MATHEMATIGS

FOR MACHINE LEARNING

\./ Nagoya University, Fall 2023

Lecture 8
Reinforcement Learning: Q-Learning

This week Tutorial:

https://www.henrikbachmann.com/mml2023.html

Overview

Machine Learning Algorithms

Meaningful

: Structure Image
Compression

Discovery Classification

Customer Retention

_Big data Ly Identity Fraud Classification
visualization Reducion Feature Detection

Elicitation

Diagnostics

Advertising Popularity
Recommender

i _ Predicti
Systems Unsupervised Supervised rediction
HER Leamning Weather
Forecasting
Regresion
Market

l\-gr?(%t’:i?\% M a C h l n e Forecasting
Learning Estimating s

expectancy

Customer
Segmentation

Real time decisions Game Al

Robot Navigation Skill Acquisition

Learning Tasks educba.com

Supervised learning

Image
Classification

Classification (discrete output) “Betecion
Output = category (e.g. “dog”, “cat” or “1”7,”2",...,”9”)

Customer Retention

Diagnostics |

Advertising Popularity
Prediction

Stlg:rrr\:iiﬁgd Weath

@ Forggasgag

7 willrg=3 . . l

>‘ * "9 ;_ : 2~ lChI'ne Folrwe?:g(seﬁng
@ wﬁ' 2 arnin g Estimating life

Handwriting recognition

expectancy

Examples in this lecture so far
 Linear regression (Tebasaki)

Reg ression (c?ntinu.ous out.put) * Logistic regression (Passing exam)
Output = real number (like “price”, “weight”,...) . Neural Network (digit recognition)
Size: 70m?
Rooms: 3 > 90.000 Yen

Apartment price prediction

Supervised learning is not always possible

lZA

0:'5. Google DeepMind {8 AlphaGo

Challenge Match
8- 15 March 2016

Games: Chess, Go, RTS,...
Movement of robots
Selfdriving cars

Google data center cooling

Reinforcement learning: Basic idea

Action
(move a chess piece, take a step, turn the wheel,...)

Environment

(the opponent,
another agent, the
real world, ...)

Agent

Reward
(win/lose the game, achieving a goal,
falling over, crashing against a wall, ...)

(the program,
machine, robot, ...)

New state
(new position, new chessboard state, ...)

Reinforcement learning: Walking example

e

M

\J
DEEPMIND Al \
LEARNED HOW TO WALK

https://www.youtube.com/watch?v=gn4nRCCOTWQ

Another example: https://www.youtube.com/watch?v=L 4BPjLBFAE

https://www.youtube.com/watch?v=gn4nRCC9TwQ
https://www.youtube.com/watch?v=L_4BPjLBF4E

Markov decision process

Definition 5.1. A Markov decision process (MDP) is a tuple (S, A, T, R), where
(i) S is a set of states called the state space,
(ii) A is a set of actions called the action space,
(13i) T is a map
T:SxAxS—[0,1],
called the transition probability function,

(iv) R is a map
R:SxAxS—>R,

called the reward function.

Markov decision process

Definition 5.1. A Markov decision process (MDP) is a tuple (S, A, T, R), where
(i) S is a set of states called the state space,
(ii) A is a set of actions called the action space,
(13i) T is a map
T:SxAxS—[0,1],
called the transition probability function,

(iv) R is a map
R:SxAxS—>R,

called the reward function.

Interpretation:

T(s,a,s’): The probability that one reaches state s’ when taking action a in state s

R(s,a,s’): The reward that one gets by going from state s to s’ by doing action a

Markov decision process: Example

A robot car wants to travel far, quickly S p— C l/\l , O 3

Three states: Cool, Warm, Overheated @l " wawm | gueteat of

Two actions: Slow, Fast IA\' - {S’l _F%

Going faster gets double reward

Overheated

Markov decision process: Dynamics

i) Start at some state sg € S.

)

ii) Choose an action ag € A.
)
)

iii) Obtain a new state s; € S (with probability T'(sg, ag, s1)) and a reward R(sg, ag, S1)-

iv) Repeat until one reaches a terminal state or a fixed number of steps V.

(N = oo possible)

D)

oal: Choose the actions ag, a1, as,... at each state such that

N
Z R(Sja aj, Sj-l-l)

7=0

\gets big. /

Markov decision process: Dynamics

1

Start at some state sg € S.

iii) Obtain a new state s; € S (with probability T'(sg, ag, s1)) and a reward R(sg, ag, S1)-

1v

)

ii) Choose an action ag € A.
)
)

-

ugets big.

Goal: Choose the actions ag, a1, ao,...

N
Y R(sj,a5,5511)

3=0

at each state such that

J

Repeat until one reaches a terminal state or a fixed number of steps V.

