
Special Mathematics Lecture, Nagoya University (Fall 2023)

Lecturer: Henrik Bachmann (Math. Building Room 457, henrik.bachmann@math.nagoya-u.ac.jp)
Teaching Assistant: Risan
Course information are available at: https://www.henrikbachmann.com/mml2023.html

•

If you are a student of this course, you are welcome to help us out!

These notes are under construction and therefore may contain mistakes and change
without notice. If you find any typos/errors or have any suggestion, please contact us.

Contents

1 Introduction . 2

2 Basics . 3
2.1 Python . 3
2.2 Tic-Tac-Toe & Minimax . 3
2.3 Recall some Linear Algebra . 7

3 Basics of supervised learning . 9
3.1 Linear regression . 9
3.2 Logistic regression . 17
3.3 Naive Bayes . 21
3.4 Gaussian Discriminant Analysis . 26

4 Neural Networks . 28
4.1 Multi-layer fully connected feedforward neural networks 28
4.2 Training the neural network: Backpropagation . 30
4.3 Convolutional neural networks . 34

5 Reinforcement Learning . 35

References . 39

1

henrik.bachmann@math.nagoya-u.ac.jp
https://www.henrikbachmann.com/mml2023.html

Mathematics for Machine Learning • Introduction

1 Introduction

Machine learning is commonly defined as the study of computer algorithms that improve automatically
through experience. This is in contrast with traditional programming, in which the programmer
implements an explicit algorithm to solve the problem.

Machine learning is used in a myriad of fields in the modern world, such as (but not limited to) AI in
computer games, image processing, speech recognition, translation, weather forecast and email spam
filtering. The goal of this course is to get an overview of the algorithms used in machine learning,
understand the mathematics behind these algorithms, and learn how to implement them in Python.

Machine learning is typically divided into three big paradigms:

Machine
Learning

Supervised
Learning

Unsupervised
Learning

k-means
Reinforcement

Learning
Q-Learning

Regression

Linear regression

Logistic regression

Classification

Naive Bayes

Gaussian discriminant analysis

Figure 1: An illustration of the branches of Machine Learning.

1) Supervised learning: Supervised learning is the branch of machine learning where labelled input-
output data (training data) is provided to the machine. The training data is a pair consisting of
an input (a vector) and a desired output value (also called the supervisory signal). The machine’s
task is to analyze the training data and infer a function from said training data to be able to map
new examples. Supervised learning is further divided based on the type of output: classification
if the output is discrete (e.g. categorization) and regression if the output is continuous.

2) Unsupervised learning: Unsupervised learning is the branch of machine learning that deals
with machines that take in untagged data and discerns patterns from said untagged data. By doing
this, one hopes that the machine learns by mimicry, which leads it to build a representation of its
world and then generate imaginative content from it. In contrast to supervised learning, where
the training data has been tagged beforehand, unsupervised learning forces the machine to self-

Version 5 (November 27, 2023)
- 2 -

Mathematics for Machine Learning • Basics

organize the data and represent patterns as probability densities or a combination of neural feature
preferences.

3) Reinforcement Learning: Reinforcement learning is an area of machine learning concerned with
the programming of intelligent machines such that they take the optimal actions in an environment
to maximize cumulative reward. In contrast to supervised learning, reinforcement learning needs
neither labelled input/output pairs nor explicit correction of sub-optimal actions. Instead, the focus
is finding a balance between exploration (of the unknown) and exploitation (of current knowledge).

In this course, we will consider at least one algorithm for each of these areas. Of course, we will not
be able to cover everything in detail and student should see this course just as an entry guide to the
big world of machine learning.

2 Basics

In this section, we recall some basic in Python and Linear Algebra.

2.1 Python

In this course, we will do several examples in Python using Google Colab. An overview (or review) of
some basic Python commands is given in this Colab notebook (courtesy of Risan).

2.2 Tic-Tac-Toe & Minimax

In this section, we will discuss an implementation of the game Tic-Tac-Toe using Python, alongside
an algorithm that can evaluate the state of a game and find the best possible move given that state.

It is important to note that the code given below is simply one example. There are other ways to
implement these functions and algorithms.

Tic-Tac-Toe is a well-known game where players (on alternating turns) put down marks X and O on
a spot in the board (in this case, a 3× 3 grid). The winner is the player who gets three of their marks
in a row, column, or diagonal of the grid. We let always the player X start.

Minimax is an algorithm that can be used to look several steps ahead in perfect zero-sum games
(games where if a player win, other loses, hence ”zero-sum”), such as Chess or Tic-Tac-Toe. The goal
of the algorithm is to assign a value (”evaluation”) to a game state. The goal of one of the players is to
maximize this evaluation, while the goal of the other player is to minimize this evaluation. Knowing
this, each player looks ahead several steps ahead, and determines which step the opponent will take,
and by considering that, takes the best possible move in any given game state.

An example of this algorithm applied to Tic-Tac-Toe is illustrated in Figure 2. We start on the turn
of player X (maximizing), and then it alternates between X (maximizing player) and O (minimizing
player). In each row, the maximum value (for player X) or the minimum value (for player O) is chosen.

2.2.1 Helping Functions

Before we discuss the implementation of the algorithm in Tic-Tac-Toe, it is useful to first describe how
one can implement Tic-Tac-Toe in Python.

We can represent the board of Tic-Tac-Toe in Python by using a nested list. For example,

Version 5 (November 27, 2023)
- 3 -

https://colab.research.google.com/drive/1aQ6N1Jy3RM71QwPgtxkQbYcRTpoB4_cx?usp=sharing

Mathematics for Machine Learning • Basics

Figure 2: Illustration of Minimax algorithm in Tic-Tac-Toe

1 #Example Board

2 grid = [[" "," ","O"],

3 [" ","X","X"],

4 [" "," "," "]]

5 #In reality , the line breaks in this list means nothing.

6 #This is only to represent the different rows of the grid.

From here, we define some helping functions (three, to be exact) to help in writing our implementation
of Minimax in Python.

The first function takes a grid as the parameter and determines whether or not a game is over and if
there is a winner. An example implementation is given below:

1 def get_winner(grid):

2 # Examine the rows:

3 for row in grid:

4 if (row [0] == row[1] == row [2]) and (row [0] != " "):

5 return row[0]

6

7 # Examine the columns:

8 for c in range (3):

9 if (grid [0][c] == grid [1][c] == grid [2][c]) and (grid [0][c] != " "):

10 return grid [0][c]

11

12 # Examine the diagonals (d = -1 : leading diagonal , while d = 1 : antidiagonal):

13 for d in (-1,1):

14 if (grid [0][1+d] == grid [1][1] == grid [2][1-d]) and (grid [1][1] != " "):

15 return grid [1][1]

16

17 # If there is no winner:

18 return None

The second function determines the next player given a board state. An example is given below:

1 # Make a function that counts the number of O or X in a given grid

Version 5 (November 27, 2023)
- 4 -

Mathematics for Machine Learning • Basics

2 def counter(grid , player):

3 cnt = 0

4 #We iterate over each row in the grid.

5 for row in grid:

6 #This function counts the number of times "X" or "O" appears in one given row

7 cnt += row.count(player)

8 return cnt

9

10 def next_player(grid):

11 # First we check if the game is over (full board or player win):

12 if counter(grid ,"X") + counter(grid ,"O") == 9 or (get_winner(grid) != None):

13 return None

14 # If game is not over we check if there are less X than O. Since X goes first , if

the number of marks are equal , it is player X’s turn.

15 elif (counter(grid ,"X") <= counter(grid , "O")):

16 return "X"

17 # If game is not over , and it is not player X’s turn , it is Player O’s turn.

18 return "O"

The last function updates the grid when a move is made. We assume that all moves are valid, and no
illegal moves can be made (moves are only made on empty spaces)

1 import copy

2 def make_move(grid ,move):

3 #We make a copy of the grid , and then apply the move.

4 moved_grid = copy.deepcopy(grid)

5 moved_grid[move [0]][move [1]] = next_player(grid)

6 return moved_grid

7 #next_player(grid) automatically gives the next player ’s mark

Here, it is very important to use deepcopy instead of copy, since otherwise the original ”grid” variable
will be affected by each move (which might be undesirable in some cases).

2.2.2 Implementation of Minimax

Now, we want to implement the Minimax algorithm for Tic-Tac-Toe in Python. First, we need a code
that can assign a value to a given board. An example is given below:

1 def get_possible_moves(grid):

2 possible_moves = []

3 for i in range (3):

4 for j in range (3):

5 if (grid[i][j] == " "):

6 possible_moves.append ((i,j))

7 return possible_moves

8

9 def minimax(grid , is_maximizing):

10 if (get_winner(grid) == next_player(grid) == None):

11 return 0

12 elif (get_winner(grid) == "X"):

13 return 1

14 elif (get_winner(grid) == "O"):

15 return -1

16

17 scores = []

18

19 for move in get_possible_moves(grid):

20 moved_grid = make_move(grid , move)

21 scores.append(minimax(moved_grid , not is_maximizing))

Version 5 (November 27, 2023)
- 5 -

Mathematics for Machine Learning • Basics

22

23 if (is_maximizing == True):

24 return max(scores)

25 else:

26 return min(scores)

The function ”get possible moves” gives all possible moves for a given grid (the spaces which are
completely empty). The algorithm takes two parameters, the grid and ”is maximizing”. We assign
the ”X” player to be the maximizing player, so we set ”is maximizing == True” for ”X” and ”False”
for ”O”.

The minimax function scans all possible game boards after one move from the player (lines 19-21)
and runs the same minimax function on that new state, but for the opposite player (hence the ”not
is maximizing” in line 21). It then appends these values to the list called ”scores”. The function then
returns the maximum value of the elements in the list (if player is X) or the minimum value of the
elements (if player is O).

