

MATHEMATICS FOR MACHINE LEARNING

Nagoya University, Fall 2023

Lecture 11

Christmath Quiz,

Join here:

www.menti.com 5454 6757

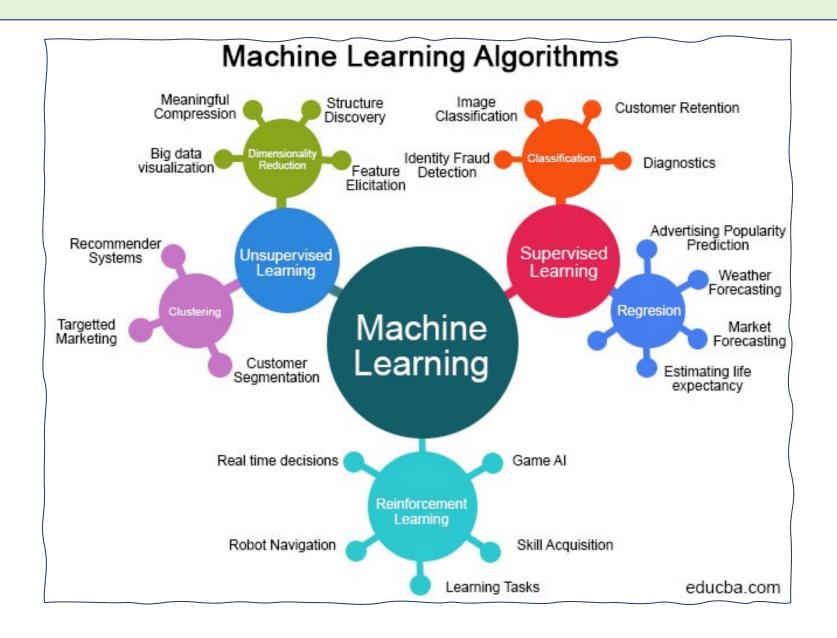
Unsupervised learning:

k-means algorithm

This week there is no Tutorial
The next lecture will be January 15th

https://www.henrikbachmann.com/mml2023.html

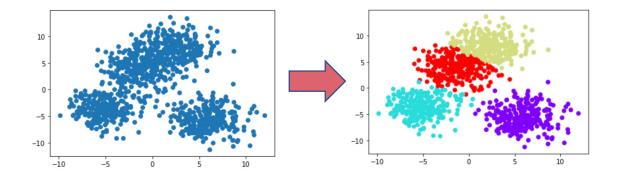
Overview

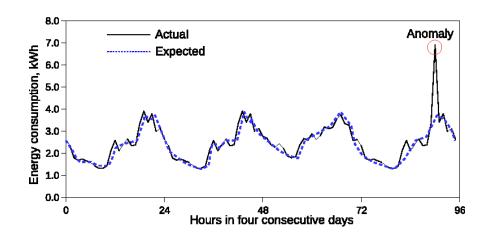


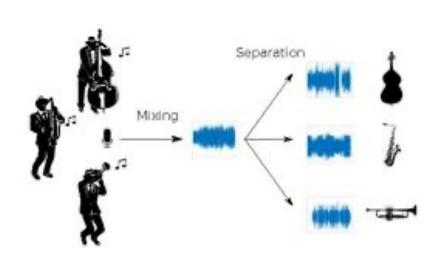
Unsupervised learning

- Clustering
- Anomaly detection
- Signal separation

•



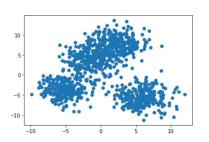


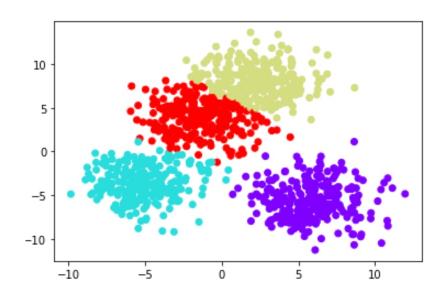


https://en.wikipedia.org/wiki/Signal_separation https://en.wikipedia.org/wiki/Cocktail_party_effect

Let $P \subset \mathbb{R}^d$ be a set of points and let $k \geq 1$ be an integer.

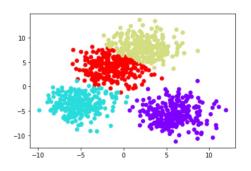
Goal: Partition P into k clusters





Let $P \subset \mathbb{R}^d$ be a set of points and let $k \geq 1$ be an integer.

