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Reinforcement Learning: Deep Q Network

This week Tutorial: Wednesday 13th Dec. 5" period

https://www.henrikbachmann.com/mmIl2023.html|



Deep reinforcement learning: Milestones
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Deep Reinforcement Learning: Milestones

https://github.com/Farama-Foundation/Gymnasium

Deep Q-Network

(DeepMind, 2015)
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Recall reinforcement learning: Basic idea

Action
(move a chess piece, take a step, turn the wheel,...)

Environment
(the opponent,
another agent, the
real world, ...)

Agent
(the program,
machine, robot, ...)

Reward
(win/lose the game, achieving a goal,
falling over, crashing against a wall, ...)

Observation (new state)
(new position, new chessboard state, ...)



Recall Q-learning

T'(s,a,s’): The probability that one reaches state s’ when taking action a in state s

R(s,a,s’): The reward that one gets by going from state s to s’ by doing action a

(

Goal: Choose the actions ag, a1, as2,... at each state such that
N
Y Y R(sj,a;,541)
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\gets big. /




Recall Q-learning: Policy and Q function

A policy is a function 7 : S — A.

The value of a policy 7 at state s € S is V(s)

A po-licy " is called optimal if it has maximal value for all states s € S

Vi (s) = max Vi (s) .

The state-action value function Q* is defined for all (s,a) € S x A as the expected total reward
for taking action a € A at state s € S following the optimal policy 7*.

Having the state-action value function (J* we can derive the optimal policy by

W*(S) = argmaXaEA Q*(Sv CL) :
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Recall Q-learning + epsilon-greedy

Q-learning algorithm: Find for all s € S and a € A a function (s, a), which gives a good approxi-
mation for Q*(a, s).

1. Start with random values for Q(s,a). (e.g. all zero)

2. Choose a starting state sg € S.

3. Look up the current best action in that state, i.e. ag = argmax, 4, Q(s0,a) or choose a random
action ag € A with probability € € [0, 1] (Epsilon-Greedy Algorithm).

4. Apply this action and get a new state s; and reward ro = R(sg, ag, 51)-

5. Update the value Q(sp, ap) as follows (Bellman equation)
Q(s0,a0) = (1 — a)Q(s0,a0) + & (?’0 + ’7%13;{@(81:@)) -

Here o € [0, 1] is the learning rate.

6. If s1 is not a terminal state repeat with step 3.



Recall: Convolutional neural network

Demo: https://tensorspace.org/html/playground/alexnet.html



https://tensorspace.org/html/playground/alexnet.html

Deep Q-network

Mnih, Volodymyr; et al. (2015)
"Human-level control through deep reinforcementlearning"
Nature.518 (7540): 529-533

https://github.com/Farama-Foundation/Gymnasium



https://www.nature.com/articles/nature14236
https://github.com/Farama-Foundation/Gymnasium

Deep Q-network

https://www.youtube.com/watch?v=TmPfTpjtdgg



https://www.youtube.com/watch?v=TmPfTpjtdgg

Deep Q-network: Q-learning limitation
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Should be finite and small




Deep Q-network: How many states?

https://github.com/Farama-Foundation/Gymnasium



https://github.com/Farama-Foundation/Gymnasium

Deep Q-network: Solution?

Action

W

Observation (state)

Agent
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Should be finite and small




Deep Q-network: Neural network

Action

-, -

Q(s , Reward

Can be very complex Observation (state)



Deep Q-network: Architecture (DeepMind, 2015)
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https://github.com/Farama-Foundation /Gymn asium
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Deep Q-network: Problem

* ReplacingO-table with a neural network was not revolutionary.

Let’s sketch our algorithm so far.

for each episode:
while not done:
batch = []
for several frames:
reward, next frame = env.step(action)
batch.append(current frame, reward, action, next frame)
QNN.train(batch)
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* Replacing with a neural network was not revolutionary.
* Beingableto train the neural network stably and at scale was the revolutionaryidea.



Deep Q-network: Problem

* ReplacingO-table with a neural network was not revolutionary.
* Beingableto train the neural network stably and at scale was the revolutionaryidea.

Spot a problem...

for each episode:
while not done:
batch = []
current_frame = env.reset()
for several frames:
action = QNN.predict(current_frame)
reward, next frame = env.step(action)
batch.append(current_frame, reward, action, next frame)
current_frame = next_ frame
ONN.train(batch)




Deep Q-network: Problem

* Replacing with a neural network was not revolutionary.
* Beingableto train the neural network stably and at scale was the revolutionaryidea.

Spot a problem...

for each episode:
while not done:
batch = []
current_frame = env.reset()
for several frames:
= QNN.predict(current frame)
reward, next frame = env.step( )
batch.append(current_frame, reward, , hext frame)
current_frame = next_ frame
ONN.train(batch)

' Our QNN is trained with highly correlated batch.
I' A neural network should be trained with trainingdata that represents the actual data.



Deep Q-network: Experience Replay

Replay buffer: all actions from all episodes

e acion | Nesstste | Reward

Batch: small sample for QNN training.

e acton | Nesttte | Reward



Deep Q-network: Experience Replay

replay buffer = []
for each episode:
while not done:
current_frame = env.reset()
for several frames:
action = QNN.predict(current_frame)
reward, next frame = env.step(action)
replay buffer.append(current_frame, reward, action, next_frame)
current_frame = next frame
batch = replay buffer.sample(batch_size)
QNN.train(batch)




Deep Q-network: Chasing a moving target

The target valuein the loss function depends on QNN’s weight and keep changing.
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Deep Q-network: Chasing a moving target

The target valuein the loss function depends on QNN’s weight and keep changing.
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Deep Q-network: Chasing a moving target

The target valuein the loss function depends on QNN’s weight and keep changing.
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Deep Q-network: Implementations

Implementations:
e https://keras.io/examples/rl/deep g network breakout/,
* Lecture 10 Colab (trained on a non-Atari game).



https://keras.io/examples/rl/deep_q_network_breakout/
https://www.henrikbachmann.com/mml2023.html
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