The double shuffle structure of certain q-analogues of multiple zeta values and their connections to modular forms

Henrik Bachmann

Nagoya University

Various Aspects of Multiple Zeta Values RIMS, 11th July 2016

Slides are available here: www.henrikbachmann.com

	\mathbb{R} Numbers	$\mathcal{O}(\mathbb{H})$ hol. functions	$\mathbb{Q}[[q]]$ q-series
Classical	$\zeta(k)$	$G_k(au)$	$\sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$
Multiple	$\zeta(k_1,\ldots,k_r)$ $\zeta^{\sqcup\sqcup}(k_1,\ldots,k_r)$	$G_{k_1,\ldots,k_r}(\tau)$ $G^{\sqcup}_{k_1,\ldots,k_r}(\tau)$	$g_{k_1,\ldots,k_r}^{(d_1,\ldots,d_r)}(q)$ $g_{k_1,\ldots,k_r}^{\sqcup}(q)$
alg. Setup	$\mathfrak{H}^0 \mathfrak{H}^1$	\mathfrak{H}^0 \mathfrak{H}^1	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Multiple zeta values

Definition

For $k_1,\ldots,k_{r-1}\geq 1, k_r\geq 2$ define the multiple zeta value by

$$\zeta(k_1, \dots, k_r) = \sum_{0 < m_1 < \dots < m_r} \frac{1}{m_1^{k_1} \cdots m_r^{k_r}}.$$

By r we denote its depth and $k_1+\cdots+k_r$ will be called its weight. For the \mathbb{Q} -vector space spanned by all multiple zeta values we write \mathcal{Z} .

 The product of two MZV can be expressed as a linear combination of MZV with the same weight (harmonic product). e.g:

$$\zeta(k_1) \cdot \zeta(k_2) = \zeta(k_1, k_2) + \zeta(k_2, k_1) + \zeta(k_1 + k_2).$$

- MZV can be expressed as iterated integrals. This gives another way (shuffle product) to express the product of two MZV as a linear combination of MZV.
- These two products give a number of Q-relations (double shuffle relations) between MZV.

Multiple zeta values - Example for the double shuffle relations

Example:

$$\begin{split} \zeta(3,2) + 3\zeta(2,3) + 6\zeta(1,4) &\stackrel{\text{shuffle}}{=} \zeta(2) \cdot \zeta(3) \stackrel{\text{harmonic}}{=} \zeta(2,3) + \zeta(3,2) + \zeta(5) \,. \\ &\Longrightarrow 2\zeta(2,3) + 6\zeta(1,4) \stackrel{\text{double shuffle}}{=} \zeta(5) \,. \end{split}$$

But there are more relations between MZV. e.g.:

$$\zeta(1,2) = \zeta(3).$$

These follow from the extended double shuffle relations.

Multiple Eisenstein series

- There are several connections of multiple zeta values to modular forms.
- One of them is given by multiple Eisenstein series $G_{k_1,\ldots,k_r}^{\sqcup}(\tau)$. In depth 1 these are the classical Eisenstein series

$$G_k^{\sqcup}(\tau) = \zeta(k) + \frac{(-2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \qquad (q = e^{2\pi i \tau}),$$

which are modular forms for even k>2. $\left(\sigma_{k-1}(n)=\sum_{d\mid n}d^{k-1}\right)$.

These functions satisfy some of the double shuffle relations. For example it is

$$2G^{\sqcup}_{2,3}(\tau) + 6G^{\sqcup}_{1,4}(\tau) = G^{\sqcup}_{5}(\tau) \,,$$

but

$$G_3^{\sqcup}(\tau) - G_{1,2}^{\sqcup}(\tau) = -\pi i \frac{d}{d\tau} G_1^{\sqcup}(\tau) \neq 0.$$

There are a lot of open questions regarding multiple Eisenstein series.

Plan

Question

Is the space spanned by all multiple Eisenstein series closed under $\frac{d}{d au}=(2\pi i)q\frac{d}{dq}$?

• The multiple Eisenstein series $G^{\sqcup}_{k_1,\ldots,k_r}(\tau)$ can be written as a $\mathcal{Z}[2\pi i]$ -linear combination of certain q-series $g^{\sqcup}_{k_1,\ldots,k_r}(q)\in\mathbb{Q}[[q]]$. $(\lambda=2\pi i)$

$$G_{2,3}^{\sqcup}(\tau) = \zeta(2,3) + 3\zeta(3)\lambda^2 g_2^{\sqcup}(q) + 2\zeta(2)\lambda^3 g_3^{\sqcup}(q) + \lambda^5 g_{2,3}^{\sqcup}(q) \,.$$

 $\bullet \ \ \text{ The q-series $g^{\sqcup}_{k_1,\ldots,k_r}(q)$ can be written in terms of other q-series $g^{(d_1,\ldots,d_r)}_{k_1,\ldots,k_r}(q)$.}$

$$g_{1,2}^{\sqcup}(q) = g_{1,2}^{(0,0)}(q) + \frac{1}{2}g_2^{(1)}(q) - \frac{1}{2}g_2^{(0)}(q).$$

• Most of the algebraic structure and the behavior of $g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}$ under the operator $q\frac{d}{dq}$ is well-understood.

Algebraic setup - Classical case

- Denote by $\mathfrak{H}=\mathbb{Q}\langle e_0,e_1\rangle$ the noncommutative polynomial algebra of indeterminates e_0 and e_1 over \mathbb{Q} .
- $\bullet~$ Define its subalgebras \mathfrak{H}^0 and \mathfrak{H}^1 by

$$\mathfrak{H}^0 = \mathbb{Q} \cdot 1 + e_1 \mathfrak{H} e_0 \subset \mathfrak{H}^1 = \mathbb{Q} \cdot 1 + e_1 \mathfrak{H} \subset \mathfrak{H}.$$

- $\bullet \ \ \mathrm{Set} \, e_k = e_1 e_0^{k-1} \ \mathrm{for} \, k \geq 1.$
- The monomials $e_{k_1} \dots e_{k_r}$ form a basis of \mathfrak{H}^1 .
- ullet The monomials $e_{k_1}\dots e_{k_r}$ with $k_r\geq 2$ form a basis of \mathfrak{H}^0 .

