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Lecture 13 
PCA II & Autoencoder

This week Tutorial: Thursday 25th Jan. 6th period
This is also the deadline of Homework 4 and the semester project

 



Semester project
Objective: Choose a project topic related to Nagoya or Japan more broadly that 
can be addressed using machine learning algorithms. Your task is to develop a 
machine learning model to solve a specific problem or provide insights into an 
aspect of life, business, environment, culture, etc., in Nagoya/Japan.

Group Size: 1-3 members

Code: Preferably a Google Colab notebook. Exceptions are possible; please 
provide full documentation for any different technology or package used. If you 
plan not to submit a Google Colab, please contact us in advance.

Documentation: 5-10 slides as if you were going to present the project. 
Your slides could cover for example:

• Problem Statement
• Data Collection
• Data Exploration and Visualization
• Model Building and Evaluation
• Conclusion

A variation of Homework 2,3 or 4 is also ok!



Unsupervised learning: Dimensionality reduction

Example: Digit recognition (MNIST Dataset) 

Pictures of size 28 x 28 = 784 pixels  Neural network with input layer size X

Better approach: Find a new representation of the 
picture into principal components.

784 Datapoints ordered by “importance”. 
Choose the first X of them.



Unsupervised learning: Dimensionality reduction
The first three principal components (PC) of the MNIST dataset

PC1 PC2 PC3

…



Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a method that reduces the 
dimensionality of data by transforming it into principal components, each 
representing unique variance, while retaining the most significant 
information.

“Finds a better coordinate system for given data, such 
that the axes are ordered by importance”



Recall: Orthonormal bases
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Recall: Orthonormal bases
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PCA – Tebasaki Example



PCA – Tebasaki Example

Goal: 
• Represent these datapoints by 2 (PC1,PC2) values instead 

of 3 (W,I,T)
• Make it possible to get back (a good approximation of) 

(W,I,T) from (PC1,PC2)
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PCA/Tebasaki Example: Step 1 - Normalize

We first normalize the data and give them a mean 0 and standard deviation of 1

Step 1
mean = 0 
std = 1



PCA/Tebasaki Example: Step 2 – Covariance matrix

Last lecture: The directions of the biggest variations are given (ordered by 
the eigenvalue) by the eigenvectors of the covariance matrix.

Step 1
mean = 0 
std = 1

X = 



PCA/Tebasaki Example: Step 2 – Eigenvectors

Linear algebra fact (Spectral theorem): One can always find an ONB 
of eigenvectors for the covariance matrix (since it is symmetric).
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PCA/Tebasaki Example: Step 3 – Getting PCs

There are 3 principal components (eigenvectors). Taking all of them 
would not reduce the number of values we use to describe our point. 
We could try to just use the first two.

Consider the projection (given by taking 
the dot product) onto the plane spanned 
by the first two eigenvectors.
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PCA/Tebasaki Example: Step 3 – Plotting PC1,2

2 dimensional representation of our data
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Now Python examples!



PCA – different interpretation

What we did: Have data in 3 dimensions, reduce it to 2 dimensions such that (if we go back 
to 3) we do not lose a lot of information.
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PCA – different interpretation

What we did: Have data in 3 dimensions, reduce it to 2 dimensions such that (if we go back 
to 3) we do not lose a lot of information.
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This can be seen as a neural network without bias and 
with the identity function as an activation function. 

This is the basic idea of an autoencoder.



Autoencoder



Autoencoder Application: Deep fakes 


