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Tutorial

Time: Alternating Thursday (6th period) - Wednesday (5th period) - Friday (6th period)
Next tutorial: This week Wednesday 5th period (16:30) here
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Recall: Machine learning overview
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Recall: Supervised learning ...
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Recall: Supervised learning: Tebasaki example

Have: Some data of "Weeks living in Nagoya” and “Tebasaki eaten”.

Want: A functions, which creates out of an an arbitrary input for “Weeks living
in Nagoya” a prediction for “Tebasaki eaten”.
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Recall: Supervised learning: Some notations
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Supervised learning: Notations

e Input values (Feature space): X

e Output value (Label space): Y

e Trainings example: (z,y) € X x ).

e Trainings set (with n training examples): 7 = ((zW,yM), ..., (z(W, yM)) € (X x Y)™.
e hypothesis: A function h: X — ).

e Learning algorithm: An algorithm to create a hypothesis h out of a trainings set 7.

"1 e vasel Q\QM(le X = )/:- R



Supervised learning — Linear Regression

Learning Algorithm: Linear Regression

Let X =RY, i.e. we have d features, and J = R. As an Ansatz for the hypothesis we set

d
(he(x) = 0o + 6121+ - + Oqxq = Z 91%’7

— 1=0

with parameters (weights) 0 = (0p,01,...,04)7 € R4, In the second equation we set xg := 1.
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[ Goal: Determine the “best “parameters for a given trainings set. ]




Tebasaki example:
It seems that d=2 works for this case, i.e. we consider

hg(m) L= 9() + 1912131
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Supervised learning — Linear Regression

Measure how good parameters are:

For a given training set 7 = ((x(l), yM) L (2, y("))) we define the cost function by

70) = 5 3 (ho(a) — y@).

The cost function is a function J : R — R, which we want to minimize.

[Goal rephrased: Minimize the cost function for a given trainings set.]

There are several different choices for cost functions. The above choice
corresponds is the “least-squares cost function”.



Supervised learning — Minimizing/Gradient
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Supervised learning — Linear Regression

Gradient descent main idea:

(&

steepest ascent

J(6,6,)

Fact: The gradient shows in the direction of the steepest ascent



Supervised learning — Linear Regression

Gradient descent: d=1 case

0, 20 -20 0,



Supervised learning — Linear Regression

7: [?d&-i__) R/_J\

0
The gradient of J is defined by 900

VJ =

Goal: Find 6 € R¥*! such that J(6) is minimal. \i J}

Gradient descent algorithm (rough version).

i) Start with a random starting value for the parameters, e.g. 0 =0 = | :
0
ii) Change the parameters in the opposite direction of the steepest ascent, i.e. opposite direction of
the gradient. This means we want to subtract the gradient from the current parameters, weighted

by a factor a € R, the learning rate.

The new parameters 6 are therefore given by:

0:=0—av.Jo).

iii) Repeat step ii) until the value J(6) does not change anymore.



Supervised learning — Linear Regression X‘(x(
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Now Python examples!



Linear Regression: Using Linear Algebra

Assume we have a training set 7 = ((x(l), yM), ..., (™), y("))).

If all training examples lie on a line, then the 0 = (g()) we are looking for solves the linear system
1
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Linear Regression: Using Linear Algebra

Assume we have a training set 7 = ((z),y1)), ..., (2™, y(™M)).
If all training examples lie on a line, then the 0 = (go> we are looking for solves the linear system
1
1 2@ y(l)
(2) (2)
1 =z 0o _ Y
]\ z
1 2 y (™)

* This is usually not the case (like in the Tebasaki example).
 We are looking for the “best” solution of a linear system.

Goal: Find 6 € R?, such that ||Af — y|| is minimal.



Linear Regression: Recalling Linear Algebra

Let A € R™*™ be a matrix.
The image of A s defined by

im(A) ={y €e R™ | Av =y for some v € R"} .

The kernel of A is defined by

ker(A) ={veR" | Av =0} .

The dot-product of two vectors u,v € R" is defined by

uovzuTv=u1v1 1= 5 & =l
For a subspace U C R", the orthogonal complement of U is defined by

Ut ={veR" |uev=0,YuecU}.



Example




Example

Goal: Find 6 € R?, such that ||A40 — y|| is minimal.



Linear Regression: The normal equation

Goal: Find 6 € R?, such that ||A# — y|| is minimal.
Theorem: If § € R? is a solution to
AT A9 = ATy,
then ||A0 — yl|| is minimal.
If ker(A) = {0}, then AT A is invertible and an explicit solution for the best  is given by

0= (ATA)1ATy.



Polynomial Regression: Is just linear regression..



