

Henrik Bachmann

Nagoya University - Graduate school of mathematics

About me

- Born in Hamburg (Germany)
- Studied mathematics at Hamburg University
- Since 2017 Assistant Professor at Nagoya University
- Interested in Number theory

Goal of this talk

- Talk about the classification of numbers

What does that mean?

- Present some open problems on numbers
- Give examples of numbers as infinite sums

Classification of food

Classification of numbers

Natural numbers the simple dishes...

The numbers $1,2,3,4, \ldots$. are called natural numbers

We can add (+) and multiply (*) natural numbers

$$
\begin{aligned}
6 & =2 * 3 \\
& =8 * 0
\end{aligned}
$$

What are the ingredients for natural numbers?

Prime numbers the ingredients...

A natural number greater than 1 is called a prime number, if it can not be written as a product of two smaller numbers.

Prime numbers the ingredients...

Prime numbers the ingredients...

Open problem 1: Twin prime conjecture

"There are infinitely many primes p such that $p+2$ is also prime"
The first few twin primes:
$(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,73)$, (101, 103), (107, 109), (137, 139), ...

The best we know (2014):
"There are infinitely many primes p such that the next prime is smaller than $p+246$."

Prime numbers the ingredients...

Prime numbers are the "ingredients" of natural numbers with respect to multiplication (*).

What about the addition (+) of prime numbers?

Open problem 2: Goldbach's conjecture
"Every even natural number greater than 2 can be expressed as the sum of two primes."
$4=2+2$
$6=3+3$
$8=3+5$
$10=3+7=5+5$
$12=5+7$
$14=3+11=7+7$
$100=3+97=11+89=17+83=29+71=41+59=47+53$

Classification of numbers ... so far

Integers

We also have zero 0 and negative numbers $-1,-2,-3,-4, \ldots$

The natural numbers together with 0 and their negatives are called integers.

Mathematicians point of view
A, B : natural numbers
Integers allow us to solve the following equation for X :

$$
\mathrm{X}+\mathrm{B}=\mathrm{A}
$$

For example $X=-5$ is the solution of $X+7=2$.

Rational numbers combined dishes...

Numbers given by fractions are called rational numbers.

Mathematicians point of view $\quad A, B, C$: natural numbers
Rational numbers allow us to solve the following equation for X :

$$
C X+B=A
$$

For example $X=\frac{2}{5}$ is the solution of $5 X+7=9$.

Classification of numbers ... so far

Algebraic numbers

$$
\begin{aligned}
& X^{2}=1^{2}+1^{2}=2 \\
& X=\sqrt{2} \approx 1.414 \ldots
\end{aligned}
$$

Mathematicians point of view
 $A_{0}, A_{1}, \ldots, A_{n}$: integers

Algebraic numbers are given as solutions for X of polynomial equations:

$$
A_{n} X^{n}+\ldots+A_{2} X^{2}+A_{1} X+A_{0}=0
$$

For example $X=\sqrt{2}$ is the solution of $1 X^{2}+0 X-2=0$.

Classification of numbers ... so far

- Every rational number is also an algebraic number.
- But not all algebraic numbers are rational!
- For example $\sqrt{2}$ can not be written as a fraction $\frac{a}{b}$.

Transcendental numbers

A number which is not algebraic, is called transcendental number.

$$
\pi=3.141592 \ldots .
$$

Digits of $\operatorname{Pi} \pi$

$\pi=3.14159265358979323846264338327$ 950288419716939937510.......... ... 59580646145478085884120620185 3557722052941993520

32688872-th position

Open problem 3: $\quad \pi$ is normal
"The decimal representation of π contains every finite combination of digits "

Pi-search page: http://www.angio.net/pi/

$\operatorname{Pi} \pi$

π is transcendental!

This means you will never find

 integers $A_{0}, A_{1}, \ldots, A_{n}$ such that$$
\mathrm{A}_{\mathrm{n}} \pi^{\mathrm{n}}+\ldots+\mathrm{A}_{2} \pi^{2}+\mathrm{A}_{1} \pi+\mathrm{A}_{0}=0
$$

$$
\begin{aligned}
& 7 \pi-22 \neq 0 \\
& 2 \pi^{2}-6 \pi-1 \neq 0 \\
& \pi^{3}-22 \pi^{2}+4 \pi-12 \neq 0
\end{aligned}
$$

Classification of numbers ... so far

Nice banks

We offer you an interest rate of 100% each year!

After one year: $(1+1)=2$

Nice bank

Nice banks

After one year: $\quad(1+1)=2$
Nice bank

After one year: $\left(1+\frac{1}{2}\right)^{2}=2.25$
Nicer bank

Super nice bank

$$
\text { After one year: }\left(1+\frac{1}{12}\right)^{12}=2.613 \ldots
$$

Super super nice bank
"compounding frequency"

The nicest bank \& Euler's number

The nicest bank applies the interest rate continuously ("infinitely often")
$e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=2.71828182845 \ldots$

The number e is called Euler's number.