Next, we implement a function to find the best possible move. Here, we define the ’best possible
move(s)’ as the move(s) that maximizes (or minimizes) the value of the minimax function. One
implementation of this function is given below:

1 def find_move(grid):

2 if (next_player(grid) == None):

3 return None

4

5 possible_moves = get_possible_moves(grid)

6

7 if (next_player(grid) == "X"):

8 evaluation = -1

9 for move in possible_moves:

10 moved_grid = make_move(grid , move)

11 new_evaluation = minimax(moved_grid , False)

12 if (new_evaluation >= evaluation):

13 evaluation = new_evaluation

14 best_move = move

15 return best_move

16 elif (next_player(grid) == "O"):

17 evaluation = 1

18 for move in possible_moves:

19 moved_grid = make_move(grid , move)

20 new_evaluation = minimax(moved_grid , True)

21 if (new_evaluation <= evaluation):

22 evaluation = new_evaluation

23 best_move = move

24 return best_move

For each player, this function considers all possible moves, evaluates the new grid by the minimax
function (for the opposite player). If a more favorable evaluation is obtained, the evaluation is then
updated, and then the move is determined to be the best move.

2.2.3 Displaying the Grid

The Tic-Tac-Toe grid can be drawn in various representations, ranging from ASCII art (basic) to nice
graphics in matplotlib. The implementation below is the code used to draw the grids in Figure 2
(though not the green lines there).

Version 5 (November 27, 2023)
- 6 -

Mathematics for Machine Learning • Basics

1 import matplotlib.pyplot as plt

2 import numpy as np

3

4 col3 = [0.0, 1.0, 0.0]

5 def draw_grid(grid):

6 plt.figure(figsize =(7, 7)) #Makes the figure

7

8 for a in range (4):

9 plt.plot([a,a], [0,-3], color = "black") #Draws the horizontal lines in the grid

10 plt.plot([0,3], [-a,-a], color = "black") #Draws the vertical lines in the grid

11 plt.axis(’off’)

12

13 for i in range (3):

14 for j in range (3):

15 if (grid[i][j] == "X"): #Draws X in the appropriate slots

16 plt.plot([j+0.2, j+0.8], [-i-0.2, -i-0.8] , color="blue", linewidth= 3.0)

17 plt.plot([j+0.2, j+0.8], [-i-0.8, -i-0.2] , color="blue", linewidth= 3.0)

18 if (grid[i][j] == "O"): #Draws O in the appropriate slots

19 circle1=plt.Circle ((j+0.5, -i-0.5), 0.35, color=’red’, linewidth =3.0, fill=

False)

20 plt.gca().add_patch(circle1)

21 plt.show()

22 return None

2.3 Recall some Linear Algebra

In this section, we recall some notations and concepts from Linear Algebra which we will use in this
course.

Definition 2.1. (i) A m×n-matrix is given by an array (m rows, n columns) of numbers aij ∈ R

A =

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 = (aij)1≤i≤m
1≤j≤n

.

Notation: We often just write A = (aij) if the size of A, i.e. m and n, are known from context.
By Rm×n we denote the set all of all m×n-matrices.

(ii) A (column-) vector of size n is a n×1-matrix

v =

v1...
vn

 (2.1)

and the set of all vectors of size n is denoted by Rn = Rn×1.

Definition 2.2. For matrices A = (aij), B = (bij) ∈ Rm×n and a real number λ ∈ R we define

A+B = (aij + bij) ∈ Rm×n (Sum of two matrices) ,

λA = (λaij) ∈ Rm×n (Scalar multiplication) .

In the case λ = −1 we write (−1)A = −A and A−B means A+ (−1)B.

Version 5 (November 27, 2023)
- 7 -

Mathematics for Machine Learning • Basics

The matrices A and B need to be of the same size, otherwise the sum A+B is not defined. A special
case of the addition of matrices is given by the addition of vectors. For u, v ∈ Rn and λ ∈ R we have

u =

u1...
un

 , v =

v1...
vn

 , u+ v =

u1 + v1
...

un + vn

 , λv =

λv1...
λvn

 .

Definition 2.3. The product of a matrix A = (aij) ∈ Rm×n and a vector v ∈ Rn is defined by

Av =

a11 . . . a1n
...

. . .
...

am1 . . . amn

v1...
vn

 =

a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · ·+ amnvn

 ∈ Rm .

We have: (m×n-matrix) · (vector of size n) = (vector of size m).

Proposition 2.4. For any A ∈ Rm×n, x, y ∈ Rn and λ ∈ R,

(i) A(x+ y) = Ax+Ay,

(ii) A(λx) = λ(Ax).

Definition 2.5. The transpose of a matrix A = (aij) ∈ Rm×n is the matrix AT = (aji) ∈ Rn×m.

Most of the time we will consider column vectors v as in (2.1). To save (vertical) space we often write
in the text v = (v1, . . . , vn)T ∈ Rn.

Definition 2.6. The dot-product of two vectors u, v ∈ Rn is defined by

u • v = uT v = u1v1 + · · ·+ unvn .

Definition 2.7. A subspace of Rn is a subset U ⊆ Rn that satisfies:

(i) The zero vector (identity element) is a member of U ,

(ii) If u, v ∈ U , then u+ v ∈ U (closure under addition),

(iii) For all λ ∈ R, if u ∈ U then λu ∈ U .

Definition 2.8. For a subspace U ⊂ Rn, the orthogonal complement of U is defined by

U⊥ = {v ∈ Rn | u • v = 0,∀u ∈ U} .

Proposition 2.9. Let U ⊂ Rn be a subspace. Any y ∈ Rn can be written uniquely as

y = yU + y⊥ ,

with yU ∈ U and y⊥ ∈ U⊥.

Definition 2.10. Let U ⊂ Rn be a subspace. We define the orthogonal projection onto U to be
the map

PU : Rn −→ Rn

x 7−→ xU

Version 5 (November 27, 2023)
- 8 -

Mathematics for Machine Learning • Basics of supervised learning

Definition 2.11. Let A ∈ Rm×n be a matrix.

(i) The kernel of A is defined by the set

ker(A) = {v ∈ Rn | Av = 0} .

(ii) The image of A is defined by the set

im(A) = {y ∈ Rn | Ax = y for some x ∈ Rm} .

The linear system Ax = y has a solution if and only if y ∈ im(A).

Lemma 2.12. For A ∈ Rn×m we have

(im(A))⊥ = ker(AT) .

3 Basics of supervised learning

We will start by considering supervised learning, i.e. our algorithms will learn from some training
data. For this we introduce the following notations.

Definition 3.1. Let X ,Y be arbitrary sets. In the following we will use the following notation.

(i) Input values (Feature space): X .

(ii) Output value (Label space): Y.

(iii) Training example: (x, y) ∈ X × Y.

(iv) Training set (with n training examples): T =
(
(x(1), y(1)), . . . , (x(n), y(n))

)
∈ (X × Y)n.

(v) Hypothesis: A function h : X → Y.

(vi) Learning algorithm: An algorithm to create a hypothesis h out of a training set T .

3.1 Linear regression

One simple learning algorithm is given by linear regression. In this example, we have a dataset of n = 6
students containing the time they lived in Nagoya (the feature space X) together with the number of
Tebasaki they ate (label space Y) during this time.

Weeks living in Nagoya Tebasaki eaten
2 5
7 20
13 14
16 32
22 22
27 38

Python Example 3.2. If we want to plot above data in Python we can use the following code:

Version 5 (November 27, 2023)
- 9 -

Mathematics for Machine Learning • Basics of supervised learning

Training Set

Learning
Algorithm

HypothesisX Y

Figure 3: An illustration of the process of supervised learning.

1 import numpy as np # For doing math

2 from matplotlib import pyplot as plt # For plotting

3

4 # Training set

5 Tx = np.array([2, 7, 13, 16, 22, 27])

6 Ty = np.array([5, 20, 14, 32, 22, 38])

7

8 # Draw the Training set

9 plt.figure(figsize =(10 ,8))

10 plt.plot(Tx ,Ty,’o’,markersize =10)

11

12 # Give labels to the axis

13 plt.xlabel("Weeks living in Nagoya", fontsize =18)

14 plt.ylabel("Tebasaki eaten", fontsize =18)

15

16 #Show the graph

17 plt.show()

As a result we obtain the following graph:

Version 5 (November 27, 2023)
- 10 -

Mathematics for Machine Learning • Basics of supervised learning

5 10 15 20 25
Weeks living in Nagoya

5

10

15

20

25

30

35

Te
ba

sa
ki

 e
at

en

Figure 4: Plot of the data

Looking at the plot of the data, one might think that there exists some correlation between the time
lived in Nagoya and the number of Tebasaki eaten. This correlation can be expressed as a hypothesis
function h : X → Y that predicts the number of Tebasaki eaten given the time spent in Nagoya. Then,
one might suggest that the hypothesis be a linear function defined by hθ = θ0 + θ1x for θ0, θ1 ∈ R.
We also write θ = (θ0, θ1)T ∈ R2. To add a graph of hθ to Figure 4 one can add the following code to
Python Example 3.2: plt.plot(Tx, t0+ t1*Tx) (Set t0 = θ0 and t1 = θ1 to desired values beforehand).

5 10 15 20 25
Weeks living in Nagoya

5

10

15

20

25

30

35

Te
ba

sa
ki

 e
at

en

Figure 5: The plot of the data with the graphs of hθ′ and hθ where θ′ = (22,−0.1)T and θ = (6, 1.1)T .

We will now generalize the idea of linear regression to d features. Set x = (x0, x1, x2, . . . , xd)
T ∈ Rd+1

(Recall Definition 2.5). Let us set x0 = 1, and X = Rd+1, and Y = R. Let us assume that the

Version 5 (November 27, 2023)
- 11 -

Mathematics for Machine Learning • Basics of supervised learning

hypothesis is in the form

hθ(x) := θ0 + θ1x1 + · · ·+ θdxd =

d∑
i=0

θixi = θTx (3.1)

with parameters θ = (θ0, θ1, . . . , θd)
T ∈ Rd+1.

