

Lecture 13 PCA II & Autoencoder

This week Tutorial: Thursday 25th Jan. 6th period This is also the deadline of Homework 4 and the semester project

https://www.henrikbachmann.com/mml2023.html

Semester project

Objective: Choose a project topic related to Nagoya or Japan more broadly that can be addressed using machine learning algorithms. Your task is to develop a machine learning model to solve a specific problem or provide insights into an aspect of life, business, environment, culture, etc., in Nagoya/Japan.

Group Size: 1-3 members A variation of Homework 2,3 or 4 is also ok!

Code: Preferably a Google Colab notebook. Exceptions are possible; please provide full documentation for any different technology or package used. If you plan not to submit a Google Colab, please contact us in advance.

Documentation: 5-10 slides as if you were going to present the project. Your slides **could** cover for example:

- Problem Statement
- Data Collection
- Data Exploration and Visualization
- Model Building and Evaluation
- Conclusion

Unsupervised learning: Dimensionality reduction

Example: Digit recognition (MNIST Dataset)

784 Datapoints ordered by "importance".

Choose the first X of them.

Better approach: Find a new representation of the picture into principal components.

Unsupervised learning: Dimensionality reduction

The first three principal components (PC) of the MNIST dataset

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a method that reduces the dimensionality of data by transforming it into principal components, each representing unique variance, while retaining the most significant information.

"Finds a better coordinate system for given data, such that the axes are ordered by importance"

Recall: Orthonormal bases

Vectors $u_1, \ldots, u_l \in \mathbb{R}^n$ are called **orthonormal** if for $1 \leq i, j \leq l$,

$$\|\chi\| = \|\chi \cdot \chi \cdot \chi \|$$

$$u_i \bullet u_j = \begin{cases} 1 & , \text{ if } i = j \\ 0 & , \text{ if } i \neq j \end{cases}$$

A basis $B = (b_1, \ldots, b_m)$ of a subspace U is called an **orthonormal basis (ONB)** of U if b_1, \ldots, b_m are orthonormal.

Recall: Orthonormal bases

Vectors $u_1, \ldots, u_l \in \mathbb{R}^n$ are called **orthonormal** if for $1 \leq i, j \leq l$,

$$u_i \bullet u_j = egin{cases} 1 & , \ if \ i = j \ 0 & , \ if \ i
eq j \end{cases}$$

A basis $B = (b_1, \ldots, b_m)$ of a subspace U is called an **orthonormal basis (ONB)** of U if b_1, \ldots, b_m are orthonormal.

Lemma 2.11. Let $U \subset \mathbb{R}^n$ be a subspace with ONB (f_1, \ldots, f_r) . Then any $x \in \mathbb{R}^n$ can be written as $x = x_{\parallel} + x_{\perp}, \quad x_{\parallel} \downarrow f_i + x_{\perp} \uparrow f_2 \uparrow f_2$, $x_{\parallel} = (x \bullet f_i) f_i + (x \bullet f_2) \uparrow f_2$ $x_{\parallel} = \sum_{i=1}^r (x \bullet f_i) f_i \in U.$ The x_{\parallel} is the orthogonal projection of x onto U.

PCA – Tebasaki Example

PCA – Tebasaki Example

Goal:

- Represent these datapoints by 2 (PC1,PC2) values instead of 3 (W,I,T)
- Make it possible to get back (a good approximation of) (W,I,T) from (PC1,PC2)

PCA/Tebasaki Example: Step 1 - Normalize

We first normalize the data and give them a mean 0 and standard deviation of 1

PCA/Tebasaki Example: Step 2 – Covariance matrix

Last lecture: The directions of the biggest variations are given (ordered by the eigenvalue) by the eigenvectors of the **covariance matrix**.

PCA/Tebasaki Example: Step 2 – Eigenvectors

Linear algebra fact (Spectral theorem): One can always find an ONB of eigenvectors for the covariance matrix (since it is symmetric).

PCA/Tebasaki Example: Step 3 – Getting PCs

There are 3 principal components (eigenvectors). Taking all of them would not reduce the number of values we use to describe our point. We could try to just use the first two.

PCA/Tebasaki Example: Step 3 – Plotting PC1,2

Now Python examples!

PCA – different interpretation

What we did: Have data in 3 dimensions, reduce it to 2 dimensions such that (if we go back to 3) we do not lose a lot of information.

PCA – different interpretation

What we did: Have data in 3 dimensions, reduce it to 2 dimensions such that (if we go back to 3) we do not lose a lot of information.

This can be seen as a neural network without bias and with the identity function as an activation function.

This is the basic idea of an autoencoder.

Autoencoder

An autoencoder is defined by the following components:

Two sets: the space of decoded messages \mathcal{X} ; the space of encoded messages \mathcal{Z} . Almost always, both \mathcal{X} and \mathcal{Z} are Euclidean spaces, that is, $\mathcal{X} = \mathbb{R}^m$, $\mathcal{Z} = \mathbb{R}^n$ for some m, n.

Two parametrized families of functions: the encoder family $E_{\phi} : \mathcal{X} \to \mathcal{Z}$, parametrized by ϕ ; the decoder family $D_{\theta} : \mathcal{Z} \to \mathcal{X}$, parametrized by θ .

Autoencoder Application: Deep fakes