Algebraic setup - Classical case - shuffle product

Shuffle product

Define the $\mathbb Q$ -bilinear commutative product \coprod on $\mathfrak H$ for $a,b\in\{e_0,e_1\}$ and $v,w\in\mathfrak H$ by

- \bullet The space $\mathfrak H$ equipped with this product becomes a commutative $\mathbb Q$ -algebra which we denote by $\mathfrak H_{\sqcup \! \sqcup}.$
- Both \mathfrak{H}^1 and \mathfrak{H}^0 are closed under \sqcup and by \mathfrak{H}^1_{\sqcup} and \mathfrak{H}^0_{\sqcup} we denote the corresponding subalgebras.

Algebraic setup - Classical case - harmonic product

Harmonic (stuffle) product

Define the $\mathbb Q$ -bilinear commutative product * on $\mathfrak H^1$ for $k_1,k_2\geq 1$ and $v,w\in \mathfrak H^1$ by

$$\begin{split} 1*w &= w*1 = w\,,\\ e_{k_1}v*e_{k_2}w &= e_{k_1}(v*e_{k_2}w) + e_{k_2}(e_{k_1}v*w) + e_{k_1+k_2}(v*w)\,. \end{split}$$

- \bullet The space \mathfrak{H}^1 equipped with this product becomes a commutative \mathbb{Q} -algebra which we denote by \mathfrak{H}_* .
- \bullet The subspace \mathfrak{H}^0 is also closed under * and by \mathfrak{H}^0_* we denote the corresponding subalgebra.

Algebraic setup - Classical case - MZV as a map

- View ζ as a $\mathbb Q$ -linear map from $\mathfrak H^0$ to $\mathcal Z\subset\mathbb R$ which sends the monomials $e_{k_1}\dots e_{k_r}$ to $\zeta(k_1,\dots,k_r)$..
- ζ is an algebra homomorphism from both $\mathfrak{H}^0_{\sqcup \!\sqcup}$ and \mathfrak{H}^0_* to \mathcal{Z} , i.e. for $w,v\in\mathfrak{H}^0$

$$\zeta(w \sqcup v) = \zeta(w) \cdot \zeta(v) = \zeta(w * v).$$

 $\bullet~$ The map ζ can be extended to algebra homomorphisms

$$\zeta^{\sqcup\!\sqcup}:\mathfrak{H}^1_{\sqcup\!\sqcup} o\mathcal{Z}$$

and

$$\zeta^*:\mathfrak{H}^1_* o\mathcal{Z}$$
,

which are uniquely determined by $\zeta^{\sqcup}(e_1)=\zeta^*(e_1)=0$ and $\zeta^{\sqcup}(w)=\zeta^*(w)=\zeta(w)$ for $w\in\mathfrak{H}^0$.

Algebraic setup - Classical case - Extended double shuffle relations

Define for words $u,v\in \mathfrak{H}^1$ the element $\mathrm{ds}(u,v)\in \mathfrak{H}^1$ by

$$ds(u, v) = u * v - u \coprod v.$$

If both $u, v \in \mathfrak{H}^0$ we have $\zeta(\mathrm{ds}(u, v)) = 0$.

But more generally we have the following Theorem, which conjecturally gives all linear relations between multiple zeta values.

Theorem (Extended double shuffle relations)

For $u\in \mathfrak{H}^0$ and $v\in \mathfrak{H}^1$ it is

$$\zeta^{\sqcup}(\mathrm{ds}(u,v)) = \zeta^*(\mathrm{ds}(u,v)) = 0.$$

Algebraic setup - q-analogue case

- Now we want to introduce a similar algebraic setup for our q-series $g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}(q)$.
- For this consider the space \mathfrak{H}^2 spanned by words in the double-indiced letters $e_k^{(d)}$ with $k\geq 1$ and $d\geq 0$, i.e. let

$$\mathfrak{H}^2 = \mathbb{Q}\langle A \rangle$$

be the noncommutative polynomial algebra of indeterminates

$$A = \{e_k^{(d)} \mid k \geq 1 \,, d \geq 0\} \text{ over } \mathbb{Q}$$

• In the following we will define two products ${\Bbb R}$ and ${f \cdot}$ on ${rak H}^2$.

Algebraic setup - q-analogue case - "harmonic product analog" ${\Bbb E}$

Definition - The product ${\mathbb R}$ on ${\mathfrak H}^2$

For $w,v\in\mathfrak{H}^2$, $d_1,d_2\geq 0$ and $k_1,k_2\geq 1$ define $1\boxtimes w=w\boxtimes 1=w$ and

$$\begin{split} e_{k_1}^{(d_1)}v & \boxtimes e_{k_2}^{(d_2)}w = e_{k_1}^{(d_1)}(v \boxtimes e_{k_2}^{(d_2)}w) + e_{k_2}^{(d_2)}(e_{k_1}^{(d_1)}v \boxtimes w) \\ & + \binom{d_1+d_2}{d_1}e_{k_1+k_2}^{(d_1+d_2)}(v \boxtimes w) \\ & + \binom{d_1+d_2}{d_1}\sum_{j=1}^{k_1}\lambda_{k_1,k_2}^je_j^{(d_1+d_2)}(v \boxtimes w) \\ & + \binom{d_1+d_2}{d_1}\sum_{j=1}^{k_2}\lambda_{k_2,k_1}^je_j^{(d_1+d_2)}(v \boxtimes w) \,, \end{split}$$

where the numbers $\lambda_{a,b}^j \in \mathbb{Q}$ for $1 \leq j \leq a$ are defined by

$$\lambda_{a,b}^j := (-1)^{b-1} \binom{a+b-j-1}{a-j} \frac{B_{a+b-j}}{(a+b-j)!}.$$

Algebraic setup - q-analogue case - "harmonic product"

Theorem

The space \mathfrak{H}^2 equipped with the product ${\mathbb R}$ becomes a commutative ${\mathbb Q}$ -algebra $\mathfrak{H}^2_{\mathbb R}$.