For a given training set T =
(
(x(1), y(1)), . . . , (x(t), y(t))

)
∈ (X × Y)n, we want to determine the best

choice for the parameter θ. To do this, we need a way to judge how appropriate a parameter θ is. To
this end, we define the cost function to be a function J : X → Y that depends on the training set
T . We define the best θ to be the one which minimizes J . One example is the least-squares function

J(θ) =
1

2

n∑
j=1

(hθ(x
(j))− y(j))2 . (3.2)

3.1.1 Linear regression with gradient descent

Continuing on from the previous section, our goal is to find θ ∈ Rd+1 that minimizes J(θ). To do this,
we use a method called the gradient descent method.

The gradient of a multivariable scalar-valued function J , denoted by ∇J , is defined as the direction
of greatest change of J . It is given by the expression

∇J =

∂
∂θ0

J

∂
∂θ1

J
...

∂
∂θd

J

Algorithm 3.3 (Gradient Descent). The gradient descent algorithm, as its name suggests, tries to
find the minimum value of J by going against the gradient (the direction of steepest ascent). It is
comprised of the following steps:

(i) Start with a random starting value, e.g. θ = 0 =

0
...
0

.

(ii) Change the parameters in the opposite direction of the gradient. To do this, we subtract the a
vector proportional to the gradient from the current parameters. The proportionality constant is
called the learning rate, α ∈ R, α > 0. The new θ is therefore given by

θ := θ − α∇J(θ).

(iii) Repeat step ii) until J(θ) does not change a lot anymore.

Lemma 3.4. The jth component of the gradient of the cost function J at θ is given by

∇J(θ)j =

d∑
j=0

(hθ(x
(j))− y(j))x(j) .

J is the cost function defined in Equation (3.2), and h(θ) has the form described in Equation (3.5).

Version 5 (November 27, 2023)
- 12 -

Mathematics for Machine Learning • Basics of supervised learning

−4
−2

0
2

4 −4

−2

0

2

4

−2

−1

0

1

∇J(θ)

θ1θ0

J(θ)

Figure 6: Visualization of the first few steps of the gradient descent.

Proof. We calculate ∇J(θ)j := d∂
∂θj

J for j = 0, . . . , d.

∇J(θ)j =
∂

∂θj
J(θ) =

d∑
j=0

1

2

∂

∂θj

[(
hθ(x

(j))− y(j)
)2]

=

d∑
j=0

1

2
· 2
(
hθ(x

(j))− y(j)
)
· ∂

∂θj

[
hθ(x

(j))− y(j)
]

=

d∑
j=0

(
hθ(x

(j))− y(j)
)
· ∂

∂θj

[
d∑
i=0

θix
(i)

]

=

d∑
j=0

(
hθ(x

(j))− y(j)
)
x(j) .

By this result, step ii) in the gradient descent algorithm can be written as:

θ := θ + α

n∑
j=1

(y(j) − hθ(x(j)))x(j)

Version 5 (November 27, 2023)
- 13 -

Mathematics for Machine Learning • Basics of supervised learning

Similarly to how one would find the extrema of a function of one variable by finding the points where
the derivative vanishes, we can do the same for multivariate functions (such as the cost function). This
can be done explicitly, and in the case of linear regression, one obtains a unique solution (which is the
solution of the normal equation). This analytical approach is described in detail in [N, Section 1.2].

3.1.2 Solving linear regression with linear algebra in the case X = Y = R

We now present an alternative method of solving the problem of minimizing the cost function. This
method is based in linear algebra. Let us assume that we have a training set T ∈ (X × Y)n with
X = Y = R. If all training examples lie on a straight line, then there exists θ that satisfies

Aθ =

1 x(1)

1 x(2)

...
...

1 x(n)

(
θ0
θ1

)
=

y(1)

y(2)

...
y(n)

 = y .

For a training set T =
(
(x(1), y(1)), . . . , (x(n), y(n))

)
we define

y =

y(1)

y(2)

...
y(n)

 .

However, in an overwhelming majority of cases, there exists no such line that passes through all train-
ing examples. In this case, the linear system Aθ = y has no solutions. As such, we have to find the best
alternative : the line that minimizes the norm (distance) between the line and all training examples.

We now consider the case of d features and an training set with n training examples. This means T =(
(x(1), y(1)), . . . , (x(n), y(n))

)
with x(j) = (x

(j)
0 , x

(j)
1 , . . . , x

(j)
d) ∈ Rd+1 (where we always set x

(j)
0 = 1)

and y(j) ∈ R for j = 1, . . . , n. In this case we define the matrix A by

A =

x(1) . . . x(n)

T

=

1 x

(1)
1 . . . x

(1)
d

...
... · · ·

...

1 x
(n)
1 . . . x

(n)
d

 ∈ Rn×d+1 .

Then by the definition of the cost function J we see that we have

||Aθ − y|| is minimal ⇐⇒ J(θ) is minimal ,

since

Aθ − y =

1 x

(1)
1 . . . x

(1)
d

...
... · · ·

...

1 x
(n)
1 . . . x

(n)
d

θ0
θ1
...
θd

−
y

(1)

...
y(n)

 =

hθ(x
(1))

...
hθ(x

(n))

−
y

(1)

...
y(n)

 =

hθ(x
(1))− y(1)

...
hθ(x

(n))− y(n)

Version 5 (November 27, 2023)
- 14 -

Mathematics for Machine Learning • Basics of supervised learning

and therefore

||Aθ − y||2 =

n∑
j=1

(hθ(x
(j))− y(j))2 = 2J(θ) .

And therefore J(θ) is minimal exactly when ||Aθ − y|| is minimal.

Proposition 3.5. If θ ∈ Rd+1 is a solution to

ATAθ = AT y , (3.3)

then ||Aθ − y|| is minimal and consequently J(θ) is minimal.

Proof. We want to find θ such that δ = ||Aθ − y|| is minimized. We note that δ ≥ 0, and δ = 0 iff
∃y such that Aθ = y. The closest point from the line (that is in the image of A) is achieved when
Aθ = Pim(A)(y). Since Aθ = Pim(A)(y), we have that Aθ − y ∈ im(A)⊥ = ker(AT). Therefore,

AT (Aθ − y) = 0 ⇐⇒ ATAθ −AT y = 0 ⇐⇒ ATAθ = AT y .

In the proposition above, θ is not necessarily unique (there might be multiple solutions to Equation
(3.3)). Also note that the matrix A is not necessarily invertible.

Proposition 3.6. If ker(A) = {0}, then ATA is invertible.

Proof. We observe that ATA is a square matrix. Due to this, it is invertible if and only if

ker(ATA) = {0} .

Let x ∈ ker(ATA). Then we have that:

ATAx = 0 =⇒ xTATAx = 0

=⇒ (Ax)T (Ax) = 0

=⇒ (Ax) • (Ax) = 0

=⇒ Ax = 0 .

Thus, x ∈ ker(A), but ker(A) = {0}, so x = 0. Thus, ker(ATA) = {0}, and thus ATA is invertible.

As a result, if ker(A) = {0}, a unique solution to Equation (3.3) exists and is given by

θ = (ATA)−1AT y . (3.4)

We obtain this equation by multiplying equation (3.3) by (ATA)−1 from the left. Most of the time, the
matrix A has more rows than columns, and due to this, the columns are usually linearly independent.
As a result, we can often use equation (3.4).

Example 3.7. We give an explicit example. Let

A =

1 1
1 2
1 3

 y =

3
0
0

Version 5 (November 27, 2023)
- 15 -

Mathematics for Machine Learning • Basics of supervised learning

The linear system Aθ = y has no solutions θ ∈ R2, but we can try to find the orthogonal projection of
y onto im(A). Recall, that we can calculate the image of A, by bringing the augmented matrix (A | z)
for z = (z1, z2, z3)T onto row-reduced echelon form.1 1 z1

1 2 z2
1 3 z3

 ∼
1 1 z1

0 1 z2 − z1
0 2 z3 − z1

 ∼
1 1 z1

0 1 z2 − z1
0 0 z3 − z1 − 2(z2 − z1)

 ∼
1 0 2z1 − z2

0 1 z2 − z1
0 0 z3 + z1 − 2z2

So the elements z = (z1, z2, z3)T in the image of A are exactly those with z3 = 2z2 − z1, since then
z3 + z1 − 2z2 = 0. Let v = (1,−2, 1)T . Then,

im(A) =
{
z ∈ R3 | z • v = 0

}
= span{v}⊥

According to Lemma 2.12, this should equal ker(AT). To prove this, we need to bring the augmented
matrix (AT | 0) onto row-reduced echelon form.

(AT | 0) =

(
1 1 1 0
1 2 3 0

)
∼
(

1 1 1 0
0 1 2 0

)
∼
(

1 0 −1 0
0 1 2 0

)
From this, we conclude that ker(AT) = span{v} = im(A)T . We then separate y into yim(A) (component
of y that lies in im(A)) and y⊥, the component of y perpendicular to im(A). We have that3

0
0

 =

 u
v

2v − u

+

 t
−2t
t

Notice that (1, 1, 1)T ∈ im(A). By linearity of the scalar product,

y •

1
1
1

 =

 u
v

2v − u

 •
1

1
1

+

 t
−2t
t

 •
1

1
1

 ⇐⇒ 3 = u+ v + 2v − u =⇒ v = 1.

From this, we have that t = v
2 = 0.5, and that u = 3− t = 2.5. Therefore, we conclude that

Pim(A)(y) =

 2.5
1
−0.5

 .

Next, we would like to use the normal equation. Since the columns of A are linearly independent, we
can use equation (3.4) to directly compute Aθ = Pim(A)(y). We obtain

θ = A(ATA)−1AT y =

1 1
1 2
1 3

(3 6
6 14

)−1(
1 1 1
1 2 3

)3
0
0

 =

 2.5
1
−0.5

 .

