Topics in Mathematical Science IV, Nagoya University, Spring 2023

Homework 3: \mathfrak{sl}_2 -action & Hecke operators

Deadline: 9th July (23:55 JST), 2023 at TACT

Exercise 1. Show that (D, W, δ) is a \mathfrak{sl}_2 -triple.

Exercise 2. Show that for $f \in M_k$, $g \in M_l$ and $n \ge 0$ we have $[f,g]_n \in M_{k+l+2n}$.

Use that $f, g \in \ker(\delta)$ and then show that the commutator relations imply for $r \ge 1$

$$[\delta, D^r] = r(W - r + 1)D^{r-1}.$$

Use this to show that $[f,g]_n \in \ker \delta = M$.

Exercise 3. Show hat for $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ the lattices $\Lambda' \subset \Lambda$ with $[\Lambda : \Lambda'] = n$ are in 1:1 correspondence with matrices $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ with ad = n and $0 \le b \le d - 1$ via $\Lambda' = \mathbb{Z}(a\omega_1 + b\omega_2) + \mathbb{Z}d\omega_2$.

Exercise 4. (Bonus) Determine the eigenvalues of $T_n: M_k \to M_k$ for k = 12, 24 and n = 2, 3. For this choose a basis of M_k and determine the matrix of T_n with respect to this basis.

(The numbers might get big and you are allowed to use a CAS for this Exercise)