For example we have

$$\begin{split} e_2^{(0)} & \, \boxtimes e_3^{(0)} = e_2^{(0)} e_3^{(0)} + e_3^{(0)} e_2^{(0)} + e_5^{(0)} - \frac{1}{12} e_3^{(0)} \,, \\ e_1^{(1)} & \, \boxtimes e_1^{(2)} = e_1^{(1)} e_1^{(2)} + e_1^{(2)} e_1^{(1)} + 3 e_2^{(3)} - 3 e_1^{(3)} \,. \end{split}$$

Notice that up to the term $-\frac{1}{12}e_3^{(0)}$ the first line looks exactly like the harmonic product

$$e_2 * e_3 = e_2 e_3 + e_3 e_2 + e_5$$

in \mathfrak{H}^1_* .

Algebraic setup - q-analogue case - "shuffle product"?

- ullet Recall: The product oxdots on \mathfrak{H}^1 was defined by writing $e_k=e_1e_0^{k-1}$ and using the shuffle product on $\mathbb{Q}\langle e_0,e_1\rangle$.
- ullet For the second product oxdot on \mathfrak{H}^2 we will use a different approach.
- \bullet We will define an involution $P:\mathfrak{H}^2\to\mathfrak{H}^2$ and then set for $u,v\in\mathfrak{H}^2$

$$u \odot v = P(P(u) * P(v))$$
.

Algebraic setup - q-analogue case - The map P

Define the following element in $\mathfrak{H}^2[[X_1,\ldots,X_r,Y_1,\ldots,Y_r]]$

$$M\binom{X_1,\ldots,X_r}{Y_1,\ldots,Y_r} := \sum_{\substack{k_1,\ldots,k_r \geq 1\\d_1,\ldots,d_r \geq 0}} e_{k_1}^{(d_1)} \ldots e_{k_r}^{(d_r)} X_1^{k_1-1} \ldots X_r^{k_r-1} \cdot Y_1^{d_1} \ldots Y_r^{d_r}.$$

Definition

For $k_1,\ldots,k_r\geq 1,$ $d_1,\ldots,d_l\geq 0$ and $w=e_{k_1}^{(d_1)},\ldots,e_{k_r}^{(d_r)}$ define P(w) as the coefficients of $X_1^{k_1-1}\ldots X_r^{k_r-1}\cdot Y_1^{d_1}\ldots Y_r^{d_r}$ in

$$M\begin{pmatrix} Y_r, Y_{r-1} + Y_r, \dots, Y_1 + \dots + Y_r \\ X_r - X_{r-1}, X_{r-1} - X_{r-2}, \dots, X_1 \end{pmatrix}.$$

Define the $\mathbb Q$ -linear map $P:\mathfrak{H}^2\to\mathfrak{H}^2$ by setting P(1)=1 and extending the above definition on monomials linearly to \mathfrak{H}^2 .

Notice that the map P is an involution on \mathfrak{H}^2 , i.e. P(P(w))=w for all $w\in\mathfrak{H}^2$.

Algebraic setup - q-analogue case - The map P

For r=1 the definition reads

$$\sum_{\substack{k_1 \geq 1 \\ d_1 \geq 0}} P(e_{k_1}^{(d_1)}) X_1^{k_1-1} Y_1^{d_1} := M \binom{Y_1}{X_1} = \sum_{\substack{k_1 \geq 1 \\ d_1 \geq 0}} e_{k_1}^{(d_1)} Y_1^{k_1-1} X_1^{d_1}$$

and therefore $P(e_{k_1}^{(d_1)}) = e_{d_1+1}^{(k_1-1)}$.

Other examples are

$$\begin{split} &P(e_1^{(2)}e_1^{(1)}) = e_2^{(0)}e_3^{(0)} + 3e_1^{(0)}e_4^{(0)}\;,\\ &P(e_1^{(1)}e_1^{(2)}) = e_3^{(0)}e_2^{(0)} + 2e_2^{(0)}e_3^{(0)} + 3e_1^{(0)}e_4^{(0)} \end{split}$$

which can be obtained by calculation the coefficient of $X_1^0X_2^0Y_1^2Y_2^1$ (resp. $X_1^0X_2^0Y_1^1Y_2^2$) in $M\binom{Y_2,Y_1+Y_2}{X_2-X_1,X_1}$.

Algebraic setup - q-analogue case - "shuffle product"

Definition - The product \odot on \mathfrak{H}^2

Define on \mathfrak{H}^2 the product \boxdot for $u,v\in\mathfrak{H}^2$ by

$$u \odot v = P(P(u) \otimes P(v))$$
.

Theorem

The space \mathfrak{H}^2 equipped with the product \boxdot becomes a commutative \mathbb{Q} -algebra \mathfrak{H}^2_{\boxdot} .

That this product is commutative and associative which follows from the fact that P is an involution together with the properties of ${\Bbb Z}.$

Algebraic setup - q-analogue case - "shuffle product"

We have seen before that

$$\begin{split} e_1^{(1)} & \boxtimes e_1^{(2)} = e_1^{(1)} e_1^{(2)} + e_1^{(2)} e_1^{(1)} + 3 e_2^{(3)} - 3 e_1^{(3)} \,, \\ P(e_1^{(2)} e_1^{(1)}) &= e_2^{(0)} e_3^{(0)} + 3 e_1^{(0)} e_4^{(0)} \,, \\ P(e_1^{(1)} e_1^{(2)}) &= e_3^{(0)} e_2^{(0)} + 2 e_2^{(0)} e_3^{(0)} + 3 e_1^{(0)} e_4^{(0)} \end{split}$$

and
$$P(e_{k_1}^{(d_1)}) = e_{d_1+1}^{(k_1-1)}$$
.