As such, we have proven that both methods will yield the same result (albeit the second method would
be faster and better-suited for computers).

3.1.3 Solving linear regression with linear algebra in the case X = Rd,Y = Rm

Version 5 (November 27, 2023)
- 16 -

Mathematics for Machine Learning • Basics of supervised learning

{
Todo: Write out the general idea here

}
Assume we have a training set T =

(
(x(1), y(1)), . . . , (x(n), y(n))

)
∈

(X × Y)n and want to describe it by a hypothesis of the form

hθ(x) := θ0 + θ1x1 + · · ·+ θdxd =

d∑
i=0

θixi = θTx (3.5)

with parameters θ = (θ0, θ1, . . . , θd)
T ∈ Rd+1 and x ∈ Rd+1 (with x0 = 1).

3.1.4 Linear regression for polynomial interpolation{
Todo: mention that linear regression can not only be used for hypothesis of the form hθ(x) =∑d

i=0 θixi, but in general for for something like hθ(x) =
∑d
i=0 θifi(xi), where fi can be actually an

arbitrary function (e.g. they could be polynomials or log/exp).
}

3.2 Logistic regression

In this section we will discuss logistic regression. While it has a similar name to linear regression, it is
used mostly in binary classification (which is not a form of regression).

Classification is a process of (using training examples) to build a function to classify data into discrete
classes. This is in contrast with regression, where the goal is to predict continuous values.

Binary classification is a type of classification where our label space is given by Y = {0, 1}. In other
words, there are only two possible outcomes.

Let us now describe an example where logistic classification may be used. Set the feature space X to
be the hours spent studying for the exam and the label space Y to be {0, 1} where y = 0 represents
the student failing the exam, while y = 1 represents the student passing the exam.

Figure 7: Training set with sux training examples.

We notice that a linear function like in Linear Regression will not be a good hypothesis for the data.

Version 5 (November 27, 2023)
- 17 -

Mathematics for Machine Learning • Basics of supervised learning

A function whose form fits the data is the logistic function S defined by

S(x) =
1

1 + e−x
,

and its graph looks as follows

6 4 2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: The graph of the logistic function S(x) for −6 ≤ x ≤ 6.

The logistic function is an example of a sigmoid function, which in general denote bounded, differen-
tiable, real functions that are defined for all real input values and that have a non-negative derivative
at each point and exactly one inflection point (ELI5: functions which look like an ”S”). They can be
used to give an interpolation between 0 and 1.

The model for the hypothesis in the logistic regression case is given by

hθ(x) = S(θTx) =
1

1 + e−θT x
,

where θ ∈ Rd+1 are the parameters we want to find.

In the d = 1 the hypothesis is given by

hθ(x) = S(θ0 + θ1x1) =
1

1 + e−θ0−θ1x1
,

Recall (or just learn) that P (A|B) refers to the conditional probability that event A occurs, given that
event B occurred. For fixed θ, the hypothesis hθ(x) can be interpreted as the conditional probability
of passing the exam (y = 1) assuming that one studied x hours.

P (y = 1 | x; θ) = hθ(x) .

The probability of failing the exam is therefore:

P (y = 0 | x; θ) = 1− hθ(x) .

We can combine both into one single function, which gives back the above cases for y ∈ {0, 1}:

P (y | x; θ) = hθ(x)y · (1− hθ(x))1−y .

Version 5 (November 27, 2023)
- 18 -

Mathematics for Machine Learning • Basics of supervised learning

Figure 9: The plot of the training set and the hypothesis (sigmoid) function.

For a training set T =
(
(x(1), y(1)), . . . , (x(n), y(n))

)
, we define the likelihood of θ by

L(θ) =

n∏
j=1

P (y(j) | x(j); θ) =

n∏
j=1

hθ(x
(j))y

(j)

· (1− hθ(x(j)))1−y
(j)

L(θ) =

n∏
j=1

P (y(j) | x(j); θ) =

n∏
j=1

hθ(x
(j))y

(j)

· (1− hθ(x(j)))1−y
(j)

The log likelihood of θ is given by

`(θ) = logL(θ) =

n∑
j=1

(
y(j) log hθ(x

(j)) + (1− y(j)) log
(

1− hθ(x(j))
))

Maximize this function by using gradient ascent

θ := θ + α∇`(θ).

We need to calculate the gradient

∇`(θ) =

∂
∂θ0

`(θ)
∂
∂θ1

`(θ)
...

∂
∂θd

`(θ)

Version 5 (November 27, 2023)
- 19 -

Mathematics for Machine Learning • Basics of supervised learning

Lemma 3.8. The logistic function satisfies the following differential equation

S′(x) = S(x)(1− S(x)) .

Proof. We differentiate S with respect to x by the chain rule:

S′(x) =
d

dx

[
1

1 + e−x

]
= −

(
1

1 + e−x

)2
d

dx

[
1 + e−x

]
=

(
1

1 + e−x

)
·
(

e−x

1 + e−x

)
=

(
1

1 + e−x

)
·
(

1− 1

1 + e−x

)
= S(x)(1− S(x)).

Proposition 3.9. The gradient of the log likelihood function ` is given by

∇`(θ) =

n∑
j=1

(
y(j) − hθ(x(j))

)
x(j) .

Proof. We need to show that for i = 0, . . . , d we have

∂

∂θi
`(θ) =

n∑
j=1

(
y(j) − hθ(x(j))

)
x
(j)
i .

We take the derivative of ` with respect to θi:

∂

∂θi
`(θ) =

n∑
j=1

(
y(j)

∂

∂θi

[
lnhθ(x

(j))
]

+ (1− y(j)) ∂

∂θi

[
ln
(

1− hθ(x(j))
)])

=

n∑
j=1

(
y(j)

1

hθ(x(j))

∂

∂θi

[
hθ(x

(j))
]

+
(1− y(j))

1− hθ(x(j))
∂

∂θi

[
1− hθ(x(j))

])

=

n∑
j=1

(
y(j)

h′θ(x
(j))

hθ(x(j))
+

(y(j) − 1)h′θ(x
(j))

1− hθ(x(j))

)
x
(j)
i

=

n∑
j=1

(
y(j)h′θ(x

(j))(1− hθ(x(j))) + (y(j) − 1)h′θ(x
(j))hθ(x

(j))

hθ(x(j))(1− hθ(x(j)))

)
x
(j)
i

Note that hθ(x
(j)) = S(θTx), so h′θ(x

(j)) = hθ(x
(j))(1− hθ(x(j))). Thus, we have

∂

∂θi
`(θ) =

n∑
j=1

(
y(j) − y(j)hθ(x(j)) + y(j)hθ(x

(j))− hθ(xj)
)
x
(j)
i =

n∑
j=1

(
y(j) − hθ(x(j))

)
x
(j)
i .

The update rule for the gradient ascent is therefore

θ := θ + α∇`(θ) = θ + α

n∑
j=1

(
y(j) − hθ(x(j))

)
x(j)

Version 5 (November 27, 2023)
- 20 -

Mathematics for Machine Learning • Basics of supervised learning

Python Example 3.10. We can implement this method in Python using the following code:

1 import numpy as np # For doing math

2 from matplotlib import pyplot as plt # For plotting

3

4 # Training set

5 Tx = np.array([0, 1,3, 7, 10 ,11 ,16 ,17 ,18 ,22 ,28 ,32])

6 Ty = np.array([0, 0, 0, 0, 1,0,1,1,1,1,1,1])

7

8 # Hypothesis h_theta(x)

9 # If we have d features , we expect x to be of length d+1, with x[0]=1.

10 def h(theta , x):

11 return (1/(1+ np.exp(- np.transpose(theta).dot(x))))

12

13 # Number of training examples

14 n = len(Tx)

15

16 # Log likehihood in the d=1 case (just one feature given as the entries in Tx)

17 def loglike(theta):

18 ret=0

19 for j in range(n):

20 ret+= Ty[j]*np.log(h(theta ,[1,Tx[j]])) + (1-Ty[j])*np.log(1.0 - h(theta ,[1,Tx[

j]]))

21 return(ret)

22

23 # The (normalized) gradient for the log likelihood at a theta

24 def gradient(theta):

25 g=np.array ([0.0 ,0])

26 for j in range(len(Tx)):

27 g[0]+= (Ty[j] - h(theta ,[1,Tx[j]]))*1

28 g[1]+= (Ty[j] - h(theta ,[1,Tx[j]]))*Tx[j]

29 return(g/np.linalg.norm(g))

30

31 # We now start the Gradient Ascent method.

32 # Start with some value for theta

33 theta=np.array ([-10 ,0])

34

35 listt0 = np.array ([])

36 listt1 = np.array ([])

37

38 # learning rate

39 alpha =0.1

40

41 # number of steps

42 steps = 20000

43

44 # gradient ascent

45 for s in range(steps):

46 listt0 = np.append(listt0 ,theta [0]) # save data for drawing

47 listt1 = np.append(listt1 ,theta [1])

48 theta = theta + alpha*gradient(theta)

49

50 print("Gradient ascent gives after",steps ,"steps: ", theta)

3.3 Naive Bayes

All learning algorithms we considered so far are examples of so-called discriminative learning al-
gorithms. This means that we tried to learn the probability P (y | x), where y was a label and x
a feature. In other words: Discriminative learning algorithms learn how likely a label is for a given

Version 5 (November 27, 2023)
- 21 -

Mathematics for Machine Learning • Basics of supervised learning

feature (e.g. how likely is it, that a student passed the exam y = 1, given that the student studied x
hours?). We did this by learning an explicit hypothesis hθ : X → Y.

