

Lecture 7

Neural Networks IV: Finishing Backpropagation & Convolutional Neural Networks

This week Tutorial: Wednesday 22nd Nov. 5th period

https://www.henrikbachmann.com/mml2023.html

Semester project

Objective: Choose a project topic related to Nagoya or Japan more broadly that can be addressed using machine learning algorithms. Your task is to develop a machine learning model to solve a specific problem or provide insights into an aspect of life, business, environment, culture, etc., in Nagoya/Japan.

Group Size: 1-3 members

Code: Preferably a Google Colab notebook. Exceptions are possible; please provide full documentation for any different technology or package used. If you plan not to submit a Google Colab, please contact us in advance.

Documentation: 5-10 slides as if you were going to present the project. Your slides should cover (for example):

- Problem Statement
- Data Collection
- Data Exploration and Visualization
- Model Building and Evaluation
- Conclusion

Semester project

- The notebook should contain outputs (we might not run/train)
- Kaggle.com for possible datasets
- You do not need to cure cancer
- A "bad result" is also a result
- Be able to answer questions about your project in person
- We are not strict about the "Japan & Nagoya" connection

Neural Network: forward pass

Definition 4.4. Let $N = (L^{[1]}, \ldots, L^{[r]})$ be a r-layer neural network of input size n and output size m. We want to view it as a function $N : \mathbb{R}^n \to \mathbb{R}^m$ by defining N(x) for an input $x \in \mathbb{R}^n$ by the output of its last layer $N(x) = a^{[r]}$. Here we define for $i = 1, \ldots, r$ the following:

(i) The linear part of the layer $L^{[i]}$ is defined by

$$z^{[i]} = W^{[i]}a^{[i-1]} + b^{[i]},$$

where $a^{[i-1]} \in \mathbb{R}^{m_{i-1}}$ is the output from the previous layer. In the case i = 1 we set $a^{[0]} = x$.

(ii) The **output** of the layer $L^{[i]}$ is defined by applying the activation function to the linear part, i.e.

$$a^{[i]} = \sigma^{[i]}(z^{[i]}) \in \mathbb{R}^{m_i}$$

Suppose we have a training set
$$\mathcal{T} = ((x^{(1)}, y^{(1)}), \dots, (x^{(t)}, y^{(t)}))$$

For a neural network N, we will think of the collection of all weight matrices and biases as a vector $\theta \in \mathbb{R}^d$, called the **parameters**. For example, θ_1 could be the top left entry of the first weight matrix. The output of a neural network depends on the current choice of θ and therefore we write N_{θ} .

For example, we could use the sum of squares as a cost function

$$J(\theta) = \frac{1}{2} \sum_{j=1}^{t} \|N_{\theta}(x^{(j)}) - y^{(j)}\|^{2}.$$

For gradient descent, we need to calculate the gradient of J.

Backpropagation: A simple example in one dimensions $N: R \rightarrow R$ T = ((X,Y)) $\chi = \left(q^{\left[0 \right]} \right) \longrightarrow \left(q^{\left[1 \right]} \right) \longrightarrow \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \left[N(x) \right] = \sum_{i=1}^{n} \left(q^{\left[2 \right]} \right) = \sum_{i=1}^{n}$ $Z^{(n)} = W^{(n)} \alpha^{(n)} + b^{(n)}, \alpha^{(n)} = \delta^{(2^m)} W^{(n)} b^{(n)} \in \mathbb{R}$ $Z_{[2]} = W_{[2]} a_{(+)} b_{(+)} a_{(+)} a_{(+)} = S_{(-)} (S_{(+)} M_{(+)} b_{(+)} e_{(+)} R$

Backpropagation: General idea

General chain rule

 $Q_{j} = Q_{j} (\Theta_{1,...,} \Theta_{p})$ eR $= \int (g_{1}, \dots, g_{m})$

General Backpropagation

Backpropagation

- Compute and store the values of a^[k]'s and z^[k]'s for k = 1,...,r, and J.
 ▷ This is often called the "forward pass"
- 2: . 3: for k = r to 1 do
 - k = r to 1 do **b** This is often called the "backward pass" if k = r then
- 5: compute $\delta^{[r]} \triangleq \frac{\partial J}{\partial z^{[r]}}$
- 6: **else**

4:

7: compute

$$\delta^{[k]} \triangleq \frac{\partial J}{\partial z^{[k]}} = \left(W^{[k+1]^{\top}} \delta^{[k+1]} \right) \odot \operatorname{ReLU}'(z^{[k]})$$

8: Compute

$$\begin{aligned} \frac{\partial J}{\partial W^{[k]}} &= \delta^{[k]} a^{[k-1]^{\top}} \\ \frac{\partial J}{\partial b^{[k]}} &= \delta^{[k]} \end{aligned}$$
 See Lecture 6 notebook

The fully connected Neural Networks we discussed so far come with some problems:

1.High Parameter Count: Excessive parameters lead to computational and memory inefficiency.

2.Overfitting Risk: Prone to overfitting due to a large number of parameters.

3.Spatial Inefficiency: Inability to efficiently process spatial data and structure in images.

4.No Translation Invariance: Lacks inherent ability to recognize shifted or translated features.

5. Unsuitable for (large) Images: Increasing image size leads to a disproportionate increase in parameters.

Convolutional Neural Networks (according to ChatGPT)

Convolutional Neural Networks (more Japanese)

What is convolution?

Convolutional Neural Networks

1.Dense (Fully Connected) Layer: Every neuron in this layer is connected to all neurons in the previous layer, commonly used for classification or regression tasks. (the only thing we considered so far)

2.Convolutional Layer: Applies a set of learnable filters to extract spatial features from data like images.

3.Pooling Layer: Reduces the spatial dimensions (width, height) of the input volume, commonly used for downsampling. Examples include Max Pooling and Average Pooling. (e.g. 2x2-MaxPooling)

4.Dropout Layer: Randomly sets a fraction of the input units to 0 during training, helping prevent overfitting.

https://www.kaggle.com/code/amyjang/tensorflow-mnist-cnn-tutorial