Modular forms and multiple zeta values

Henrik Bachmann
Fachbereich Mathematik, Bereich Algebra und Zahlentheorie
Advisor: Prof. Dr. Ulf Kühn

Notation: $s_{1}, \ldots, s_{l} \in \mathbb{N}, \tau \in \mathbb{H}=\{x+y i \in \mathbb{C} \mid y>0\}$ and $q=e^{2 \pi i \tau}$

Multiple zeta values and multiple Eisenstein series

Definition: The multiple zeta value (MZV) of weight $s_{1}+\cdots+s_{l}$ and length l is defined by
$\zeta\left(s_{1}, \ldots, s_{l}\right):=\sum_{n_{1}>n_{2}>\ldots>n_{l}>0} \frac{1}{n_{1}^{s_{1}} \ldots n_{l}^{s_{l}}} \in \mathbb{R} \quad\left(\right.$ for $s_{1} \geq 2$ and $\left.s_{2}, \ldots, s_{l} \geq 1\right)$.
These numbers fulfil a lot of \mathbb{Q}-linear relations, which conjecturally all come from the so called extended double shuffle realtions, for example

$$
\begin{equation*}
\zeta(3)=\zeta(2,1), \quad \frac{5197}{691} \zeta(12)=168 \zeta(5,7)+150 \zeta(7,5)+28 \zeta(9,3) . \tag{1}
\end{equation*}
$$

MZV are of particular interest in quantum field theory and number theory [4]. We study their connection to modular forms by using multiple Eisenstein series:

Definition: The multiple Eisenstein series are defined by

$$
G_{s_{1}, \ldots, s_{l}}(\tau)=\sum_{\substack{0 \succ \lambda_{1} \searrow \cdots+\lambda_{l} \\ \lambda_{i} \in \mathbb{Z} \tau+\mathbb{Z}}} \frac{1}{\lambda_{1}^{\lambda_{1}} \cdots \lambda_{l}^{s_{l}}} \quad\left(\text { for } s_{1} \geq \mathbf{3} \text { and } s_{2}, \ldots, s_{l} \geq \mathbf{2}\right) .
$$

The $\lambda_{i} \in \mathbb{Z} \tau+\mathbb{Z}$ are lattices points and \succ is an order on $\mathbb{Z}+\mathbb{Z} \tau$ given by $m_{1} \tau+n_{1} \succ m_{2} \tau+n_{2}: \Leftrightarrow\left(m_{1}>m_{2} \vee\left(m_{1}=m_{2} \wedge n_{1}>n_{2}\right)\right)$.
For $l=1$ and even $s_{1}>2$ these are the classical Eisenstein series which are modular forms for $\mathrm{SL}_{2}(\mathbb{Z})$.
The case $l=2$ of double Eisenstein series was considered in [4], where the authors also showed a connection of relations between MZV and cusp forms via period polynomials (second relation in (1)).
Theorem: [1] The multiple Eisenstein series have a Fourier expansion given by an explicit but complicated $\mathbb{Q}[-2 \pi i]$-linear combinations of products of multiple zeta value and generating functions of multiple divisor sums $\left[s_{1}, \ldots, s_{l}\right] \in \mathbb{Q}[[q]]$.
Examples: $G_{3,2}(\tau)=\zeta(3,2)+3 \zeta(3)(-2 \pi i)^{2}[2]+2 \zeta(2)(-2 \pi i)^{3}[3]+(-2 \pi i)^{5}[3,2]$.

$$
\begin{aligned}
G_{3,2,2}(\tau)= & \zeta(3,2,2)+\left(\frac{54}{5} \zeta(2,3)+\frac{51}{5} \zeta(3,2)\right)(2 \pi i)^{2}[2]+\frac{16}{3} \zeta(2,2)(2 \pi i)^{3}[3] \\
& +3 \zeta(3)(2 \pi i)^{4}[2,2]+4 \zeta(2)(2 \pi i)^{5}[3,2]+(2 \pi i)^{7}[3,2,2],
\end{aligned}
$$

The brackets $\left[s_{1}, \ldots, s_{l}\right]$ in the Fourierexpansion are kind of a combinatorial object which are for $s_{1}, \ldots, s_{l}>0$ given by

$$
\left[s_{1}, \ldots, s_{l}\right]:=\frac{1}{\left(s_{1}-1\right)!\ldots\left(s_{l}-1\right)!} \sum_{\substack{l_{1}>\cdots>u_{l}>0 \\ v_{1}, \ldots, v_{l}>0}} v_{1}^{s_{1}-1} \ldots v_{l}^{s_{l}-1} q^{u_{1} v_{1}+\cdots+u_{l} v_{l}} \in \mathbb{Q}[[q]] .
$$

In [2] it is shown that the space spanned by these brackets has the structure of a bi-filtered algebra with a derivation given by $q \frac{d}{d q}$. It has the space of modular forms as a subalgebra.

