ji1 ko ks which leads to the following:

For k1, ko, k3 > 2 the derivative of the Double and Triple Eisenstein series are given by

(_27”.)2 d Gk17k2 = 2k, (GLU (ds(elv ek1+1e’€2)) -G (ds(ekz ) ek1+161)>)
+2ko - G (ds(e1, e, €rpt1)) s

(—270)2 A Gy iy ks = 2k1 - G (ds(e1, €ny 41€hy€k; ) + dS(€ky, ChyChy11€1))
+2k; - G (ds(eky, €k, +1+k2€1) — ds(ex, +1€1, €xyChs))
+2ko - G (ds(e1, ek, €xyt1€ks) — AS(€ks, €ky €y +1€1))
+2ks - G (ds(e1, ek, €ky€hst1))

Example:

AGYYy = 8GY | — 4Gy 5 + 4G5 5 + 4G, | — 4GS, 5 — 4G5,
FAGY, + 4Gy + 4G, — 4GE, .
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