Example

The product $e_2^{(0)} \odot e_3^{(0)}$ in \mathfrak{H}^2 is therefore given by

$$\begin{split} e_2^{(0)} \boxdot e_3^{(0)} &= P(P(e_2^{(0)}) \boxtimes P(e_3^{(0)})) = P(e_1^{(1)} \boxtimes e_1^{(2)}) \\ &= P(e_1^{(1)} e_1^{(2)} + e_1^{(2)} e_1^{(1)} + 3e_2^{(3)} - 3e_1^{(3)}) \\ &= e_3^{(0)} e_2^{(0)} + 3e_2^{(0)} e_3^{(0)} + 6e_1^{(0)} e_4^{(0)} + 3e_4^{(1)} - 3e_4^{(0)} \,. \end{split}$$

Compare this to the shuffle product $e_2 \ \sqcup \ e_3 = e_3e_2 + 3e_2e_3 + 6e_1e_4$ on $\mathfrak{H}^1_{\sqcup \sqcup}$

q-analogues

In analogy to ζ^{\sqcup} and ζ^* , which are algebra homomorphism from \mathfrak{H}^1_{\sqcup} (resp. \mathfrak{H}^1_*) to \mathbb{R} , we will now define a map

$$\mathfrak{g}:\mathfrak{H}^2\longrightarrow\mathbb{Q}[[q]]$$

which will be an algebra homomorphism from both $\mathfrak{H}^2_{\mathbb{B}}$ and $\mathfrak{H}^2_{\mathbb{D}}$ to $\mathbb{Q}[[q]]$.

q-analogues - the series $g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}$

Definition

For $k_1,\ldots,k_r\geq 1,d_1,\ldots,d_l\geq 0$ we define the following q-series in $\mathbb{Q}[[q]]$

$$g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}(q) := \sum_{\substack{0 \le u_1 < \dots < u_r \\ 0 \le v_1 \cdots v_r}} \frac{u_1^{d_1}}{d_1!} \cdots \frac{u_r^{d_r}}{d_r!} \cdot \frac{v_1^{k_1-1} \dots v_l^{k_r-1}}{(k_1-1)! \dots (k_r-1)!} \cdot q^{u_1v_1 + \dots + u_rv_r}.$$

By $k_1 + \cdots + k_r + d_1 + \cdots + d_r$ we denote its weight and by r its depth.

Since q will be fixed the whole time we will also write $g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}$ instead of $g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}(q)$.

q-analogues - the series $g_{k_1,...,k_r}^{(d_1,...,d_r)}$

Definition

For $k_1,\ldots,k_r\geq 1, d_1,\ldots,d_l\geq 0$ we define the following q-series in $\mathbb{Q}[[q]]$

$$g_{k_1,\ldots,k_r}^{(d_1,\ldots,d_r)}(q) := \sum_{\substack{0 < u_1 < \cdots < u_r \\ 0 < v_1 < \cdots < v_r}} \frac{u_1^{d_1}}{d_1!} \cdots \frac{u_r^{d_r}}{d_r!} \cdot \frac{v_1^{k_1-1} \ldots v_l^{k_r-1}}{(k_1-1)! \ldots (k_r-1)!} \cdot q^{u_1v_1 + \cdots + u_rv_r} \,.$$

By $k_1 + \cdots + k_r + d_1 + \cdots + d_r$ we denote its weight and by r its depth.

Since q will be fixed the whole time we will also write $g_{k_1,\ldots,k_r}^{(d_1,\ldots,d_r)}$ instead of $g_{k_1,\ldots,k_r}^{(d_1,\ldots,d_r)}(q)$.

Example: In depth one we have

$$g_k^{(0)} = \sum_{\substack{0 < u_1 \\ 0 \le v_2}} \frac{v_1^{k-1}}{(k-1)!} q^{u_1 v_1} = \frac{1}{(k-1)!} \sum_{n>0} \sigma_{k-1}(n) q^n,$$

where
$$\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$$
.

q-analogues - the space ${\mathcal G}$

For the $\mathbb Q$ -vector space spanned by all of these q-series we write

$$\mathcal{G} := \left\langle g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)} \mid r \ge 0, k_1,\dots,k_r \ge 1, d_1,\dots,d_r \ge 0 \right\rangle_{\mathbb{Q}},$$

where we set $g_{k_1,\ldots,k_r}^{(d_1,\ldots,d_r)}=1$ for r=0.

In the case $d_1 = \cdots = d_r = 0$ we write

$$g_{k_1,\dots,k_r} := g_{k_1,\dots,k_r}^{(0,\dots,0)}$$

and denote the subspace spanned by all of these by

$$\mathcal{G}^{(0)} := \langle g_{k_1,\dots,k_r} \mid r \geq 0, k_1,\dots,k_r \geq 1 \rangle_{\mathbb{Q}} \subset \mathcal{G}.$$

q-analogues - the map ${\mathfrak g}$

We now consider the following $\mathbb Q$ -linear map from $\mathfrak H^2$ to $\mathcal G$ which we define on the monomials by

$$\begin{split} \mathfrak{g}:\mathfrak{H}^2 &\longrightarrow \mathcal{G}\,,\\ w = e_{k_1}^{(d_1)} \dots e_{k_r}^{(d_r)} &\longmapsto \mathfrak{g}(w) := g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}\,. \end{split}$$

Set $\mathfrak{g}(1)=1$ and extend it linearly to \mathfrak{H}^2 .

q-analogues - the map ${\mathfrak g}$

Theorem

We have the following statements for the map \mathfrak{g} .

ullet The map ${\mathfrak g}$ is invariant under P, i.e. for all $w\in {\mathfrak H}^2$ it is

$$\mathfrak{g}(P(w)) = \mathfrak{g}(w).$$

• $\mathfrak g$ is an algebra homorphism from $\mathfrak H^2$ to $\mathbb Q[[q]]$ with respect to both products $\mathbb R$ and oxdot, i.e. we have for all $u,v\in\mathfrak H^2$

$$\mathfrak{g}(u \odot v) = \mathfrak{g}(u) \cdot \mathfrak{g}(v) = \mathfrak{g}(u \otimes v),$$

where \cdot denotes the usual multiplication of formal q-series in $\mathbb{Q}[[q]]$

ullet In particular the space $\mathcal{G}=\mathfrak{g}(\mathfrak{H}^2)\subset \mathbb{Q}[[q]]$ is an \mathbb{Q} -algebra.