Idea: Extend the definition of the multiple Eisenstein series $G_{s_{1}, \ldots, s_{l}}$ for $s_{1} \geq 2$ and $s_{2}, \ldots, s_{l} \geq 1$ by studying the space of the generating functions of multiple divisor sums and a connection to the coproduct on the space of formal iterated integrals.

Shuffle regularized multiple Eisenstein series

There exists an algebra \mathcal{I}^{1} of so called formal iterated integrals which was introduced by Goncharov in [5]. It is spanned by formal symbols $I\left(s_{1}, \ldots, s_{l}\right)$, with $s_{1}, \ldots, s_{l} \geq 1$, which satisfy relations coming from real iterated integrals. The product is given by the shuffle product. This space has the structure of a Hopf algebra, i.e. in particular it has a coproduct $\Delta: \mathcal{I}^{1} \longrightarrow \mathcal{I}^{1} \oplus \mathcal{I}^{1}$ which can be computed in a nice combinatorial way by summing over all dissections of a half circle.
Example: $\Delta(I(2,3))=I(2,3) \otimes 1+3 I(3) \otimes I(2)+2 I(2) \otimes I(3)+1 \otimes I(2,3)$.

Observation ([4, 3]): The coefficients in the coproduct are the same as in the Fourier expansion of multiple Eisenstein series.

Proposition: [3] There exist algebra homomorphisms $Z^{\amalg}: \mathcal{I}^{1} \rightarrow \mathbb{R}$ and $\mathfrak{g}^{\amalg}: \mathcal{I}^{1} \rightarrow \mathbb{C}[[q]]$ such that $Z^{\Perp}\left(I\left(s_{1}, \ldots, s_{l}\right)\right)=\zeta\left(s_{l}, \ldots, s_{1}\right)$ and $g^{山}\left(I\left(s_{1}, \ldots, s_{l}\right)\right)=\left[s_{l}, \ldots, s_{1}\right]$ for $s_{1}, \ldots, s_{l} \geq 2$.

Definition: For integers $s_{1}, \ldots, s_{l} \geq 1$ define the shuffle regularized multiple Eisenstein series, as the image of the generator $I\left(s_{1}, \ldots, s_{l}\right)$ in \mathcal{I}^{1} under the algebra homomorphism $\left(Z^{山} \otimes \mathfrak{g}^{\amalg}\right) \circ \Delta$:

$$
G_{s_{1}, \ldots, s_{l} l}^{\amalg}(\tau):=\left(Z^{\amalg} \otimes \mathfrak{g}^{\amalg}\right) \circ \Delta\left(I\left(s_{1}, \ldots, s_{l}\right)\right) .
$$

Theorem: [3] For all $s_{1}, \ldots, s_{l} \geq 1$ the shuffle regularized multiple Eisenstein series $G_{s_{1}, \ldots, s_{l}}^{\Perp}$ have the following properties:

- They fulfill the shuffle product, i.e. we have an algebra homormorphism $\mathcal{I}^{1} \rightarrow \mathbb{C}[[q]]$ by sending the generators $I\left(s_{1}, \ldots, s_{l}\right)$ to $G_{s_{1}, \ldots, s_{l}}^{\Perp}(q)$.
- For integers $s_{1}, \ldots, s_{l} \geq 2$ they equal the multiple Eisenstein series

$$
G_{s_{1}, \ldots, s_{l}}^{\amalg}(q)=G_{s_{l}, \ldots, s_{1}}(q)
$$

and therefore they fulfill the stuffle product in these cases.

References

[1]H. Bachmann, "Multiple Zeta-Werte und die Verbindung zu Modulformen durch Multiple Eisensteinreihen", Master thesis, University of Hamburg, 2012.
[2] H. Bachmann, U. Kühn, "The algebra of generating functions for multiple divisor sums and applications to multiple zeta values", arXiv:1309.3920 [math.NT].
[3] H. Bachmann, K. Tasaka, "The algebra of multiple Eisenstein series and the Goncharov coproduct", in preparation.
[4] H. Gangl, M. Kaneko, D. Zagier, "Double zeta values and modular forms", in "Automorphic forms and zeta functions" p. 71-106, World Sci. Publ., Hackensack, NJ, 2006.
[5] A.B. Goncharov, "Galois symmetries of fundamental groupoids and noncommutative geometry", Duke Math. J., 128(2) (2005), 209-284.