In contrast, a so-called generative learning algorithm learns P (x | y), i.e. the probability that a
feature appears given a label (class). So in the exam example, we might ask how the learning hours
look like for a student who passes the exam. In addition, a generative learning algorithm will also learn
P (y), the probability that a certain label appears (e.g. how likely is it in general that an arbitrary
student passes the exam?).

The natural question which arises is: ”How does knowing P (x | y) and P (y) help us when our goal is
to assign a class y to a given feature x ?” The answer to this lies in Bayes Rule, which states that

P (y | x) =
P (x | y)P (y)

P (x)
.

Let us now introduce the notion of conditionally independent variables. Let A, B and C be events.
A and B are conditionally independent given C if given knowledge that C occurs, knowledge on A
provides no information on B, and knowledge on B provides no knowledge of A.

As an example, let A be ”ability to do math”, B be ”foot size”, and C be ”age”. A and B are not
independent, since the foot size of a person hints at their age, which provides some knowledge on ability
to do math. However, A and B are conditionally independent given C since if we know someone’s age
(C), knowing their ability to do math gives no information on their foot size, and vice versa.

We now introduce the chain rule for probabilities, which states that for events A and B,

P (A,B) = P (A | B)P (B),

where P (A,B) is the probability that both A and B occurs, P (A | B) is the conditional probability of
A given B, and P (B) the probability of B.

We now give an example of a generative learning algorithm. In this algorithm, we use the Naive
Bayes assumption, which asserts that all features are conditionally independent given the label. If
x1, x2 are conditionally independent over y, then we have:

P (x1 | y, x2) = P (x1 | y) .

We then find an expression for P (x | y). We do this by using the chain rule:

P (x | y) = P (x1, . . . , xd | y) =
d∏
i=1

P (xi | y).

The model is then parameterized by the following:

φi|y=0 = P (xi = 1 | y = 0), φi|y=1 = P (xi = 1 | y = 1) and φy=1 = P (y = 1).

By Bayes’ rule we get (for a feature x ∈ X):

P (y = 1 | x) =
P (x | y = 1)P (y = 1)

P (x)
.

We calculate P (x) by the following:

P (x) = P (x | y = 0)P (y = 0) + P (x | y = 1)P (y = 1).

Version 5 (November 27, 2023)
- 22 -

Mathematics for Machine Learning • Basics of supervised learning

X Y
1 Do math today 0
2 Buy 1
3 Buy book 0
4 Today do math drugs 1
5 Buy drugs book today 1

Example 3.11. An example is email spam filtering. Here, the feature space X are emails, and the
labels are not spam (y = 0) and spam (y = 1). The table below gives the training set for this algorithm:

We now tabulate the probabilities that certain words appear in spam or not spam emails:

i appears in non-spam: P (xi = 1 | y = 0) appears in spam: P (xi = 1 | y = 1)

1 book 1
2

1
3

2 buy 1
2

2
3

3 do 1
2

1
3

4 drugs 0 2
3

5 math 1
2

1
3

6 today 1
2

2
3

When we get a new feature (i.e. someone sends us an email) x = (x1, . . . , xd) ∈ X , we want to calculate
the probability that this new email is spam. We do this by calculating for each word i = 1, . . . , d the
probabilities

P (xi = 1 | y = 1) = φi|y=1 , P (xi = 1 | y = 0) = φi|y=0 ,

P (xi = 0 | y = 1) = 1− φi|y=1 , P (xi = 0 | y = 0) = 1− φi|y=0 .

We define the indicator function I for a statement S by

I(S) =

{
1 , S is true

0 , S is false
.

Given a training set T =
(
(x(1), y(1)), . . . , (x(n), y(n))

)
we can calculate them by

φi|y=1 =

∑n
j=1 I(x

(j)
i = 1 ∧ y(j) = 1)∑n

j=1 I(y(j) = 1)

φi|y=0 =

∑n
j=1 I(x

(j)
i = 1 ∧ y(j) = 0)∑n

j=1 I(y(j) = 0)

φy=1 =
1

n

n∑
j=1

I(y(j) = 1)

The probability of a new email x = (x1, . . . , xd)
T being spam is then

P (y = 1 | x) =
P (x | y = 1)P (y = 1)

P (x)

Version 5 (November 27, 2023)
- 23 -

Mathematics for Machine Learning • Basics of supervised learning

=

∏d
i=1 P (xi | y = 1) · φy=1∏d

i=1 P (xi | y = 1) · φy=1 +
∏d
i=1 P (xi | y = 0)(1− φy=1)

.

Example 3.12 (Continuation of Example 3.11). We now want to calculate the probability that the
email ”Buy books today” is spam. We consider the feature (in this case, X = {0, 1}d, where d is the
number of words in dictionary).

x =

1
1
0
0
0
1

 ∈ X = {0, 1}6

Using the formulae given above, we obtain the following result:

P (y = 1) = φy=1 =
3

5
P (y = 0) = 1− φy=1 =

2

5
.

Using the data in the table we can read off P (xi = 1 | y = a) = φi|y=a and P (xi = 0 | y = a) = 1− φi|y=a
for a ∈ {0, 1} and get

d∏
i=1

P (xi | y = 0) =
1

2
· 1

2
·
(

1− 1

2

)
· (1− 0) ·

(
1− 1

2

)
· 1

2
=

1

2
· 1

2
· 1

2
· 1 · 1

2
· 1

2
=

1

32
,

d∏
i=1

P (xi | y = 1) =
1

3
· 2

3
·
(

1− 1

3

)
·
(

1− 2

3

)
·
(

1− 1

3

)
· 2

3
=

1

3
· 2

3
· 2

3
· 1

3
· 2

3
· 2

3
=

16

729
.

Using the formula we have for P (y = 1 | x), we obtain

P (y = 1 | x) =
16
729 ·

3
5

16
729 ·

3
5 + 1

32 ·
2
5

=
256

499
≈ 0.51

and therefore the probability that the email ”Buy books today” is spam is 51%.

Above approach has an obvious problem: What if we encounter an email which contains a word we
do not know? If we would just add this word to our dictionary, then the probabilities of this word
appearing in a spam and in a non-spam email would be 0, which in the end would lead to the non-
defined expression P (y = 1 | x) = 0

0 . Similarly since P (x4 = 1 | y = 0) = 0, any email that contains
the word ’drugs’ is spam. These examples illustrates the problem of zero probability. The basic idea to
fix this, is to assume that every event has a non-zero probability. This is called Laplace smoothing,
which assigns a non-zero probability to any event. Instead of the parameters described above, we use
the following parameters:

φ̃i|y=1 =
1 +

∑n
j=1 I(x

(j)
i = 1 ∧ y(j) = 1)

2 +
∑n
j=1 I(y(j) = 1)

φ̃i|y=0 =
1 +

∑n
j=1 I(x

(j)
i = 1 ∧ y(j) = 0)

2 +
∑n
j=1 I(y(j) = 0)

Version 5 (November 27, 2023)
- 24 -

Mathematics for Machine Learning • Basics of supervised learning

and then use

P (xi = 1 | y = 1) = φ̃i|y=1 , P (xi = 1 | y = 0) = φ̃i|y=0 ,

P (xi = 0 | y = 1) = 1− φ̃i|y=1 , P (xi = 0 | y = 0) = 1− φ̃i|y=0 .

to calculate

P (y = 1 | x) =

∏d
i=1 P (xi | y = 1) · φy=1∏d

i=1 P (xi | y = 1) · φy=1 +
∏d
i=1 P (xi | y = 0)(1− φy=1)

.

One possible interpretation of this is that we add 4 imaginary emails:

(i) A spam email which contains every word.

(ii) A spam email which does not contain any word.

(iii) A non-spam email which contains every word.

(iv) A non-spam email which does not contain any word.

Therefore it makes sense to add 2 to the denominator of φ̃i|y=1 (resp. φ̃i|y=0), since it counts the
number of spam (resp. non-spam) emails. Adding 1 to the numerator also makes sense, since out of
the 4 new emails just one of them contains the word and is spam (resp. non-spam). Notice that we
will not give another value for φy=1, since 1

n

∑n
j=1 I(y(j) = 1) is usually always non-zero and not 1

as long as there are spam and non-spam emails in our training set (which should be the case for any
usable training set).

Example 3.13 (Continuation II of Example 3.11). The values for these parameters are given in the
table below:

i φ̃i|y=0 φ̃i|y=1

1 1/2 2/5

2 1/2 3/5

3 1/2 2/5

4 1/4 3/5

5 1/2 2/5

6 1/2 3/5

Then the products of the probabilities are given by P (xi = 1 | y = a) = φ̃i|y=a and P (xi = 0 | y = a) = 1− φ̃i|y=a
for a ∈ {0, 1}, i.e. we get

d∏
i=1

P (xi | y = 0) =
1

2
· 1

2
·
(

1− 1

2

)
·
(

1− 1

4

)
·
(

1− 1

2

)
· 1

2
=

1

2
· 1

2
· 1

2
· 3

4
· 1

2
· 1

2
=

3

128
,

d∏
i=1

P (xi | y = 1) =
2

5
· 3

5
·
(

1− 2

5

)
·
(

1− 3

5

)
·
(

1− 2

5

)
· 3

5
=

2

5
· 3

5
· 3

5
· 2

5
· 3

5
· 3

5
=

324

15625
.

Using the formula for the probability of P (y = 1 | x), we obtain

P (y = 1 | x) =

∏d
i=1 P (xi | y = 1) · φy=1∏d

i=1 P (xi | y = 1) · φy=1 +
∏d
i=1 P (xi | y = 0)(1− φy=1)

Version 5 (November 27, 2023)
- 25 -

Mathematics for Machine Learning • Basics of supervised learning

=
324

15625 ·
3
5

324
15625 ·

3
5 + 3

128 ·
2
5

≈ 0.57 ,

and therefore the new prediction is that the email ”Buy books today” is 57% spam.{
Todo: include Python examples (e.g. Fall 2022, Lecture 7 Notebook, https://colab.research.

google.com/drive/1XU8NcIWbf1io_dDbMKLKqnKuy9MmNqu2?usp=sharing)
}

3.4 Gaussian Discriminant Analysis

We will now sketch another variant of the Naive Bayes algorithm. In this algorithm, we assume that
P (x | y) is distributed according to a multivariate normal distribution.

