

Lecture 9

Reinforcement Learning: Q-Learning II

This week Tutorial: Friday 8th Dec. 6th period

https://www.henrikbachmann.com/mml2023.html

Recall Reinforcement learning: Basic idea

Markov decision process

Definition 5.1. A Markov decision process (MDP) is a tuple (S, A, T, R), where (i) S is a set of states called the state space, (ii) A is a set of actions called the action space, (iii) T is a map

$$T: S \times A \times S \to [0,1]\,,$$

called the transition probability function,

(iv) R is a map

 $R: S \times A \times S \to \mathbb{R},$

called the reward function.

Interpretation:

T(s, a, s'): The probability that one reaches state s' when taking action a in state s R(s, a, s'): The reward that one gets by going from state s to s' by doing action a

Markov decision process: Example

Markov decision process: Dynamics

- i) Start at some state $s_0 \in S$.
- ii) Choose an action $a_0 \in A$.
- iii) Obtain a new state $s_1 \in S$ (with probability $T(s_0, a_0, s_1)$) and a reward $R(s_0, a_0, s_1)$.
- iv) Repeat until one reaches a terminal state or a fixed number of steps N.

 $(N = \infty \text{ possible})$

Goal: Choose the actions a_0, a_1, a_2, \ldots at each state such that $\sum_{j=0}^N R(s_j, a_j, s_{j+1})$ gets big.

Markov decision process: Dynamics

- i) Start at some state $s_0 \in S$.
- ii) Choose an action $a_0 \in A$.
- iii) Obtain a new state $s_1 \in S$ (with probability $T(s_0, a_0, s_1)$) and a reward $R(s_0, a_0, s_1)$.
- iv) Repeat until one reaches a terminal state or a fixed number of steps N.

 $(N = \infty \text{ possible})$

Goal: Choose the actions a_0, a_1, a_2, \ldots at each state such that

$$\sum_{j=0}^{N} R(s_j, a_j, s_{j+1})$$

gets big.

Problem: This could be an infinite sum and therefore one introduces a **discount factor** $\gamma \in [0, 1]$ and then considers the discounted total reward:

$$\sum_{j\geq 0} \gamma^j R(s_j, a_j, s_{j+1}) \,.$$

Another interpretation: Immediate rewards count more than delayed rewards.

Total reward: Car example

For given sequences of states $(s_0, s_1, ...)$ and actions $(a_0, a_1, ...)$ the **discounted total reward** (with **discount** $\gamma \in [0, 1]$) is given by

Markov decision process: Policy

A **policy** is a function $\pi: S \to A$.

Interpretation: A policy suggests the action you should take when being in a certain state.

Goal: Find the optimal policy which increases the (discounted) total reward.

Markov decision process: Value of a policy

A **policy** is a function $\pi: S \to A$.

Goal: Find the optimal policy which increases the (discounted) total reward.

The value of a policy π at state $s \in S$ is defined by

$$V_{\pi}(s) = E\left[\sum_{j\geq 0} \gamma^{j} R(s_{j}, \pi(s_{j}), s_{j+1}) \mid s_{0} = s\right]$$

$$V_{\pi}(s) = E\left[\sum_{j\geq 0} \gamma^{j} R(s_{j}, \pi(s_{j}), s_{j+1}) \mid s_{0} = s\right]$$

$$= \left[\sum_{j\geq 0}^{1} T(s_{j} \pi(s)_{j} s') \cdot R(s_{j} \pi(s)_{j} s')\right]$$

