MATHEMATIGS

FOR MACHINE LEARNING

Nagoya University, Fall 2023

Lecture 7

Neural Networks IV:
Finishing Backpropagation & Convolutional Neural Networks

This week Tutorial: Wednesday 22nd Nov. 5" period

https://www.henrikbachmann.com/mml2023.html



Semester project

Objective: Choose a project topic related to Nagoya or Japan more broadly that

can be addressed using machine learning algorithms. Your task is to develop a
machine learning model to solve a specific problem or provide insights into an
aspect of life, business, environment, culture, etc., in Nagoya/Japan.

Group Size: 1-3 members

Code: Preferably a Google Colab notebook. Exceptions are possible; please
provide full documentation for any different technology or package used. If you
plan not to submit a Google Colab, please contact us in advance.

Documentation: 5-10 slides as if you were going to present the project.
Your slides should cover (for example):

* Problem Statement

e Data Collection

* Data Exploration and Visualization

* Model Building and Evaluation

e Conclusion



Semester project

The notebook should contain outputs (we might not run/train)
Kaggle.com for possible datasets

You do not need to cure cancer

A “bad result” is also a result

Be able to answer questions about your project in person

We are not strict about the “Japan & Nagoya” connection



Neural Network: forward pass

Definition 4.4. Let N = (L[l], 5 L[T]) be a r-layer neural network of input size n and output size
m. We want to view it as a function N : R™ — R™ by defining N(z) for an input z € R™ by the
output of its last layer N(z) = al”l. Here we define fori=1,...,r the following:

(i) The linear part of the layer LY is defined by
21 = wlilgli-1 4 pld
where ali=1 € R™i-1 s the output from the previous layer. In the case i = 1 we set al = z.

(i) The output of the layer LY is defined by applying the activation function to the linear part, i.e.

alil = gl (1) ¢ R
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Backpropagation

Suppose we have a training set 7 = ((:1:(1), y(l)), e (:E(t), y(t)))

For a neural network IV, we will think of the collection of all weight matrices and biases as a vector
6 € R?, called the parameters. For example, §; could be the top left entry of the first weight matrix.
The output of a neural network depends on the current choice of 8 and therefore we write Np.

For example, we could use the sum of squares as a cost function
1
_ = (1)) — 4,(9) 2
10 = 5 S INa(a) I
J:

For gradient descent, we need to calculate the gradient of J.



Backpropagation: A simple example in one dimensions
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Backpropagation: General idea

Suppose we have a training set T = ((:1:(1), y(l)), e (x<t), y(t)))
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General Backpropagation
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Backpropagation

1: Compute and store the values of a*'’s and z*V’s for k= 1,...,r, and J.

> This is often called the “forward pass”
2: .
3: for k=7rto1ldo > This is often called the “backward pass”
4: if K =r then
5: compute 6" £ a%l
6: else
7 compute
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Neural Networks so far

The fully connected Neural Networks we discussed so far
come with some problems:

1.High Parameter Count: Excessive parameters lead to computational and memory
inefficiency.

2.0verfitting Risk: Prone to overfitting due to a large number of parameters.
3.Spatial Inefficiency: Inability to efficiently process spatial data and structure in images.

4.No Translation Invariance: Lacks inherent ability to recognize shifted or translated
features.

5. Unsuitable for (large) Images: Increasing image size leads to a disproportionate increase
in parameters.



Convolutional Neural Networks (according to ChatGPT)
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Convolutional Neural Networks (more Japanese)
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What is convolution?
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Convolutional Neural Networks

fc_3
Fully-Connected

Neural Network

fc_4
Fully-Connected
Neural Network
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Types of layers

1.Dense (Fully Connected) Layer: Every neuron in this layer is
connected to all neurons in the previous layer, commonly used for
classification or regression tasks. (the only thing we considered so far)

2.Convolutional Layer: Applies a set of learnable filters to extract
spatial features from data like images.

3.Pooling Layer: Reduces the spatial dimensions (width, height) of
the input volume, commonly used for downsampling. Examples
include Max Pooling and Average Pooling. (e.g. 2x2-MaxPooling)

4.Dropout Layer: Randomly sets a fraction of the input units to O
during training, helping prevent overfitting.



CNN for MINIST

https://www.kaggle.com/code/amyjang/tensorflow-mnist-cnn-tutorial



https://www.kaggle.com/code/amyjang/tensorflow-mnist-cnn-tutorial