In a lot of real life scenarios a normal (or also called Gaussian) distribution appears. In the one
dimensional case (x ∈ R) this means, that we have the following probability density function

p(x;µ, σ) =
1√
2πσ

e−
1
2 (x−µσ)

2

,

where µ ∈ R is the mean and σ ∈ R is the standard deviation.

In d-dimension the normal distribution N (µ,Σ), called multivariate normal distribution, is pa-
rameterized by a mean vector µ ∈ Rd and a covariance matrix Σ ∈ Rd×d, where Σ is symmetric
and positive semi-definite. The density function is given by

p(x;µ,Σ) =
1

(2π)
d
2

√
det(Σ)

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

By x ∼ N (µ,Σ) we mean that the variable x follows a multivariate normal distribution with mean
vector µ and covariance matrix Σ.

For the Gaussian discriminant analysis (GDA) model we assume that we have d features, i.e.
X = Rd, and again two labels Y = {0, 1}. We want to model again p(x | y) by assuming that

y ∼ Bernoulli(φ) ,

x | y = 0 ∼ N (µ0,Σ) ,

x | y = 1 ∼ N (µ1,Σ)

for some µ0, µ1 ∈ Rd, Σ ∈ Rd×d and φ ∈ R, i.e. we have

p(x|y = 0) =
1

(2π)
d
2

√
det(Σ)

exp

(
−1

2
(x− µ0)TΣ−1(x− µ0)

)
,

p(x|y = 1) =
1

(2π)
d
2

√
det(Σ)

exp

(
−1

2
(x− µ1)TΣ−1(x− µ1)

)
.

Here y ∼ Bernoulli(φ) means y follows a Bernoulli distribution, which just means that p(y = 1) = φ
and p(y = 0) = 1− φ, which we can again write compactly as

p(y) = φy(1− φ)1−y .

Version 5 (November 27, 2023)
- 26 -

https://colab.research.google.com/drive/1XU8NcIWbf1io_dDbMKLKqnKuy9MmNqu2?usp=sharing
https://colab.research.google.com/drive/1XU8NcIWbf1io_dDbMKLKqnKuy9MmNqu2?usp=sharing

Mathematics for Machine Learning • Basics of supervised learning

The goal now is again to find the best possible parameters µ0, µ1 ∈ Rd, Σ ∈ Rd×d and φ ∈ R for a
given training set.

Given a training set T =
(
(x(1), y(1)), . . . , (x(n), y(n))

)
∈ (X × Y)n we define the log-likelihood by

`(φ, µ0, µ1,Σ) = log

n∏
i=1

p(x(i), y(i);φ, µ0, µ1,Σ)

= log

n∏
i=1

p(x(i)|y(i);µ0, µ1,Σ)p(y(i);φ) .

This measures how likely the parameters φ, µ0, µ1,Σ are for the given training set.

Proposition 3.14. The log-likelihood gets maximized by choosing the following parameters

φ =
1

n

n∑
i=1

I(y(i) = 1) ,

µc =

∑n
i=1 I(y(i) = c)x(i)∑n
i=1 I(y(i) = c)

, (c ∈ {0, 1})

Σ =
1

n

n∑
i=1

(x(i) − µy(i))(x(i) − µy(i))T .

Proof.
{

Todo: Find maxima by setting derivative (gradient) to zero
}

.

Version 5 (November 27, 2023)
- 27 -

Mathematics for Machine Learning • Neural Networks

4 Neural Networks

In the realm of machine learning and artificial intelligence, the ultimate aim is often to find ways
to accurately approximate or model complex functions that map from Rn to Rm. These functions
may represent anything from simple linear regressions to intricate relationships governing natural
phenomena or financial markets.

4.1 Multi-layer fully connected feedforward neural networks

In this first section, our primary focus will be on multi-layer fully connected feedforward neural
networks. A multi-layer fully connected feedforward neural network consists of an input layer, one
or more hidden layers, and an output layer, where each neuron in a layer is connected to every neuron
in the adjacent layers, and information moves in a single direction—from the input layer through the
hidden layers to the output layer, without any cycles (see Figure 10). We will just refer to them as
neural networks in the following.

Note that some methods we’ve already explored can be considered special cases within this broader
framework. For instance, logistic regression, covered in Section 3.2, can be thought of as a neural
network with just a single neuron in the output layer. In this simplified model, the input features are
linearly combined using weighted sums followed by a bias term, much like the hidden layers in a more
complex neural network. This linear combination then undergoes a non-linear transformation via an
activation function, often the logistic sigmoid function, to produce the output.

Definition 4.1. (i) An activation function is a (usually non-linear) function σ : Rn → Rn. Often
activation functions are given as functions σ : R → R, which are then extended to a function
σ : Rn → Rn by setting

σ

x1...
xn

 :=

σ(x1)
...

σ(xn)

 .

(ii) The rectified linear unit (ReLU) is the activation function defined for x ∈ R by

ReLU(x) = max{0, x}.

(iii) The sigmoid function is the activation function defined for x ∈ R by

S(x) =
1

1− e−x
.

(iv) The softmax function is given

softmax : Rn → Rn,x1...
xn

 7−→
y1...
yn

 ,

where yi = exi∑n
j=1 e

xj for i = 1, . . . , n.

Version 5 (November 27, 2023)
- 28 -

Mathematics for Machine Learning • Neural Networks

A neuron consists of a weight vector w ∈ Rn, a bias b ∈ R and an activation function σ : R→ R. A
layer will consists of a collection of neurons and we will usually assume that each neuron in a given
layer has the same activation function. Collecting all weight vectors and biases of the neurons in a
layer will give rise to a weight matrix and bias vector. Instead of viewing neurons as a single object
we therefore just consider layers at a whole.

Definition 4.2. A (dense) layer L = (W, b, σ) of input size n ≥ 1 and (output) size m ≥ 1 consists
of

(i) a weight matrix W ∈ Rm×n,

(ii) a bias vector b ∈ Rm,

(iii) and an activation function σ : Rm → Rm.

Definition 4.3. For r ≥ 1 a r-layer neural network N = (L[1], . . . , L[r]) of input size n and
output size m, consists of a collection of layers L[i] = (W [i], b[i], σ[i]) for i = 1, . . . , r, such that
W [i] ∈ Rmi×mi−1 with m0 = n and mr = m.

The following shows an example of a 3-layer neural network with input size 5 and output size 1 and
m0 = 5,m1 = 3,m2 = 2, and m3 = 1:

Input layer (layer 0) Layer 1 Layer 2 Output layer (Layer 3)

Parameters

Figure 10: An example of a neural network with (3 · 5 + 3) + (2 · 3 + 2) + (1 · 2 + 1) = 29 parameters.

Definition 4.4. Let N = (L[1], . . . , L[r]) be a r-layer neural network of input size n and output size
m. We want to view it as a function N : Rn → Rm by defining N(x) for an input x ∈ Rn by the
output of its last layer N(x) = a[r]. Here we define for i = 1, . . . , r the following:

(i) The linear part of the layer L[i] is defined by

z[i] = W [i]a[i−1] + b[i],

where a[i−1] ∈ Rmi−1 is the output from the previous layer. In the case i = 1 we set a[0] = x.

(ii) The output of the layer L[i] is defined by applying the activation function to the linear part, i.e.

a[i] = σ[i](z[i]) ∈ Rmi

Version 5 (November 27, 2023)
- 29 -

Mathematics for Machine Learning • Neural Networks

Evaluating a neural network N at an input x as in above definition is called forward pass. In
particular, for any input x we can always evaluate the values z[i], a[i] for all layers i = 1, . . . , r.

4.2 Training the neural network: Backpropagation

Our neural network is supposed to approximate a function f : Rn → Rm(In the example n = 5 and
m = 1). So we want to find the best possible choices of paramters (i.e. weight matrices and biases)
such that N(x) is a good approximation for f(x). Recall that we had the following notation (notice
that we now use t for the number of training examples, since we use n for the dimension of the feature
space):

• Input values (Feature space): X = Rn

• Output value (Label space): Y = Rm

• Training example: (x, y) ∈ X × Y.

• Training set (with t training examples): T =
(
(x(1), y(1)), . . . , (x(t), y(t))

)
∈ (X × Y)t.

• Learning algorithm: An algorithm to create a hypothesis h out of a trainings set T .

Given a training set T , a cost function is a map from the space of parameters to R, which measures
how good the current parameters are with respect to the training set.

For example, in Figure 10 we have 29 parameters, i.e. a cost function J : R29 → R, which we want to
minimize.

In this case we need to calculate the gradient of J

∇J =

∂
∂θ1

J

∂
∂θ2

J
...

∂
∂θ29

J

Suppose we have a training set T =

(
(x(1), y(1)), . . . , (x(t), y(t))

)
∈ (X × Y)t.

For a neural network N , we will think of the collection of all weight matrices and biases as a vector
θ ∈ Rd, called the parameters. For example, θ1 could be the top left entry of the first weight matrix.
The output of a neural network depends on the current choice of θ and therefore we write Nθ.

For example, we could use the sum of squares as a cost function

J(θ) =
1

2

t∑
j=1

∥∥∥Nθ(x(j))− y(j)∥∥∥2 .
Example 4.5. We will start with a simple one dimensional example, i.e. we assume that each layer
just has one neuron. Consider now a 2-layer neural network with two layers of size 1.

a[0] a[1] a[2]

Version 5 (November 27, 2023)
- 30 -

Mathematics for Machine Learning • Neural Networks

This means, we have four parameters w[1], w[2], b[1], b[2] ∈ R and we could write the parameter vector θ
and the gradient of J as

θ =

θ1

θ2

θ3

θ4

 =

w[1]

b[1]

w[2]

b[2]

 , ∇J =

∂J
∂w[1]

∂J
∂b[1]

∂J
∂w[2]

∂J
∂b[2]

 .