$$+ \gamma \sum_{s' \in S}^{1} T(s_{j} \pi(s)_{j} s') \cdot V_{TT}(s')$$

$$+ \gamma \sum_{s' \in S}^{1} T(s_{j} \pi(s)_{j} s') \cdot V_{TT}(s')$$

$$For \ car \ e \times ample : \ TT(c) = F$$

$$T(w) = S$$

$$V_{TT}(c) = T(C_{1} \pi(c)_{j} c) \cdot R(c_{1} \pi(c)_{j} c)$$

$$+ T(C_{1} f_{j} w) R(c_{j} f_{j} w)$$

$$+ T(C_{1} f_{j} w) R(c_{j} f_{j} w)$$

 $+ \chi T(C_{i}f_{i}C) \cdot V_{ff}(C)$ $+ \chi T(c, f, w) \cdot V_{H}(w)$ + $T(C_{i}f_{i}0) \cdot V_{m}(0)$ $= 2 + \frac{\chi}{2} V_{\pi}(c) + \frac{\chi}{2} V_{\pi}(w).$ Similar for $S_0 = W$: $V_{T}(W) = T(W, T(W), C) \cdot R(W, T(W), C)$ + $T(W_{1}S_{1}W) R(W, S_{1}W) + T(W_{1}S_{1}O)R(W_{1}O)$ = O $+\chi T(W, S, C) V_{\pi}(C) + \chi T(W, S, W) V_{\pi}(W)$

In total: $\gamma = \frac{1}{2}$ $V_{\pi}(c) = 2 + \frac{1}{4}V_{\pi}(c) + \frac{1}{4}V_{\pi}(w)$. $V_{\pi}(w) = 1 + \frac{1}{4}V_{\pi}(c) + \frac{1}{4}V_{\pi}(w)$. $(=) \frac{2}{4}V_{\pi}(c) - \frac{1}{4}V_{\pi}(w) = 2$ $-\frac{1}{4}V_{\pi}(c) + \frac{2}{4}V_{\pi}(w) = 1$

Markov decision process: Value of a policy

A **policy** is a function $\pi: S \to A$.

Goal: Find the optimal policy which increases the (discounted) total reward.

The value of a policy π at state $s \in S$ is defined by

$$V_{\pi}(s) = E\left[\sum_{j\geq 0} \gamma^j R(s_j, \pi(s_j), s_{j+1}) \mid s_0 = s\right]$$

Interpretation of $V_{\pi}(s)$: The expected (discounted) total reward when starting in state $s_0 = s$ by using the policy π to choose the action $a_t = \pi(s_t)$ in state s_t .

Goal rephrased: Find a policy which has maximal value at each state.

Markov decision process: Value of a policy

A **policy** is a function $\pi: S \to A$.

Goal: Find the optimal policy which increases the (discounted) total reward.

The value of a policy π at state $s \in S$ is defined by

$$V_{\pi}(s) = E\left[\sum_{j\geq 0} \gamma^j R(s_j, \pi(s_j), s_{j+1}) \mid s_0 = s\right]$$

Notice that we have

$$V_{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') R(s, \pi(s), s') + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s').$$

Optimal policy

A policy π^* is called **optimal** if it has maximal value for all states $s \in S$:

$$V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s) \,.$$

Optimal policy & State-action value function

A policy π^* is called **optimal** if it has maximal value for all states $s \in S$:

$$V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s) \,.$$

The state-action value function Q^* is defined for all $(s, a) \in S \times A$ as the expected total reward for taking action $a \in A$ at state $s \in S$ following the optimal policy π^* :

$$Q^*(s,a) = \sum_{s' \in S} T(s,a,s') R(s,a,s') + \gamma \sum_{s' \in S} T(s,a,s') V_{\pi^*}(s')$$

Interpretation: This gives the best possible reward after choosing action a when in state s.

$$Q^*(S,\Pi^*(S)) = V_{\Pi^*}(S)$$

Optimal policy & State-action value function

A policy π^* is called **optimal** if it has maximal value for all states $s \in S$:

$$V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s) \,.$$

The state-action value function Q^* is defined for all $(s, a) \in S \times A$ as the expected total reward for taking action $a \in A$ at state $s \in S$ following the optimal policy π^* :

$$Q^*(s,a) = \sum_{s' \in S} T(s,a,s') R(s,a,s') + \gamma \sum_{s' \in S} T(s,a,s') V_{\pi^*}(s')$$

Interpretation: This gives the best possible reward after choosing action a when in state s.