(N = oo possible)

Problem: This could be an infinite sum and therefore one introduces a discount factor v € [0, 1] and

then considers the discounted total reward:

Z’YjR<8j, a;, Sj+1) :

320

Another interpretation: Immediate rewards count more than delayed rewards.

Total reward: Car example

For given sequences of states (sg, $1, ...) and actions (ag, a1, ...) the discounted total reward Wlth

S R a s = R(CTC) + (00 R),

35- O 20 e T
2+ 02

discount v € [0, 1]) is given by

Markov decision process: Policy

A policy is a function 7 : S — A.

Interpretation: A policy suggests the action you should
take when being in a certain state.

Goal: Find the optimal policy which increases the
(discounted) total reward.

Markov decision process: Value of a policy

A policy is a function 7 : S — A.

Goal: Find the optimal policy which increases the (discounted) total reward.

The value of a policy 7w at state s € S s defined by

Va(s) =E | > v R(sj,m(s;),8541) | s0 = s

720

Markov decision process: Value of a policy

A policy is a function 7 : S — A.

Goal: Find the optimal policy which increases the (discounted) total reward.

The value of a policy 7 at state s € S s defined by

Va(s) =E | > v R(sj,m(s;),8541) | s0 = s

720

Interpretation of V,(s): The expected (discounted) total reward when starting in state so = s by
using the policy 7 to choose the action a; = 7(s;) in state s;.

Goal rephrased: Find a policy which has maximal
value at each state.

Optimal policy

A po-licy 7* is called optimal if it has maximal value for all states s € S:

Vie(s) = max V(s).

Optimal policy

A po-licy 7* is called optimal if it has maximal value for all states s € S:

Vi (s) = max Vi(s) .

= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward

0.5
Overheated

+ Optimd golicy T
T =1
) =5
0= S

Optimal policy & State-action value function

A po-licy 7* is called optimal if it has maximal value for all states s € S:

Vis(s) = max V(s).

The state-action value function Q* is defined for all (s,a) € S x A as the expected total reward
for taking action a € A at state s € S following the optimal policy 7*:

Q*(s,a) = Z T(s,a,s')R(s,a,s") +~ Z T(s,a,s" V(s

s’'eS s’eS

—

Interpretation: This gives the best possible reward after choosing action a when in state s.

Q*(g’(d) 4

In car example: AN ~A—
i —(TCc,s) RE QIC)FT(C'S‘W) R(Gaw)
Q(C'S) \</i/ V\’l\/ + 1T (G5 0)Rci£,0)

| \AA—
\/\ O

A K T(C(fl C) ’ \/ﬂ* (C-)
T

Optimal policy & State-action value function

A po-licy 7* is called optimal if it has maximal value for all states s € S:

Vi (s) = max Vz(s).

The state-action value function Q* is defined for all (s,a) € S x A as the expected total reward
for taking action a € A at state s € S following the optimal policy 7*:

Q*(s,a) = Z T(s,a,s')R(s,a,s") +~ Z T(s,a,s" V(s

s’'eS s’eS

Interpretation: This gives the best possible reward after choosing action a when in state s.

Goal: Find the values of the state-action value function

Having the state-action value function Q* we can derive the optimal policy by

m*(s) = argmax,c 4 Q"(s,a).

Optimal policy & State-action value function

A po-licy " is called optimal if it has maximal value for all states s € S:

Vi (s) = max Vi(s) .

The state-action value function Q* is defined for all (s,a) € S x A as the expected total reward
for taking action a € A at state s € S following the optimal policy 7*:

Q*(s,a) = Z T(s,a,s')R(s,a,s") +~ Z T(s,a,s" V(s

s’'eS s’eS

Interpretation: This gives the best possible reward after choosing action a when in state s.

Goal: Find the values of the state-action value function

Having the state-action value function (* we can derive the optimal policy by

m*(s) = argmax,c 4 Q@ (s,a).
Goal rephrased: Find a good approximation of the
state-action value function. “Learn” the function Q.

Q-learning: Basic idea & Car example

In the car Example:

S ={C,wW,0}
A = {f,s}
The (@pproximated) State-action value function Q can be thought of as a table
State
I I TR T
.§ f (fast)
< s (slow) ? ? ?

where each entry tells us the expected (best) total reward
when taking an action in a certain state.

Q-learning: Algorithm to learn the entries of this table

Q-learning: Basic idea & Car example

Step 1: Start with some values, e.g. choose random values (or all 0):

State

_______c & mm- AT

f (fast)
s (slow) 1 4 0

Action

Q-learning: Basic idea & Car example

Step 1: Start with some values, e.g. choose random values (or all 0):

State
- C(COOI) mm- 0(overheat)
.§ f (fast)
(@]
< s (slow) 1 4 0

Step 2: Choose a starting state, e.g. s, = C.