q-analogues - the map ${\mathfrak g}$

• The invariance under the map P can be explained by interpreting the coefficients of the series $g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}$ as a sum over partitions.

$$\mathfrak{g}(w) = \sum_{n>0} \left(\sum_{\mathbb{F}=n} f(\mathbb{F}) \right) q^n = \sum_{n>0} \left(\sum_{\mathbb{F}=n} f(\mathbb{F}) \right) q^n = \mathfrak{g}(P(w)) \,.$$

The action of P on the coefficient correspond to conjugating ($\mathbb{F} \to \mathbb{F}$) the partitions.

- $\bullet \ \, \text{For}\, \mathfrak{g}(u) \cdot \mathfrak{g}(v) = \mathfrak{g}(u \, \boxtimes \, v) \, \text{we use explicit formulas for the generating functions of} \, g_{k_1,\ldots,k_r}^{(d_1,\ldots,d_r)}.$
- \bullet Finally $\mathfrak{g}(u\boxdot v)=\mathfrak{g}(u)\cdot\mathfrak{g}(v)$ follows from the two statement above, since

$$\mathfrak{g}(u\boxdot v)=\mathfrak{g}(P(P(u)\boxtimes P(v)))=\mathfrak{g}(P(u)\boxtimes P(v))=\mathfrak{g}(P(u))\cdot\mathfrak{g}(P(v))=\mathfrak{g}(u)\cdot\mathfrak{g}(v)\,.$$

q-analogues - Double shuffle relations

The Theorem provides a large family of linear relations between the q-series $g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)}$. We have seen before that

$$\begin{split} e_2^{(0)} & \boxtimes e_3^{(0)} = e_2^{(0)} e_3^{(0)} + e_3^{(0)} e_2^{(0)} + e_5^{(0)} - \frac{1}{12} e_3^{(0)} \,, \\ e_2^{(0)} & \boxdot e_3^{(0)} = e_3^{(0)} e_2^{(0)} + 3 e_2^{(0)} e_3^{(0)} + 6 e_1^{(0)} e_4^{(0)} + 3 e_4^{(1)} - 3 e_4^{(0)} \end{split}$$

and therefore we obtain the relation

$$0 = \mathfrak{g}(e_2^{(0)} \otimes e_3^{(0)}) - \mathfrak{g}(e_2^{(0)} \odot e_3^{(0)})$$

= $g_5 - 2g_{2,3} - 6g_{1,4} - 3g_4^{(1)} + 3g_4 - \frac{1}{12}g_3$.

as an analogue of $0=\zeta(5)-2\zeta(2,3)-6\zeta(1,4)$.

q-analogues - Subalgebra $\mathcal{G}^{(0)}$

 \mathfrak{H}^1 and \mathfrak{H}^0 have a natural embedding in \mathfrak{H}^2 , by sending a monomial $e_{k_1}\dots e_{k_r}$ to $e_{k_1}^{(0)}\dots e_{k_r}^{(0)}$. We view both \mathfrak{H}^1 and \mathfrak{H}^0 as subspaces of \mathfrak{H}^2 , i.e.

$$\mathfrak{H}^0 \subset \mathfrak{H}^1 \subset \mathfrak{H}^2$$
.

Proposition

The spaces \mathfrak{H}^1 and \mathfrak{H}^0 are closed under $\mathbb R$ and therefore we also have for $u,v\in\mathfrak{H}^1$ (resp. \mathfrak{H}^0) that

$$\mathfrak{g}(u) \cdot \mathfrak{g}(v) = \mathfrak{g}(u \otimes v)$$
.

In particular the space $\mathcal{G}^{(0)}$ is a subalgebra of \mathcal{G} .

Notice that the analogue statement for the product \odot is false, since $e_2 \odot e_3 \notin \mathfrak{H}^1$.

q-analogues - Connection to MZV

Define for $k \in \mathbb{N}$ the map $Z_k : \mathbb{Q}[[q]] o \mathbb{R} \cup \{\infty\}$ by

$$Z_k(f) = \lim_{q \to 1} (1 - q)^k f(q).$$

Proposition

If $k_r-d_r\geq 2$ and $k_j-d_j\geq 1$ for $j=1,\ldots,r-1$, then

$$Z_{k_1+\cdots+k_r}\left(g_{k_1,\ldots,k_r}^{(d_1,\ldots,d_r)}\right) = \frac{1}{d_1!\ldots d_r!}\zeta(k_1-d_1,\ldots,k_r-d_r).$$

In particular for $k_r \geq 2$ we have

$$Z_{k}(g_{k_{1},...,k_{r}}) = \begin{cases} \zeta(k_{1},...,k_{r}), & k_{1} + \cdots + k_{r} = k, \\ 0, & k_{1} + \cdots + k_{r} < k. \end{cases}$$

We will now introduce the second q-series $g^{\sqcup \sqcup}$, which appear in the Fourier expansion of Multiple Eisenstein series. For this we need the following series:

Definition

Define for $n_1, \ldots, n_r \geq 1$ the series

$$H\binom{n_1, \dots, n_r}{x_1, \dots, x_r} = \sum_{0 < d_1 < \dots < d_r} e^{d_1 x_1} \left(\frac{q^{d_1}}{1 - q^{d_1}} \right)^{n_1} \dots e^{d_r x_r} \left(\frac{q^{d_r}}{1 - q^{d_r}} \right)^{n_r}.$$

Notice that this series "satisfies" the harmonic product formula. For example:

$$H\binom{n_1}{x_1} \cdot H\binom{n_2}{x_2} = H\binom{n_1,n_2}{x_1,x_2} + H\binom{n_2,n_1}{x_2,x_1} + H\binom{n_1+n_2}{x_1+x_2} \,.$$

