MATHEMATIGS

FOR MACHINE LEARNING

\./ Nagoya University, Fall 2023

Lecture 12
Principal Component Analysis (PCA)

This week Tutorial: Friday 19th Dec. 6" period

https://www.henrikbachmann.com/mml2023.html



Semester project

Objective: Choose a project topic related to Nagoya or Japan more broadly that

can be addressed using machine learning algorithms. Your task is to develop a
machine learning model to solve a specific problem or provide insights into an
aspect of life, business, environment, culture, etc., in Nagoya/Japan.

Group Size: 1-3 members

Code: Preferably a Google Colab notebook. Exceptions are possible; please
provide full documentation for any different technology or package used. If you
plan not to submit a Google Colab, please contact us in advance.

Documentation: 5-10 slides as if you were going to present the project.
Your slides should cover (for example):
* Problem Statement
e Data Collection
e Data Exploration and Visualization
 Model Building and Evaluation
e Conclusion

* The slides are the documentation and
should explain what you did.

* Do not just include examples and
diagrams.

* It should be possible to understand
your project by just reading the slides.
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Unsupervised learning

* Clustering (Lecture 11)
* Anomaly detection .
* Signal separation
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https://en.wikipedia.org/wiki/Signal_separation
https://en.wikipedia.org/wiki/Cocktail_party_effect



Lecture 11: k-means clustering

Testdata

k-means algorithm .

1. Initialize the means p1, ..., ur € R? with some starting value. )

(a) Forgy method: Choose randomly k different numbers {s1,...,s:} C {1,...,n} and set
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4. Repeat with step 2. Result after 20 steps



Unsupervised learning: Dimensionality reduction

Example: Digit recognition (MNIST Dataset)

Pictures of size 28 x 28 = 784 pixels
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Question: How can we reduce the size of the input layer
without losing a lot of information?



Unsupervised learning: Dimensionality reduction

Example: Digit recognition (MNIST Dataset)

Pictures of size 28 x 28 = 784 pixels Neural network with input layer size 64

* Outputs

Pictures of size 8 x 8 = 64 pixels

Naive approach: Scale the image down or ignore pixels



Unsupervised learning: Dimensionality reduction

Example: Digit recognition (MNIST Dataset)

P2

Pictures of size 28 x 28 = 784 pixels P Neural network with input layer size X

Input Hidden Output

@ layer layers layer

784 Datapoints ordered by “importance”.
Choose the first X of them.

Better approach: Find a new representation of the
picture into principal components.




Unsupervised learning: Dimensionality reduction

The first three principal components (PC) of the MNIST dataset
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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a method that reduces the
dimensionality of data by transforming it into principal components, each
representing unique variance, while retaining the most significant
information.

“Finds a better coordinate system for given data, such
that the axes are ordered by im~- = 1ce”
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PCA - Variance
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PCA - Orthogonal projection
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PCA - First principal component

How to find the first “principal component”
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PCA -

How to find the first “principa component (=
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