Let us now assume that we have one training example, i.e. T = ((x, y)) ∈ (R × R)1. In this case,

the cost function is just J(θ) = 1
2 (Nθ(x)− y)

2
. To calculate the gradient ∇J , we therefore want to

understand the dependence of J on the parameters w[1], w[2], b[1], b[2] ∈ R, which can be done using the
usual chain rule: Since we have

J(θ) =
1

2
(Nθ(x)− y)

2
=

1

2

(
a[2] − y

)2
,

a[2] = σ[2](z[2]),

z[2] = W [2]a[1] + b[2]

we get, for example (by using the Leibniz notation for the chain rule),

∂J

∂b[2]
=

∂J

∂a[2]
· ∂a

[2]

∂z[2]
· ∂z

[2]

∂b[2]

= (a[2] − y) ·
(
σ[2]
)′

(z[2]) · 1.

Similarly, we get

∂J

∂W [2]
=

∂J

∂a[2]
· ∂a

[2]

∂z[2]
· ∂z

[2]

∂W [2]

= (a[2] − y) ·
(
σ[2]
)′

(z[2]) · a[1].

Notice that in the second calculation we can use the result for δ[2] := ∂J
∂a[2]

· ∂a
[2]

∂z[2]
from the calculation

before, i.e. ∂J
∂W [2] = δ[2] · a[1]. This already gives the two lowest entries of ∇J . For the other two, we

can do a similar calculation and get

∂J

∂b[1]
=

∂J

∂a[2]
· ∂a

[2]

∂z[2]︸ ︷︷ ︸
δ[2]

·∂z
[2]

∂a[1]
· ∂a

[1]

∂z[1]
· ∂z

[1]

∂b[1]

= δ[2] ·W [2] ·
(
σ[1]
)′

(z[1]) · 1.

Again, it is useful to set δ[1] = ∂J
∂z[1]

. Above calculation then reads

Now we want to generalize this example and explain how to calculate the gradient for arbitrary neural

networks. As a shorthand, for a vector x =

x1
...

xn

 ∈ Rn and a function f that is differentiable with

Version 5 (November 27, 2023)
- 31 -

Mathematics for Machine Learning • Neural Networks

respect to xi for all 1 ≤ i ≤ n, we define the derivative ∂f
∂x to be

∂f

∂x
:=

∂f
∂x1

...

∂f
∂xn

 .

More generally, for a matrix Y =

y1,1 . . . y1,n

...
. . .

...

ym,1 . . . ym,n

 ∈ Mm×n(R) and a function f that is differen-

tiable with respect to yi,j for all 1 ≤ i ≤ r, 1 ≤ j ≤ s, we define the derivative ∂f
∂Y to be

∂f

∂Y
:=

∂f
∂y1,1

. . . ∂f
∂y1,s

...
. . .

...

∂f
∂yr,1

. . . ∂f
∂yr,s

 .

We will also use � to represent element-wise multiplication. In other words, for two vectors of the

same dimension v =

v1

v2
...

vn

 , w =

w1

w2

...

wn

 ∈ Rn, we have

v � w =

v1 · w1

v2 · w2

...

vn · wn

 .

Besides these notations we will need the following generalization of the chain rule in order to describe
Backpropagation for arbitrary neural networks:

Lemma 4.6. (General chain rule) Suppose the variable J depends on the variables θ1, . . . , θp via the
intermediate variables g1, . . . , gk:

gj = gj(θ1, . . . , θp), ∀j ∈ {1, . . . , k}.

J = J(g1, . . . , gk).

Here we overload the meaning of gj’s: they denote both the intermediate variables but also the functions
used to compute the intermediate variables. Then we have for all i = 1, . . . , p

∂J

∂θi
=

k∑
j=1

∂J

∂gj

∂gj
∂θi

(7.29)

Version 5 (November 27, 2023)
- 32 -

Mathematics for Machine Learning • Neural Networks

Proof. See your favorite Calculus 2 lecture.

Proposition 4.7. Let N = (L[1], . . . , L[r]) be a r-layer neural network. For 1 ≤ i ≤ r, we define

δ[i] :=
∂J

∂z[i]
.

Then

δ[r] =
∂J

∂a[r]
� (σ[i])′(z[r])

and for 1 ≤ i < r, we have

δ[i] =
(
W [i+1]T δ[i+1]

)
� (σ[i])′(z[i]).

Proof. The equation for δ[r] follows immediately from the chain rule.

Denote by mi the size of layer Li and let i, k be integers such that 1 ≤ i < r and 1 ≤ k ≤ mi. Here,
we denote the j-th row of W as Wj . We have,

∂J

∂z
[i]
k

(z
[i]
k) =

(
∂J

∂a
[i]
k

∂a
[i]
k

∂z
[i]
k

)
(z

[i]
k) (chain rule)

=

(
∂J

∂a
[i]
k

(σ[i])′

)
(z

[i]
k) (by definition)

=

mi+1∑
t=1

(
∂J

∂z
[i+1]
t

∂z
[i+1]
t

∂a
[i]
k

(σ[i])′

)
(z

[i]
k) (general chain rule (Lemma 4.6))

=

mi+1∑
t=1

δ
[i+1]
t

(
∂
(
W [i+1]a[i] + b[i+1]

)
t

∂a
[i]
k

(σ[i])′

)
(z

[i]
k) (by definitions above)

=

mi+1∑
t=1

δ
[i+1]
t

∂
(
W

[i+1]
t a[i] + b

[i+1]
t

)
∂a

[i]
k

(σ[i])′

 (z
[i]
k)

=

mi+1∑
t=1

δ
[i+1]
t w

[i+1]
t,k (σ[i])′(z

[i]
k)

=
(
W [i+1]T δ[i+1]

)
k

(σ[i])′(z
[i]
k).

Proposition 4.8. For 1 ≤ i ≤ r, we have

∂J

∂W [i]
= δ[i]a[i−1]

T
.

Proof. For 1 ≤ r ≤ mi, 1 ≤ s ≤ mi−1, we have

∂J

∂w
[i]
r,s

(w[i]
r,s) =

mi+1∑
t=1

(
∂J

∂z
[i]
t

∂z
[i]
t

∂w
[i]
r,s

)
(w[i]

r,s) (general chain rule)

Version 5 (November 27, 2023)
- 33 -

Mathematics for Machine Learning • Neural Networks

=

mi+1∑
t=1

δ
[i]
t

(
∂
∑mi
u=1 w

[i]
t,ua

[i]
u

∂w
[i]
r,s

)
(w[i]

r,s)

= δ[i]r a
[i−1]
s (

∂z
[i]
t

∂w
[i]
r,s

= 0 when (r, s) 6= (t, u)).

Proposition 4.9. For 1 ≤ i ≤ r, we have

∂J

∂b[i]
= δ[i].

Proof. For i, k such that 1 ≤ i ≤ r and 1 ≤ k ≤ mi, we have,

∂J

∂b
[i]
k

(b
[i]
k) =

(
∂J

∂z
[i]
k

∂z
[i]
k

∂b
[i]
k

)
(b

[i]
k) = δ

[i]
k .

Algorithm 4.10. (Backpropagation)
{

Todo: Write down the algorithm.
}

4.3 Convolutional neural networks{
Todo: Expand this section by giving an explicit example and a tensor flow implementation

}
Convolutional Neural Networks (CNNs) are a specialized kind of neural network for processing data
that has a known, grid-like topology. Examples include time-series data (1D) and image data (2D).
They have been highly successful in areas such as image recognition and classification.

4.3.1 Architecture

The architecture of a CNN is designed to take advantage of the 2D structure of an input image. This
is achieved through the use of convolutional layers, pooling layers, and fully connected layers.

• Convolutional Layers: In these layers, a set of learnable filters are applied to the input image.
Each filter is convolved across the width and height of the input image, computing the dot
product between the entries of the filter and the input, producing a 2D activation map of that
filter.

• Pooling Layers: These layers are used to reduce the spatial dimensions (width & height) of the
input volume for the next convolutional layer. It is done to decrease the computational power
required to process the data through dimensionality reduction. Furthermore, it is also useful for
extracting dominant features which are rotational and positional invariant, thus providing the
network with spatial invariance.

• Fully Connected Layers: After several convolutional and pooling layers, the high-level reason-
ing in the neural network is done via fully connected layers. Neurons in a fully connected layer
have full connections to all activations in the previous layer, as seen in regular Neural Networks.
Their activations can thus be computed with a matrix multiplication followed by a bias offset.

Version 5 (November 27, 2023)
- 34 -

Mathematics for Machine Learning • Reinforcement Learning

4.3.2 Backpropagation in CNNs

Similar to fully connected networks, CNNs use backpropagation to train the network. However, due
to the convolutional and pooling layers, the backpropagation algorithm requires some modifications.

• Convolutional Layers: The gradients with respect to the filter weights in a convolutional layer
are computed by convolving the gradient of the loss function with respect to the output of the
convolutional layer with the inputs to the convolutional layer.

• Pooling Layers: The pooling operation is non-linear and typically max-pooling is used. During
backpropagation, the gradient is passed back only through the neuron which had the maximum
value during the forward pass.

4.3.3 Advantages of CNNs

• Parameter Sharing: A feature learned in one part of an image can be applied to other parts
of an image, reducing the number of parameters.

• Local Connectivity: Each neuron is connected only to a small region of the input image, which
makes the network more robust and reduces the number of parameters.

In summary, CNNs leverage spatial hierarchies and patterns in data, making them highly efficient for
tasks like image and video recognition, image classification, and many others where the input data has
a spatial relationship.