Definition

• For $k_1,\ldots,k_r\geq 1$ define the q-series $g^{\sqcup}_{k_1,\ldots,k_r}(q)\in\mathbb{Q}[[q]]$ as the coefficients of the following generating function:

$$g_{\sqcup}(x_1,\ldots,x_r) = \sum_{k_1,\ldots,k_r \ge 1} g_{k_1,\ldots,k_r}^{\sqcup}(q) x_1^{k_1-1} \ldots x_r^{k_r-1}$$

$$:= \sum_{m=1}^r \sum_{\substack{i_1+\cdots+i_m=r\\i_1,\ldots,i_m \ge 1}} \frac{1}{i_1!\ldots i_m!} H\binom{i_1,i_2,\ldots,i_m}{x_r-x_{r-i_1},x_{r-i_1}-x_{r-i_1-i_2},\ldots,x_{i_m}}$$

Again we also write $g_{k_1,\ldots,k_r}^{\sqcup}$ instead of $g_{k_1,\ldots,k_r}^{\sqcup}(q)$.

ullet Define the ${\mathbb Q}$ -linear map ${\mathfrak g}^{\sqcup}$ from ${\mathfrak H}^1$ to ${\mathbb Q}[[q]]$ on the monomials by

$$\mathfrak{g}^{\sqcup}:\mathfrak{H}^1\longrightarrow\mathbb{Q}[[q]],$$
 $w=e_{k_1}\dots e_{k_r}\longmapsto\mathfrak{g}^{\sqcup}(w):=g_{k_1,\dots,k_r}^{\sqcup}$

and set $\mathfrak{g}^{\sqcup}(1)=1$.

Theorem

- ullet For all $k_1,\ldots,k_r\geq 1$ we have $g_{k_1,\ldots,k_r}^{\sqcup}\in \mathcal{G}.$
- In the cases $k_1,\ldots,k_{r-1}\geq 2$, $k_r\geq 1$ it is $g_{k_1,\ldots,k_r}^{\sqcup \sqcup}=g_{k_1,\ldots,k_r}\in \mathcal{G}^{(0)}$.
- The map $\mathfrak{g}^{\sqcup \sqcup}$ is an algebra homomorphism from $\mathfrak{H}^1_{\sqcup \sqcup}$ to $\mathcal{G}.$

Theorem

- ullet For all $k_1,\ldots,k_r\geq 1$ we have $g_{k_1,\ldots,k_r}^{\sqcup\sqcup}\in\mathcal{G}$.
- In the cases $k_1,\ldots,k_{r-1}\geq 2$, $k_r\geq 1$ it is $g_{k_1,\ldots,k_r}^{\sqcup}=g_{k_1,\ldots,k_r}\in\mathcal{G}^{(0)}$.
- The map \mathfrak{g}^{\sqcup} is an algebra homomorphism from $\mathfrak{H}^1_{\sqcup\sqcup}$ to \mathcal{G} .

Proof ideas:

- The first two statements follow again by using explicit expressions for the generating functions of the q-series $g_{k_1,\ldots,k_r}^{(d_1,\ldots,d_r)}$.
- ullet The third statement uses results (Exponentialmap) by Hoffman on quasi-shuffle products to turn the "harmonic" product of H into the "shuffle" product. We then use the general case of the following fact

$$\begin{split} \mathfrak{g}^{\coprod}(e_{k_1}) \cdot \mathfrak{g}^{\coprod}(e_{k_2}) &= \mathfrak{g}^{\coprod}(e_{k_1} \coprod e_{k_2}) \\ \iff \\ g^{\sharp}_{\coprod}(x_1) \cdot g^{\sharp}_{\coprod}(x_2) &= g^{\sharp}_{\coprod}(x_1, x_2) + g^{\sharp}_{\coprod}(x_2, x_1) \,, \end{split}$$

where
$$g^\sharp_{\sqcup}(x_1,\ldots,x_r)=g_{\sqcup}(x_1,x_1+x_2,\ldots,x_1+\cdots+x_r)$$
.

There are explicit formulas to write $g^{\sqcup\sqcup}$ in terms of g.

Proposition

In depth two it is

$$g_{k_1,k_2}^{\coprod} = g_{k_1,k_2} + \delta_{k_1,1} \cdot \frac{1}{2} \left(g_{k_2}^{(1)} - g_{k_2} \right)$$

And in depth three it is

$$g_{k_1,k_2,k_3}^{\sqcup} = g_{k_1,k_2,k_3} + \delta_{k_1,1} \cdot \frac{1}{2} \left(g_{k_2,k_3}^{(1,0)} - g_{k_2,k_3} \right)$$

$$+ \delta_{k_2,1} \cdot \frac{1}{2} \left(g_{k_1,k_3}^{(0,1)} - g_{k_1,k_3}^{(1,0)} - g_{k_1,k_3} \right)$$

$$+ \delta_{k_1 \cdot k_2,1} \cdot \left(\frac{1}{6} g_{k_3}^{(2)} - \frac{1}{4} g_{k_3}^{(1)} + \frac{1}{6} g_{k_3} \right).$$

We will now focus on the action of the operator $\mathbf{d}=q\frac{d}{dq}.$

Proposition

For $k_1, \ldots, k_r \geq 1, d_1, \ldots, d_r \geq 0$ we have

$$d g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)} = \sum_{j=1}^r (d_j+1) \cdot k_j \cdot g_{k_1,\dots,k_j+1,\dots,k_r}^{(d_1,\dots,d_j+1,\dots,d_r)}.$$

In particular the space $\ensuremath{\mathcal{G}}$ is closed under d.

We will now focus on the action of the operator $d=q\frac{d}{dq}$.

Proposition

For $k_1, \ldots, k_r \geq 1, d_1, \ldots, d_r \geq 0$ we have

$$d g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)} = \sum_{j=1}^r (d_j+1) \cdot k_j \cdot g_{k_1,\dots,k_j+1,\dots,k_r}^{(d_1,\dots,d_j+1,\dots,d_r)}.$$

In particular the space \mathcal{G} is closed under d.