Goal: Partition P into k clusters



We want to find a map $c: P \to \{1, \dots, k\}$ which for $i = 1, \dots, k$ defines the **cluster** $C_i = \{p \in P \mid c(p) = i\}$,

such that the within-cluster sum of squares (WCSS)

$$S_c = \sum_{i=1}^k \sum_{p \in C_i} ||p - \mu_i||^2$$

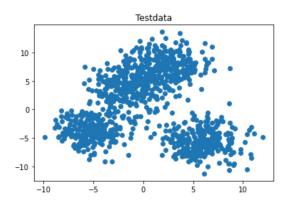
is minimal. Here $\mu_i \in \mathbb{R}^d$ denotes the **mean** of the cluster C_i given by

$$\mu_i = \frac{1}{|C_i|} \sum_{p \in C_i} p.$$

Let $P = \{p_1, \dots, p_n\} \subset \mathbb{R}^d$ and fix a $k \geq 1$.

Goal: Construct the k-means $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$. For given means one we define the cluster C_i by

$$C_i = \{ p \in P \mid ||p - \mu_i|| \le ||p - \mu_j|| \text{ for } j = 1, \dots, k \}$$



Let $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$ and fix a $k \geq 1$.

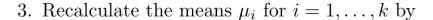
Goal: Construct the k-means $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$. For given means one we define the cluster C_i by

$$C_i = \{ p \in P \mid ||p - \mu_i|| \le ||p - \mu_j|| \text{ for } j = 1, \dots, k \}$$

k-means algorithm

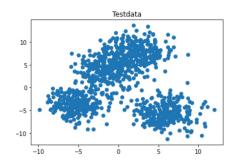
- 1. Initialize the means $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ with some starting value.
- 2. Define the clusters C_i for i = 1, ..., k by

$$C_i = \{ p \in P \mid ||p - \mu_i|| \le ||p - \mu_j|| \text{ for } j = 1, \dots, k \}$$



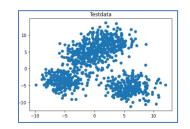
$$\mu_i = \frac{1}{|C_i|} \sum_{p \in C_i} p.$$

4. Repeat with step 2.



k-means algorithm

- 1. Initialize the means $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ with some starting value.
 - (a) Forgy method: Choose randomly k different numbers $\{s_1,\ldots,s_k\}\subset\{1,\ldots,n\}$ and set



$$\mu_i = p_{s_i}$$

for
$$i = 1, \ldots, k$$

(b) Random partition: Choose $c: P \to \{1, \dots, k\}$ randomly and set for $i = 1, \dots, k$

$$\mu_i = \frac{1}{|C_i|} \sum_{p \in C_i} p.$$

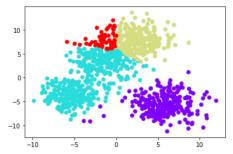
2. Define the clusters C_i for i = 1, ..., k by

$$C_i = \{ p \in P \mid ||p - \mu_i|| \le ||p - \mu_j|| \text{ for } j = 1, \dots, k \}$$

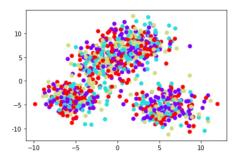
3. Recalculate the means μ_i for i = 1, ..., k by

$$\mu_i = \frac{1}{|C_i|} \sum_{p \in C_i} p.$$

4. Repeat with step 2.



Init with the Forgy method with k = 4



Init with Random partition with k = 4

5 -0 --5 -

k-means algorithm

- 1. Initialize the means $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ with some starting value.
 - (a) Forgy method: Choose randomly k different numbers $\{s_1,\ldots,s_k\}\subset\{1,\ldots,n\}$ and set

$$\mu_i = p_{s_i}$$

for
$$i = 1, \ldots, k$$

(b) Random partition: Choose $c: P \to \{1, \dots, k\}$ randomly and set for $i = 1, \dots, k$

2. Define the clusters C_i for i = 1, ..., k by

$$C_i = \{ p \in P \mid ||p - \mu_i|| \le ||p - \mu_j|| \text{ for } j = 1, \dots, k \}$$

3. Recalculate the means μ_i for i = 1, ..., k by

$$\mu_i = \frac{1}{|C_i|} \sum_{p \in C_i} p.$$

4. Repeat with step 2.

