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Lecture 10 
Reinforcement Learning: Deep Q Network

This week Tutorial: Wednesday 13th Dec. 5th period
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Deep Reinforcement Learning: Milestones

Deep Learning
(AlexNet, 2012)
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(Chris Watkins, 1989)

Deep Q-Network
(DeepMind, 2015)
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Agent
(the program, 

machine, robot, …)

Environment
(the opponent, 

another agent, the 
real world, …)

Action
(move a chess piece, take a step, turn the wheel,…) 

Observation (new state) 
(new position, new chessboard state, …)

Reward
(win/lose the game, achieving a goal, 
falling over, crashing against a wall, …) 

Recall reinforcement learning: Basic idea



Recall Q-learning



Recall Q-learning: Policy and Q function 
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Recall Q-learning + epsilon-greedy



Recall: Convolutional neural network

Demo: https://tensorspace.org/html/playground/alexnet.html

https://tensorspace.org/html/playground/alexnet.html


Deep Q-network

Mnih, Volodymyr; et al. (2015)
"Human-level control through deep reinforcement learning"

Nature. 518 (7540): 529–533

https://github.com/Farama-Foundation/Gymnasium

https://www.nature.com/articles/nature14236
https://github.com/Farama-Foundation/Gymnasium


Deep Q-network

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg


Agent Env

Action

Observation (state)

Reward

Deep Q-network: Q-learning limitation

Q table

state

ac
tio

n

Should be finite and small



Deep Q-network: How many states?

https://github.com/Farama-Foundation/Gymnasium

https://github.com/Farama-Foundation/Gymnasium


Agent Env

Action

Observation (state)

Reward

Deep Q-network: Solution?

Q table

state

ac
tio

n

Should be finite and small



Agent Env

Action

Observation (state)

Reward

Deep Q-network: Neural network

Q(s,a)

Can be very complex



Deep Q-network: Architecture (DeepMind, 2015)

https://github.com/Farama-Foundation /Gymn asium
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skip frames,
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frames,

etc210 x 160

84 x 84 x 4

Conv layer

32 filters,
8x8,

stride=4,
relu

Conv layer

64 filters,
4x4,

stride=2,
relu

Conv layer

64 filters,
3x3,

stride=1,
relu

512 neurons,
relu

Dense

Output 
dense layer

𝐿𝐿𝑖𝑖 𝜃𝜃𝑖𝑖 = 𝐸𝐸𝑠𝑠,𝑎𝑎,𝑟𝑟 ,𝑠𝑠𝑠 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎𝑠

𝑄𝑄(𝑠𝑠𝑠, 𝑎𝑎𝑠;𝜃𝜃𝑖𝑖
−) − 𝑄𝑄 𝑠𝑠, 𝑎𝑎;𝜃𝜃𝑖𝑖

2

𝜕𝜕𝐿𝐿𝑖𝑖 (𝜃𝜃𝑖𝑖)
𝜕𝜕𝜃𝜃𝑖𝑖

= 𝐸𝐸𝑠𝑠,𝑎𝑎,𝑟𝑟 ,𝑠𝑠′ 𝑟𝑟 + 𝛾𝛾max
𝑎𝑎𝑠

𝑄𝑄(𝑠𝑠𝑠 ,𝑎𝑎𝑠;𝜃𝜃𝑖𝑖
−)− 𝑄𝑄 𝑠𝑠, 𝑎𝑎; 𝜃𝜃𝑖𝑖

𝜕𝜕𝑄𝑄(𝑠𝑠 ,𝑎𝑎;𝜃𝜃𝑖𝑖)
𝜕𝜕𝜃𝜃𝑖𝑖

https://github.com/Farama-Foundation/Gymnasium


Deep Q-network: Problem

• Replacing Q-table with a neural network was not revolutionary.

for each episode:
  while not done:
    batch = []
    for several frames:
      reward, next_frame = env.step(action)
      batch.append(current_frame, reward, action, next_frame)
    QNN.train(batch)

Let’s sketch our algorithm so far.
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Deep Q-network: Problem

• Replacing Q-table with a neural network was not revolutionary.
• Being able to train the neural network stably and at scale was the revolutionary idea.

for each episode:
  while not done:
    batch = []
    current_frame = env.reset()
    for several frames:
      action = QNN.predict(current_frame)
      reward, next_frame = env.step(action)
      batch.append(current_frame, reward, action, next_frame)
      current_frame = next_frame 
    QNN.train(batch)

Spot a problem…

! Our QNN is trained with highly correlated batch.
! A neural network should be trained with training data that represents the actual data.



Deep Q-network: Experience Replay

state Action Next state Reward

Replay buffer: all actions from all episodes

S
a
m
p
l
e

state Action Next state Reward

Batch: small sample for QNN training.



Deep Q-network: Experience Replay

replay_buffer = []
for each episode:
  while not done:
 current_frame = env.reset()
    for several frames:
      action = QNN.predict(current_frame)
      reward, next_frame = env.step(action)
      replay_buffer.append(current_frame, reward, action, next_frame)
      current_frame = next_frame
    batch = replay_buffer.sample(batch_size)
    QNN.train(batch)



Deep Q-network: Chasing a moving target
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The target value in the loss function depends on QNN’s weight and keep changing.
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Deep Q-network: Implementations

Implementations:
• https://keras.io/examples/rl/deep_q_network_breakout/,
• Lecture 10 Colab (trained on a non-Atari game).

https://keras.io/examples/rl/deep_q_network_breakout/
https://www.henrikbachmann.com/mml2023.html
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