Proof: This is an easy consequence of the definition

$$g_{k_1,\dots,k_r}^{(d_1,\dots,d_r)} := \sum_{\substack{0 \leqslant u_1 < \dots < u_r \\ }} \frac{u_1^{d_1}}{d_1!} \dots \frac{u_r^{d_r}}{d_r!} \cdot \frac{v_1^{k_1-1} \dots v_l^{k_r-1}}{(k_1-1)! \dots (k_r-1)!} \cdot q^{u_1v_1+\dots+u_rv_r}$$

together with

$$d\sum_{n>0} a_n q^n = \sum_{n>0} n \cdot a_n q^n.$$

Even though it is

$$\mathrm{d}\, g_{k_1,k_2} = \mathrm{d}\, g_{k_1,k_2}^{(0,0)} = k_1 g_{k_1+1,k_2}^{(1,0)} + k_2 g_{k_1,k_2+1}^{(0,1)} \,,$$

we have the following result:

Theorem

The subalgebra $\mathcal{G}^{(0)}\subset\mathcal{G}$ is closed under the operator $\mathrm{d}=q\frac{d}{dq}$.

The proof uses double shuffle relations for the functions g to show that (for example)

$$k_1 g_{k_1+1,k_2}^{(1,0)} + k_2 g_{k_1,k_2+1}^{(0,1)} \in \mathcal{G}^{(0)}$$

Even though it is

$$\mathrm{d}\, g_{k_1,k_2} = \mathrm{d}\, g_{k_1,k_2}^{(0,0)} = k_1 g_{k_1+1,k_2}^{(1,0)} + k_2 g_{k_1,k_2+1}^{(0,1)} \,,$$

we have the following result:

Theorem

The subalgebra $\mathcal{G}^{(0)}\subset\mathcal{G}$ is closed under the operator $\mathrm{d}=qrac{d}{dq}.$

The proof uses double shuffle relations for the functions g to show that (for example)

$$k_1 g_{k_1+1,k_2}^{(1,0)} + k_2 g_{k_1,k_2+1}^{(0,1)} \in \mathcal{G}^{(0)}$$

More generally we expect the following strong statement:

Conjecture

It is
$$\mathcal{G}^{(0)}=\mathcal{G}$$
.

Derivatives of $g^{\sqcup\sqcup}$

Define for $k \geq 1$

$$\mathcal{G}_{\leq k}^{\sqcup} := \left\langle g_{k_1, \dots, k_r}^{\sqcup} \in \mathcal{G} \mid k_1 + \dots + k_r \leq k \right\rangle_{\mathbb{Q}},$$

We expect that $d\mathcal{G}^{\sqcup\!\sqcup}_{< k}\subset\mathcal{G}^{\sqcup\!\sqcup}_{< k+2}$, but so far we only know the following:

Theorem

For $k \geq 1$ and $\mathbf{d} = q \frac{d}{dq}$ we have

$$\frac{1}{k} d g_k^{\coprod} = (k+1)g_{k+2}^{\coprod} - \sum_{n=2}^{k+1} (2^n - 2)g_{k+2-n,n}^{\coprod}.$$

Multiple Eisenstein series $<-> g^{\sqcup \sqcup}$

For the space spanned by all multiple Eisenstein series we write

$$\mathcal{E}_k = \langle G_{k_1,\dots,k_r}^{\sqcup} \mid k = k_1 + \dots + k_r, k_1,\dots,k_r \ge 1 \rangle_{\mathbb{Q}}.$$

Expectation (Rough statement)

We expect that the map ${\cal F}$, given by

$$F: \mathcal{E}_k \longrightarrow \mathcal{G}^{\coprod}_{\leq k} / \mathcal{G}^{\coprod}_{\leq k-1}$$

$$G^{\coprod}_{k_1, \dots, k_r} \longmapsto g^{\coprod}_{k_1, \dots, k_r}$$

is an isomorphism of \mathbb{Q} -algebras, which respects the action of d.

Good thing: It is easy to obtain results in the space $\mathcal{G}^{\sqcup}_{\leq k} \left/ \mathcal{G}^{\sqcup}_{\leq k-1} \right.$!

Derivatives of $g^{\sqcup \sqcup}$ modulo lower weight - Depth 1

Proposition

For $k \geq 1$ we have

$$d g_k^{\coprod} = k \cdot g_{k+1}^{(1)} \equiv 2k \cdot \mathfrak{g}^{\coprod} (ds(e_1, e_{k+1})) \quad \text{mod } \mathcal{G}_{\leq k+1}^{\coprod}$$

Proof: Notice that

$$g_{k_1,k_2}^{\coprod} = g_{k_1,k_2} + \delta_{k_1,1} \cdot \frac{1}{2} g_{k_2}^{(1)} \mod \mathcal{G}_{\leq k_1 + k_2 - 1}^{\coprod}$$

and

$$g_{k_1}^{\sqcup} \cdot g_{k_2}^{\sqcup} = g_{k_1} \cdot g_{k_2} = g_{k_1,k_2} + g_{k_2,k_1} + g_{k_1+k_2} \mod \mathcal{G}_{\leq k_1+k_2-1}^{\sqcup}.$$

With this we can "measure" the failure of the double shuffle relations for the series $g^{\sqcup\sqcup}$:

$$\begin{split} \mathfrak{g}^{\sqcup}(\mathrm{ds}(e_{k_1},e_{k_2})) &= \mathfrak{g}^{\sqcup}(e_{k_1} * e_{k_2}) - \mathfrak{g}^{\sqcup}(e_{k_1} \sqcup \!\!\!\sqcup e_{k_2}) \\ &= g_{k_1,k_2}^{\sqcup} + g_{k_2,k_1}^{\sqcup} + g_{k_1+k_2}^{\sqcup} - g_{k_1}^{\sqcup} \cdot g_{k_2}^{\sqcup} \\ &\equiv \frac{1}{2} \delta_{k_1,1} g_{k_2}^{(1)} + \frac{1}{2} \delta_{k_2,1} g_{k_1}^{(1)} \qquad \mod \mathcal{G}_{\leq k_1+k_2-1}^{\sqcup} \,. \end{split}$$

