

Lecture 12

Principal Component Analysis (PCA)

This week Tutorial: Friday 19th Dec. 6th period

https://www.henrikbachmann.com/mml2023.html

Semester project

Objective: Choose a project topic related to Nagoya or Japan more broadly that can be addressed using machine learning algorithms. Your task is to develop a machine learning model to solve a specific problem or provide insights into an aspect of life, business, environment, culture, etc., in Nagoya/Japan.

Group Size: 1-3 members

Code: Preferably a Google Colab notebook. Exceptions are possible; please provide full documentation for any different technology or package used. If you plan not to submit a Google Colab, please contact us in advance.

Documentation: 5-10 slides as if you were going to present the project.

Your slides should cover (for example):

- Problem Statement
- Data Collection
- Data Exploration and Visualization
- Model Building and Evaluation
- Conclusion

- The slides are the documentation and should explain what you did.
 - Do not just include examples and diagrams.
- It should be possible to understand your project by just reading the slides.

Overview

Unsupervised learning

- Clustering (Lecture 11)
- Anomaly detection
- Signal separation

https://en.wikipedia.org/wiki/Signal_separation https://en.wikipedia.org/wiki/Cocktail_party_effect

Lecture 11: k-means clustering

k-means algorithm

- 1. Initialize the means $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ with some starting value.
 - (a) Forgy method: Choose randomly k different numbers $\{s_1, \ldots, s_k\} \subset \{1, \ldots, n\}$ and set

$$\mu_i = p_{s_i}$$

for $i = 1, \ldots, k$

(b) **Random partition:** Choose $c: P \to \{1, \ldots, k\}$ randomly and set for $i = 1, \ldots, k$

$$\mu_i = \frac{1}{|C_i|} \sum_{p \in C_i} p.$$

2. Define the clusters
$$C_i$$
 for $i = 1, \ldots, k$ by

$$C_i = \{ p \in P \mid ||p - \mu_i|| \le ||p - \mu_j|| \text{ for } j = 1, \dots, k \}$$

3. Recalculate the means μ_i for $i = 1, \ldots, k$ by

$$\mu_i = \frac{1}{|C_i|} \sum_{p \in C_i} p.$$

4. Repeat with step 2.

-5

Example: Digit recognition (MNIST Dataset)

Pictures of size 28 x 28 = 784 pixels

Question: How can we reduce the size of the input layer without losing a lot of information?

Example: Digit recognition (MNIST Dataset)

Pictures of size $8 \times 8 = 64$ pixels

Naive approach: Scale the image down or ignore pixels

784 Datapoints ordered by "importance".

Choose the first X of them.

Better approach: Find a new representation of the picture into principal components.

The first three principal components (PC) of the MNIST dataset

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a method that reduces the dimensionality of data by transforming it into principal components, each representing unique variance, while retaining the most significant information.

"Finds a better coordinate system for given data, such that the axes are ordered by impairing of the

PCA – Variance

Given numbers
$$X = \{x_1, \dots, x_n\} \subset \mathbb{R}$$

 $Averase: \qquad \mu = \frac{1}{n} \sum_{i=1}^{n} X_i$
 $Variance: \quad Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$
 $Var(\dots) > Var(\dots)$

PCA – Orthogonal projection

Given
$$u \in \mathbb{R}^{h}$$
 $X \cdot u = X^{T}u$
orthogonal projection:
 $P_{u}(x) = \frac{X \cdot u}{u \cdot u} u$
If $\|u\|_{=1} (u \cdot u = 1)$
 $P_{u}(x) = (X \cdot u)u$

PCA – First principal component

How to find the first "principal component"

PCA -

 $\chi = h \left(\begin{array}{c} -\chi^{(i)} - \chi^{(i)} \sum_{i=1}^{n} \chi^{(i)} \chi^{(i)T}$ J = U11 Covariance matrix 5. $\left| \right|$ In example $\frac{1}{n} \times X$ Z= စ္ Covariance of room size & price AE IR", X=0

 $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\A \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

 $A \times = \lambda \times$

λ: eigenvalue, X: eigenvector

Summary: For symmetric M we want
to maximize uTMU.
Theorem: For any sym. ME IR
the term uTMU (Rayleigh)
uTU (Rayleigh)
is maximal if u is an eigenvector
OFM for the largest eigenvalue.
Proof: By the spectral theorem

$$M = QDQ$$
 $\lambda_1 \ge \lambda_2 \ge 2$
 $M = QDQ$ $\lambda_1 \ge \lambda_2 \ge 2$
 $D = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ 0 \\ 0 \\ \lambda_d \end{pmatrix}$
Assume Ilull=1
 $uTMU = uTQDQU$

 $u = Qy = (Qu)^T D Q^T u$ $Q^{T} u = Y$ $= \sqrt{D}$ Y $\bigvee = \begin{pmatrix} Y_{I} \\ \vdots \\ Y_{A} \end{pmatrix}$ $||\gamma|| = |\gamma_{1}^{2} + \gamma_{2}^{2} + \gamma_{3}^{2} + \gamma_{4}^{2} = |$ $\begin{cases} Y_{a} \\ Y_$ Moximal for $Y = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ (then it is λ_1) $\mathcal{U} = \mathcal{Q} \mathcal{Y}$ $Q_{i} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \text{first column of } Q$ $= \text{eigenvector for } \lambda_{1}.$