Classification of numbers ... so far

Infinite sums

Finite sums:

$$
\begin{aligned}
& 1=1 \\
& 1+2=3 \\
& 1+2+3=6 \\
& 1+2+3+4=10
\end{aligned}
$$

$$
1+2+3+\ldots+100=5050
$$

This sum gets bigger and bigger and therefore the infinite sum

$$
1+2+3+4+\ldots 00+\ldots+43432423+
$$

does not make sense.

$$
\begin{aligned}
& \text { But there are infinite sums which make sense! } \\
& 1+0.1+0.01+0.001+0.0001+\ldots=1.1111111 \ldots
\end{aligned}
$$

Infinite sums - Example

Area of $\square=1$

Infinite sums - Example

Area of $\square=1$
Area of blue part $=\frac{1}{2}=0.5$

Infinite sums - Example

Area of $\square=1$
Area of blue part $=\frac{1}{2}+\frac{1}{4}=0.75$

Infinite sums - Example

Area of $\square=1$
Area of blue part $=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=0.875$

Infinite sums - Example

Area of $\square=1$
Area of blue part $=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=0.93 \ldots$

Infinite sums - Example

Area of $\square=1$
Area of blue part $=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=0.96 \ldots$

Infinite sums - Example

Area of $\square=1$
Area of blue part $=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=0.98 \ldots$

Infinite sums - Example

Geometric series

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\cdots=1
$$

Mathematical notation:

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots=1
$$

For any natural number A greater than 1 we have

$$
\sum_{n=1}^{\infty} \frac{1}{A^{n}}=\frac{1}{A-1}
$$

Another infinite sum

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots=1
$$

What happens if we change this sum a little bit?

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots \\
& =\frac{1}{1}+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots=? ?
\end{aligned}
$$

Another infinite sum

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=? ? ? \\
& \frac{1}{1^{2}}=1 \\
& \frac{1}{1^{2}}+\frac{1}{2^{2}}=1+\frac{1}{4}=1.25 \\
& \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}=1+\frac{1}{4}+\frac{1}{9}=1.3611 \ldots \\
& \frac{1}{1^{2}}+\cdots+\frac{1}{100^{2}}=1+\cdots+\frac{1}{10000}=1.6349 \ldots
\end{aligned}
$$

???

Another infinite sum

Riemann zeta values

For any natural number k greater than 1 the numbers

$$
\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}=\frac{1}{1^{k}}+\frac{1}{2^{k}}+\frac{1}{3^{k}}+\frac{1}{4^{k}}+\cdots
$$

are called Riemann zeta values.

Euler's formulas imply:
If k is even then $\zeta(k)$ is transcendental

Open problem 4:
$\zeta(k)$ is transcendental for all natural numbers k greater than 1

Classification of numbers

"All numbers"

So far by "all numbers" we talked about numbers which have a decimal representation, e.g. 5.323123.... .

These numbers are called real numbers.

Recall: Algebraic numbers

$$
\begin{array}{ll}
X^{2}-2=0 & X=\sqrt{2} \\
X^{2}+2=0 & X=\sqrt{-2} ?
\end{array}
$$

?

Complex numbers

To be able to take the square root of negative numbers, one introduces an additional imaginary number i, which satisfies

$$
i^{2}=-1 \quad i=\sqrt{-1} \quad \sqrt{-2}=\sqrt{2} i
$$

The numbers of the form $a+b i$ are called complex numbers.
a, b : real numbers
Complex numbers can be added and multiplied like real numbers

$$
\begin{aligned}
(1+2 i)+(-2+3 i) & =(1-2)+(2+3) i=-1+5 i \\
(1+2 i) *(-2+3 i) & =-2+3 i-4 i+6 * \overbrace{i}^{-1} \\
& =-8-1 i
\end{aligned}
$$

Classification of complex numbers

One more identity

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=2.71828182845 \ldots
$$

This can also be written as a nice infinite sum:

$$
e=1+\frac{1}{1}+\frac{1}{1 * 2}+\frac{1}{1 * 2 * 3}+\frac{1}{1 * 2 * 3 * 4}+\cdots
$$

More general for a complex number X :

$$
e^{X}=1+\frac{X}{1}+\frac{X^{2}}{1 * 2}+\frac{X^{3}}{1 * 2 * 3}+\frac{X^{4}}{1 * 2 * 3 * 4}
$$

$X=\pi i:$

$$
\begin{aligned}
& e^{\pi i}=1+\frac{\pi i}{1}+\frac{(\pi i)^{2}}{1 * 2}+\frac{(\pi i)^{3}}{1 * 2 * 3}+\frac{(\pi i)^{4}}{1 * 2 * 3 * 4}+e^{\pi i}=-1 \\
& \text { Thank you very much for your attention! }
\end{aligned}
$$