Q-learning: Basic idea & Car example

Step 0: Start with some values, e.g. choose random values (or all 0):

State
- C(COOI) mm- 0(overheat)
.§ f (fast)
(@]
< s (slow) 1 4 0

Step 1: Choose a starting state, e.g. s, = C.

Step 2: Choose the current best action according to the table,
i.e. find the maximal entry and set the first action a, to the
action of the corresponding row.

E im0 e

ap=f f(fast)
s (slow) 1 4 0

Q-learning: Basic idea & Car example

Step 3: Take action a, = f and receive a reward r, and a new state s,
from the environment. For example

ao=f

: Slow P
@ 1'0 _1

Question: How could we update the value Q(C,f) now?

Overheated

This happened in our case

So=C

S;=
- m- 0<overheat)
ap=f f(fast) 3

s (slow) 1 4 0

Q-learning: Basic idea & Car example

S1=
e —_ m- oo

ap="f f(fast)

s (slow) 1 4 0

Step 4: Update Q(C,f)
We know that Q(C,f)=3 is random and might not be a good value.

But in later steps, we should assume that this is the currently best possible
approximation. We should therefore also not overwrite it completely.

Idea:
QC,f)=(01—-a)Q(C, f) + a(something new...)

new value old value some number based on

what just happened

Here a € [0, 1] is the learning rate.

Q-learning: Basic idea & Car example

QC,f) =01 —-a)Q(C, f) + a(something new...)

Should give an approximation of Q(C,f) just based on what happened:
 We received a reward r,= 2
* Weendedinstates, =W

Question: Based on this information what would be a good guess for Q(C,f)? Assume
that the other values in the table below are good approximations.

Recall: Q(C,f) tells us the expected total reward we get when taking action f in state C
(and afterwards following the best possible policy)

________c o mm- A

f (fast)
s (slow) 1 4 0

Q-learning: Basic idea & Car example

Q(807 CL()) (]- - a)Q(S()a a’O) + a(TO T Vma’XQ(Sla a’))

acA
= (1 —a)3+ a(2+4).
SO_ S - W
—mm 0 overheat)
ap="f f(fast) 0
s (slow) 1 4 0
Forexample,if o« = = and v = S
P 5 Y = 3 weget
3 1 3
QC, f)=5+5(2+4) =4
And the new table 2 2 1

IR R T T

f (fast)
s (slow) 1 4 0

From here continue with Step 2...

Q-learning

Q-learning algorithm: Find for all s € S and a € A a function Q(s, a), which gives a good approxi-
mation for Q*(a, s).

B

. Start with random values for Q(s,a). (e.g. all zero)

Choose a starting state sg € S.

Look up the current best action in that state, i.e. agp = argmax,. 4 Q(so, a).

. Apply this action and get a new state s; and reward ro = R(so, ag, S1).

. Update the value Q(sy, ay) as follows (Bellman equation)

Q(s0,a0) = (1 — a)Q(s0,a0) + & ("‘0 + 712125(@(313&)) :

Here a € [0,1] is the learning rate.

. If s1 is not a terminal state repeat with step 3.

Q-learning + Epsilon-Greedy

Q-learning algorithm: Find for all s € S and a € A a function Q(s,a), which gives a good approxi-
mation for Q*(a, s).

1. Start with random values for Q(s,a). (e.g. all zero)

2. Choose a starting state sg € S.

3. Look up the current best action in that state, i.e. ag = argmax, 4 Q(s¢,a) or choose a random
action ag € A with probability € € [0, 1] (Epsilon-Greedy Algorithm).

4. Apply this action and get a new state s; and reward ro = R(sq, ag, S1).

5. Update the value Q(so,ap) as follows (Bellman equation)
Q(s0,a0) = (1 — ®)Q(s0,a0) + (7’0 + 7%1§§<Q(81,a)> :

Here a € [0,1] is the learning rate.

6. If s1 is not a terminal state repeat with step 3.

Combini & Lecture Example

Goal: Find the nearest Combini to get food. Avoid lecture halls so the professor does
not know that you are actually on campus! ’

7 4

States: 7 * 8 = 56 positions = —
(terminal states: [l I) . @

¥ | [1B]
| | v | -

Actions: | =

Rewards: : H
e Reaching Combini: +1
 Reaching Lecture hall: -1 10 12 3 456 7
 Making a step to an empty position: -0.1 - Lecture hall
B Combini

Optimal policy: Gives the direction we should go at
each state to get to the nearest Combini

Combini & Lecture Example: Possible optimal policy

Goal: Find the nearest Combini
to get food. Avoid lecture halls
so the professor does not 5
know that you are actually on .
campus!

o

Optimal policy: Gives the I 5 1 3

direction we should go at
each state to get to the - Lecture hall
Bl Combini

w
P
v
o

nearest Combini