Derivatives of $g^{\sqcup \sqcup}$ modulo lower weight - Depth 1

The analogue statement of

$$d g_k^{\coprod} = k \cdot g_{k+1}^{(1)} \equiv 2k \cdot \mathfrak{g}^{\coprod} (ds(e_1, e_{k+1})) \quad \text{mod } \mathcal{G}_{\leq k+1}^{\coprod}$$

is also known for Eisenstein series:

Theorem (Kaneko)

For $k \geq 1$, the derivative of the Eisenstein series $G_k^{\sqcup \! \sqcup}$ can be written as

$$(2\pi i)^2 dG_k^{\coprod} = G_{1,k+1}^{\coprod} + G_{k+1,1}^{\coprod} + G_{k+2}^{\coprod} - G_{k+1}^{\coprod} \cdot G_1^{\coprod}$$
$$= 2k \cdot G^{\coprod}(ds(e_1, e_{k+1})),$$

where in the last line we (by abuse of notation) interpret the multiple Eisenstein series as a map $G^{\sqcup}:\mathfrak{H}^1\to\mathbb{C}[[q]].$

Derivatives of $g^{\sqcup \sqcup}$ modulo lower weight - Depth 2

Lemma

For $k_1, k_2, k_3 \geq 1$ and $k = k_1 + k_2 + k_3$ we have

$$\mathfrak{g}^{\coprod}(\mathrm{ds}(e_{k_1}, e_{k_2}e_{k_3})) \equiv \delta_{k_1, 1} \frac{1}{2} g_{k_2, k_3}^{(0, 1)} + \delta_{k_3, 1} \frac{1}{2} \left(g_{k_2, k_1}^{(0, 1)} - g_{k_2, k_1}^{(1, 0)} \right) + \delta_{k_1 \cdot k_2, 1} \frac{1}{3} g_{k_3}^{(2)} + \delta_{k_2 \cdot k_3, 1} \frac{1}{6} g_{k_1}^{(2)} \mod \mathcal{G}_{\leq k-1}^{\coprod}.$$

Proposition

For $k_1, k_2 \geq 2$ we have

$$\begin{split} \mathrm{d}\,g^{\sqcup}_{k_1,k_2} &\equiv 2k_1\,(\mathfrak{g}^{\sqcup}(\mathrm{d}\mathrm{s}(e_1,e_{k_1+1}e_{k_2})) - \mathfrak{g}^{\sqcup}(\mathrm{d}\mathrm{s}(e_{k_2},e_{k_1+1}e_1))) \\ &\quad + 2k_2 \cdot \mathfrak{g}^{\sqcup}(\mathrm{d}\mathrm{s}(e_1,e_{k_1}e_{k_2+1})) &\quad \mathrm{mod}\,\,\mathcal{G}^{\sqcup}_{\leq k_1+k_2+1} \end{split}$$

Proof: Use the lemma together with

$$d g_{k_1,k_2}^{\coprod} = d g_{k_1,k_2} = k_1 g_{k_1+1,k_2}^{(1,0)} + k_2 g_{k_1,k_2+1}^{(0,1)}.$$

Derivatives of q-analogues

We also have a similar result for $dg_{k_1,k_2,k_3}^{\sqcup}$, which leads to the following:

Conjecture

For $k_1,k_2,k_3\geq 2$ the derivative of the Double and Triple Eisenstein series are given by

$$\begin{split} (-2\pi i)^2 \, \mathrm{d} \, G_{k_1,k_2} &= 2k_1 \, (G^{\sqcup \! \sqcup} (\mathrm{d} \mathrm{s}(e_1,e_{k_1+1}e_{k_2})) - G^{\sqcup \! \sqcup} (\mathrm{d} \mathrm{s}(e_{k_2},e_{k_1+1}e_1))) \\ &+ 2k_2 \cdot G^{\sqcup \! \sqcup} (\mathrm{d} \mathrm{s}(e_1,e_{k_1}e_{k_2+1})) \, , \end{split}$$

$$\begin{split} (-2\pi i)^2 \,\mathrm{d}\, G_{k_1,k_2,k_3} &= 2k_1 \cdot G^{\sqcup}(\mathrm{d} \mathrm{s}(e_1,e_{k_1+1}e_{k_2}e_{k_3}) + \mathrm{d} \mathrm{s}(e_{k_3},e_{k_2}e_{k_1+1}e_1)) \\ &\quad + 2k_1 \cdot G^{\sqcup}(\mathrm{d} \mathrm{s}(e_{k_3},e_{k_1+1+k_2}e_1) - \mathrm{d} \mathrm{s}(e_{k_1+1}e_1,e_{k_2}e_{k_3})) \\ &\quad + 2k_2 \cdot G^{\sqcup}(\mathrm{d} \mathrm{s}(e_1,e_{k_1}e_{k_2+1}e_{k_3}) - \mathrm{d} \mathrm{s}(e_{k_3},e_{k_1}e_{k_2+1}e_1)) \\ &\quad + 2k_3 \cdot G^{\sqcup}(\mathrm{d} \mathrm{s}(e_1,e_{k_1}e_{k_2}e_{k_3+1})) \end{split}$$

Example:

$$\begin{array}{ll} \mathrm{d}\,G_{2,2}^{\sqcup} \stackrel{?}{=} 8G_{2,3,1}^{\sqcup} - 4G_{1,2,3}^{\sqcup} + 4G_{1,3,2}^{\sqcup} + 24G_{1,4,1}^{\sqcup} - 4G_{2,1,3}^{\sqcup} - 4G_{2,2,2}^{\sqcup} \\ &\quad + 4G_{2,4}^{\sqcup} + 4G_{3,3}^{\sqcup} + 4G_{4,2}^{\sqcup} - 4G_{5,1}^{\sqcup} \,. \end{array}$$