Homework 3: $\mathfrak{s l}_{2}$-action \& Hecke operators

Exercise 1. Show that (D, W, δ) is a $\mathfrak{s l}_{2}$-triple.

Exercise 2. Show that for $f \in M_{k}, g \in M_{l}$ and $n \geq 0$ we have $[f, g]_{n} \in M_{k+l+2 n}$.
Use that $f, g \in \operatorname{ker}(\delta)$ and then show that the commutator relations imply for $r \geq 1$

$$
\left[\delta, D^{r}\right]=r(W-r+1) D^{r-1}
$$

Use this to show that $[f, g]_{n} \in \operatorname{ker} \delta=M$.

Exercise 3. Show hat for $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ the lattices $\Lambda^{\prime} \subset \Lambda$ with $\left[\Lambda: \Lambda^{\prime}\right]=n$ are in $1: 1$ correspondence with matrices $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ with $a d=n$ and $0 \leq b \leq d-1$ via $\Lambda^{\prime}=\mathbb{Z}\left(a \omega_{1}+b \omega_{2}\right)+\mathbb{Z} d \omega_{2}$.

Exercise 4. (Bonus) Determine the eigenvalues of $T_{n}: M_{k} \rightarrow M_{k}$ for $k=12,24$ and $n=2,3$. For this choose a basis of M_{k} and determine the matrix of T_{n} with respect to this basis.
(The numbers might get big and you are allowed to use a CAS for this Exercise)