Goal: Find the values of the state-action value function

Having the state-action value function Q^* we can derive the optimal policy by

$$\pi^*(s) = \operatorname{argmax}_{a \in A} Q^*(s, a) \,.$$

In car example:			
$Q^*(s,a)$	S	f	
\bigcirc	2.7	3.5	
W	2.5	-10	

Optimal policy & State-action value function

A policy π^* is called **optimal** if it has maximal value for all states $s \in S$:

$$V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s) \,.$$

The state-action value function Q^* is defined for all $(s, a) \in S \times A$ as the expected total reward for taking action $a \in A$ at state $s \in S$ following the optimal policy π^* :

$$Q^*(s,a) = \sum_{s' \in S} T(s,a,s') R(s,a,s') + \gamma \sum_{s' \in S} T(s,a,s') V_{\pi^*}(s')$$

Interpretation: This gives the best possible reward after choosing action a when in state s.

Goal: Find the values of the state-action value function

Having the state-action value function Q^* we can derive the optimal policy by

$$\pi^*(s) = \operatorname{argmax}_{a \in A} Q^*(s, a) \,.$$

Goal rephrased: Find a good approximation of the state-action value function. "Learn" the function Q.

In the car Example: $S = \{C,W,O\}$ $A = \{f,s\}$

The (approximated) state-action value function Q can be thought of as a table

			State	
		C (Cool)	W (warm)	O (overheat)
tion	f (fast)	? Q (C,f)	? Q(W,f)	? Q (O,f)
Ac	s (slow)	? Q (C,s)	? Q (W,s)	? Q (O,s)

where each entry tells us the expected (best) total reward when taking an action in a certain state.

Q-learning: Algorithm to learn the entries of this table

Step 1: Start with some values, e.g. choose random values (or all 0):

			State	
		C (Cool)	W (warm)	O (overheat)
tion	f (fast)	3	2	0
Ac	s (slow)	1	4	0

Step 1: Start with some values, e.g. choose random values (or all 0):

		State		
		C (Cool)	W (warm)	O (overheat)
tion	f (fast)	3	2	0
Ac	s (slow)	1	4	0

Step 2: Choose a starting state, e.g. $s_0 = C$.

Step 0: Start with some values, e.g. choose random values (or all 0):

			State	
		C (Cool)	W (warm)	O (overheat)
tion	f (fast)	3	2	0
Ac	s (slow)	1	4	0

Step 1: Choose a starting state, e.g. $s_0 = C$.

Step 2: Choose the current best action according to the table, i.e. find the maximal entry and set the first action a_0 to the action of the corresponding row.

		C (Cool)	W (warm)	O (overheat)
$a_0 = f$	f (fast)	3	2	0
	s (slow)	1	4	0

Step 3: Take action $a_0 = f$ and receive a **reward r**₀ and a **new state s**₁ from the environment. For example

Question: How could we update the value Q(C,f) now?

	$s_0 = C$ $s_1 = W$			
		C (Cool)	W (warm)	O (overheat)
$a_0 = f$	f (fast)	3	2	0
	s (slow)	1	4	0

Step 4: Update Q(C,f)

We know that Q(C,f)=3 is random and might not be a good value.

But in later steps, we should assume that this is the currently best possible approximation. We should therefore also not overwrite it completely.

Idea:

$$Q(C,f) = (1-\alpha)Q(C,f) + \alpha(something \ new...)$$

new value

old value

some number based on what just happened

Here $\alpha \in [0,1]$ is the **learning rate**.

 $Q(C,f) = (1-\alpha)Q(C,f) + \alpha(something \ new...)$

Should give an approximation of Q(C,f) just based on what happened:

- We received a reward r₀= 2
- We ended in state s₁ = W

Question: Based on this information what would be a good guess for Q(C,f)? Assume that the other values in the table below are good approximations.

