Homework 4: Period polynomials \& Combinatorial proofs

Deadline: 4th August (23:55 JST), 2023 at TACT

Exercise 1. Show the following (i.e. give a proof of Lemma 6.3):
i) We have

$$
W_{k}^{+}=W_{k}^{\mathrm{od}}, \quad W_{k}^{-}=W_{k}^{\mathrm{ev}}
$$

ii) The spaces W_{k} and $W_{k}^{ \pm}$can also be written as

$$
W_{k}=\operatorname{ker}\left(1-T-T^{\prime}\right),
$$

where $T^{\prime}=-U^{2} S=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and

$$
W_{k}^{ \pm}=\operatorname{ker}(1-T \mp T \epsilon) .
$$

Exercise 2. Define for $k \geq 2$ the function

$$
p_{k}(m, n)=\frac{1}{m n^{k-1}}+\frac{1}{2} \sum_{r=2}^{k-2} \frac{1}{m^{r} n^{k-r}}+\frac{1}{m^{k-1} n}
$$

Show that for even $k \geq 2$

$$
p_{k}(m, n)=p_{k}(m+n, n)+p_{k}(m, m+n)+\sum_{\substack{0<j<k \\ j \text { even }}} \frac{1}{m^{j} n^{k-j}} .
$$

Use this to show that for even $k \geq 4$

$$
\sum_{\substack{0<j<k \\ j \text { even }}} \zeta(j) \zeta(k-j)=\frac{k+1}{2} \zeta(k) .
$$

Exercise 3. (Bonus) Show that for $k \geq 3, n \geq 1$

$$
\sigma_{k-1}(n)=\sum_{\left(\begin{array}{c}
a \\
c
\end{array}\right.}^{\substack{b \\
d}} \text {) } \operatorname{Man}_{n} \text {. }
$$

Here the matrices Man_{n} are defined by

$$
\operatorname{Man}_{n}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=n, \begin{array}{l}
a>|c|, d>|b|, b c \leq 0 \\
\\
\\
c=0 \Rightarrow-\frac{a}{2}<c \leq \frac{a}{2} \\
\end{array}\right\} .
$$