5 Reinforcement Learning

Reinforcement learning is a type of machine learning in which an agent learns to interact with its
environment in order to maximize a reward. In reinforcement learning, the agent receives feedback in
the form of rewards for actions it takes within the environment. Over time, the agent learns to take
actions that maximize its reward, thereby learning to behave optimally in the environment. There are
several different algorithms used in reinforcement learning, including Q-learning, SARSA, and deep
Q-network (DQN) learning.

Basic reinforcement learning is modeled as a Markov decision process (MDP). In an MDP, an agent
makes a series of decisions based on its current state and receives a corresponding reward for each
action it takes. The goal of the agent is to find a policy that maximizes its total reward over time.
However, at any given time, the agent may not know the properties of each choice, and so it must act
on incomplete information.

Definition 5.1. A Markov decision process (MDP) is a tuple (S,A, T,R), where

(i) S is a set of states called the state space,

(ii) A is a set of actions called the action space,

(iii) T is a map
T : S ×A× S → [0, 1] ,

called the transition probability function,

(iv) R is a map
R : S ×A× S → R ,

called the reward function.

Version 5 (November 27, 2023)
- 35 -

Mathematics for Machine Learning • Reinforcement Learning

For fixed s ∈ S and a ∈ A the transition probability function gives a probability distribution over S,
i.e. for s′ ∈ S

T (s, a, s′) = P (s′ | s, a) .

T (s, a, s′): The probability that one reaches state s′ when taking action a in state s.
R(s, a, s′): The reward that one gets by going from state s to s′ by doing action a.

Example 5.2.
{

Todo: Write out the car example
}

Dynamics of MDP:

(i) Start at some state s0 ∈ S.

(ii) Choose an action a0 ∈ A.

(iii) Obtain a new state s1 ∈ S (with probability T (s0, a0, s1)) and a reward R(s0, a0, s1).

(iv) Repeat until one reaches a terminal state or a fixed number of steps N .

(N =∞ possible)

Goal: Choose the actions a0, a1, a2, . . . at each state such that

N∑
j=0

R(sj , aj , sj+1)

gets big.

Problem: This could be an infinite sum and therefore one introduces a discount factor γ ∈ [0, 1] and
then considers the discounted total reward:∑

j≥0

γjR(sj , aj , sj+1) .

Another interpretation: Immediate rewards count more than delayed rewards.

Definition 5.3. For given sequences of states (s0, s1, . . .) and actions (a0, a1, . . .) the discounted
total reward (with discount γ ∈ [0, 1]) is given by∑

j≥0

γjR(sj , aj , sj+1) .

Version 5 (November 27, 2023)
- 36 -

Mathematics for Machine Learning • Reinforcement Learning

Definition 5.4. (i) A policy is a function π : S → A.

(ii) The value of a policy π at state s ∈ S is defined by

Vπ(s) = E

∑
j≥0

γjR(sj , π(sj), sj+1) | s0 = s

{

Todo: The expected value E in the above formula needs more detailed explanation
}

Interpretation of Vπ(s): The expected (discounted) total reward when starting in state s0 = s by
using the policy π to choose the action at = π(st) in state st.

Remark 5.5. For a given policy π, we can calculate the values Vπ(s) explicitly as follows. Assume that
there are n states S = (s1, . . . , sn) and define the n× n matrix

Mπ =
(
δi,j − γT (si, π(si), sj)

)
1≤i,j≤n .

Since Vπ(si) =
∑n
j=1 T (si, π(si), sj)R(si, π(si), sj) + γ

∑n
j=1 T (si, π(si), sj)Vπ(sj) we see that Vπ =

(Vπ(s1), . . . , Vπ(sn))T is the solution of

MπVπ =

∑n
j=1 T (s1, π(s1), sj)R(s1, π(s1), sj)

...∑n
j=1 T (sn, π(sn), sj)R(sn, π(sn), sj)

 .

A policy π∗ is called optimal if it has maximal value for all states s ∈ S:

Vπ∗(s) = max
π

Vπ(s) .

Example 5.6.
{

Todo: Explain the optimal policy for the car example (Example 5.2)
}

The state-action value function Q∗ is defined for all (s, a) ∈ S × A as the expected (discounted)
total reward for taking action a ∈ A at state s ∈ S following the optimal policy π∗:

Q∗(s, a) =
∑
s′∈S

T (s, a, s′)R(s, a, s′) + γ
∑
s′∈S

T (s, a, s′)Vπ∗(s
′)

Interpretation: This gives the expected best possible reward after choosing action a when in state s.

Having the state-action value function Q∗ we can derive the optimal policy by

π∗(s) = argmaxa∈AQ
∗(s, a) .

Idea: Find a good approximation Q for the function Q∗. Use this do define a policy by

π(s) = argmaxa∈AQ(s, a) .

Version 5 (November 27, 2023)
- 37 -

Mathematics for Machine Learning • Reinforcement Learning

Example 5.7. In the car example (Example 5.2) we have the states S = {C,W,O} (cool, warm,
overheated) and actions A = {f, s} (fast, slow). Now we want to describe a way to obtain numerically
an approximation Q of the state action value function. The function Q : S ×A→ R can be thought of
as a table

C (Cool) W (Warm) O (Overheated)

f (Fast) Q(C,f) Q(W,f) Q(O,f)

s (Slow) Q(C,s) Q(W,s) Q(O,s)

whose entries we want to find. First (Step 0) Choose starting values for Q. For example, random
values as follows:

C (Cool) W (Warm) O (Overheated)

f (Fast) 3 2 0

s (Slow) 1 4 0

After this we will proceed as follows.

Step 1: Choose a starting state, e.g. let us choose s0 = C.

Step 2: Choose the action a0 with the largest current value Q(s0, a0). In our case a0 = f , since
Q(C, f) = 3 > Q(C, s) = 1.

(Since the values of our current table might be bad (or in order to explore undiscovered possi-
bilities.. or just YOLO), a variant of Step 2 is to take a random action instead with a certain
probability ε ∈ (0, 1). See Epsilon-Greedy Algorithm below).

Step 3: Take action a0 = f and receive a new state s1 ∈ S and reward r0 = R(s0, a0, s1) ∈ R from the
environment. Let in our example assume that the environment gave back the state s1 = W
(i.e. the car got warm). The reward we get is therefore r0 = R(s0, a0, s1) = R(C, f,W) = 2.

Step 4: Now we want to update Q(s0, a0) = Q(C, f) based on what happened and what we know so far.
In this example, the current value 3 was chosen randomly and does not make sense, but in
later steps we should assume that the current value Q(C, f) is the current bet approximation
we have. Therefore, we should also not completely disregard it. But we also just learned
something new, i.e. that we get a reward 2 when taking action f in state C. Therefore, we
want to update our value through

Q(C, f) = (1− α)Q(C, f) + α(something new...),

where α ∈ [0, 1] is a learning rate, which indicates how much we take this new information
into account. The (not good to use) extreme cases would be:

• α = 0: We do not change the value Q(C, f) at all.

• α = 1: We ignore the old value and just use the new information.

The ”something new” value above should be an approximation of Q(C, f) just based on the
information we just obtained, i.e. receiving r0 = 2 and ending in state s1 = W . A natural
guess is to take 2 plus the maximal value we can obtain when we are in state W , which is 4.
Since the 4 would come one step later, we also need to include the discount factor γ and get

Version 5 (November 27, 2023)
- 38 -

Mathematics for Machine Learning • Reinforcement Learning

2 + γ · 4. In total, we get

Q(s0, a0) = (1− α)Q(s0, a0) + α(r0 + γmax
a∈A

Q(s1, a))

= (1− α)3 + α(2 + γ4).

Let us assume in our example that α = 1
2 and γ = 3

4 . We therefore get as a new value for
Q(C, f):

Q(C, f) =
3

2
+

1

2
(2 +

3

4
4) = 4.

This leads to the new table

C (Cool) W (Warm) O (Overheated)

f (Fast) 4 2 0

s (Slow) 1 4 0

From here on we can repeat Step 2 by assuming we are in state s1 = W , i.e. we find a1 such
that Q(s1, a1) is maximal (which is s), then take action a1 = s in Step 3, etc.

The following algorithms finds for all s ∈ S and a ∈ A a function Q(s, a), which gives a good approxi-
mation for Q∗(a, s).

Algorithm 5.8 (Q-learning algorithm). Start with random values for Q(s, a) for all s ∈ S and a ∈ A.
(e.g. all zero).

One episode of the Q-learning algorithm is given as follows:

1. Choose a starting state s0 ∈ S.

2. Look up the current best action in that state, i.e. a0 = argmaxa∈AQ(s0, a)
or (with probability ε ∈ [0, 1]) choose a random action a0 ∈ A (Epsilon-Greedy Algorithm).

3. Apply this action and get a new state s1 and reward r0 = R(s0, a0, s1).

4. Update the value Q(s0, a0) as follows (Bellman equation)

Q(s0, a0) = (1− α)Q(s0, a0) + α

(
r0 + γmax

a∈A
Q(s1, a)

)
.

Here α ∈ [0, 1] is the learning rate.

5. If s1 is not a terminal state repeat with step 2.

References

[N] A. Ng: CS229 Lecture Notes. (available at https://cs229.stanford.edu/notes2022fall/main_
notes.pdf)

Version 5 (November 27, 2023)
- 39 -

https://cs229.stanford.edu/notes2022fall/main_notes.pdf
https://cs229.stanford.edu/notes2022fall/main_notes.pdf

	Introduction
	Basics
	Python
	Tic-Tac-Toe & Minimax
	Recall some Linear Algebra

	Basics of supervised learning
	Linear regression
	Logistic regression
	Naive Bayes
	Gaussian Discriminant Analysis

	Neural Networks
	Multi-layer fully connected feedforward neural networks
	Training the neural network: Backpropagation
	Convolutional neural networks

	Reinforcement Learning
	References