Recall: Q(C,f) tells us the expected total reward we get when taking action f in state C (and afterwards following the best possible policy).

. . .

		$S_0 = C$	$S_1 = VV$	
		C (Cool)	W (warm)	O (overheat)
$a_0 = f$	f (fast)	3	2	0
U U	s (slow)	1	4	0

$$Q(s_0, a_0) = (1 - \alpha)Q(s_0, a_0) + \alpha(r_0 + \gamma \max_{a \in A} Q(s_1, a))$$

= $(1 - \alpha)3 + \alpha(2 + \gamma 4)$.
 $s_0 = C$ $s_1 = W$
 $a_0 = f \begin{bmatrix} c(cool) & W(warm) & O(coverheat) \\ f(fast) & 3 & 2 & 0 \\ s(slow) & 1 & 4 & 0 \end{bmatrix}$

For example, if
$$\alpha = \frac{1}{2}$$
 and $\gamma = \frac{3}{4}$ we get
And the new table $Q(C,f) = \frac{3}{2} + \frac{1}{2}(2 + \frac{3}{4}4) = 4.$

	C (Cool)	W (warm)	O (overheat)
f (fast)	4	2	0
s (slow)	1	4	0

From here continue with Step 2...

Q-learning

Q-learning algorithm: Find for all $s \in S$ and $a \in A$ a function Q(s, a), which gives a good approximation for $Q^*(a, s)$.

- 1. Start with random values for Q(s, a). (e.g. all zero)
- 2. Choose a starting state $s_0 \in S$.
- 3. Look up the current best action in that state, i.e. $a_0 = \operatorname{argmax}_{a \in A} Q(s_0, a)$.
- 4. Apply this action and get a new state s_1 and reward $r_0 = R(s_0, a_0, s_1)$.
- 5. Update the value $Q(s_0, a_0)$ as follows (**Bellman equation**)

$$Q(s_0, a_0) = (1 - \alpha)Q(s_0, a_0) + \alpha \left(r_0 + \gamma \max_{a \in S} Q(s_1, a)\right) \,.$$

Here $\alpha \in [0, 1]$ is the **learning rate**.

6. If s_1 is not a terminal state repeat with step 3.

Q-learning + Epsilon-Greedy

Q-learning algorithm: Find for all $s \in S$ and $a \in A$ a function Q(s, a), which gives a good approximation for $Q^*(a, s)$.

- 1. Start with random values for Q(s, a). (e.g. all zero)
- 2. Choose a starting state $s_0 \in S$.
- 3. Look up the current best action in that state, i.e. $a_0 = \operatorname{argmax}_{a \in A} Q(s_0, a)$ or choose a random action $a_0 \in A$ with probability $\epsilon \in [0, 1]$ (Epsilon-Greedy Algorithm).
- 4. Apply this action and get a new state s_1 and reward $r_0 = R(s_0, a_0, s_1)$.
- 5. Update the value $Q(s_0, a_0)$ as follows (**Bellman equation**)

$$Q(s_0, a_0) = (1 - \alpha)Q(s_0, a_0) + \alpha \left(r_0 + \gamma \max_{a \in S} Q(s_1, a) \right) \,.$$

Here $\alpha \in [0, 1]$ is the **learning rate**.

6. If s_1 is not a terminal state repeat with step 3.

Combini & Lecture Example

Goal: Find the nearest Combini to get food. Avoid lecture halls so the professor does

not know that you are actually on campus!

- States: 7 * 8 = 56 positions (terminal states:
- Actions:

Rewards:

- Reaching Combini: +1
- Reaching Lecture hall: -1
- Making a step to an empty position: -0.1

Optimal policy: Gives the direction we should go at each state to get to the nearest Combini

Combini & Lecture Example: Possible optimal policy

Goal: Find the nearest Combini to get food. Avoid lecture halls so the professor does not know that you are actually on campus!

Optimal policy: Gives the direction we should go at each state to get to the nearest Combini

