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•

Modular forms are functions appearing in several areas of mathematics as well as mathematical physics.
There are two cardinal points about them which explain why they are interesting. First of all, the space
of modular forms of a given weight is finite dimensional and algorithmically computable. Secondly,
modular forms occur naturally in connection with problems arising in many areas of mathematics.
Together, these two facts imply that modular forms have a huge number of applications and the
purpose of this lecture is to demonstrate this on examples coming from classical number theory, such
as identities among divisor sums. In this course we will discuss the following topics:

• The action of the modular group on the complex upper half-plane and modular forms.

• Eisenstein series and their Fourier expansion.

• Cusp forms and Ramanujan’s Delta-function.

• The space of modular and its dimension.

• Derivatives of modular forms.

• Application: Relations and congruences among Fourier coefficients of modular forms.
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Introduction to modular forms • Motivation

1 Motivation

Modular forms have various different application in many areas. We will illustrate some applications
coming from classical number theory. For this we start with the following well-known theorem:

Theorem 1.1 (Theorem of Lagrange (1770)). Every positive integer is a sum of four1 squares.

For example 1 = 12 + 02 + 02 + 02 or 30 = 12 + 22 + 32 + 42 = 02 + 12 + 22 + 52 and

2018 = 32 + 212 + 282 + 282 = 122 + 192 + 272 + 282 = 172 + 182 + 272 + 262.

In particular these examples show that the representation as a sum of four squares is not unique.

Question: In how many ways can a natural number n be written as a sum of four squares?

In other words, the question asks for an explicit formula for the function

r4(n) = #
{

(a, b, c, d) ∈ Z4 | n = a2 + b2 + c2 + d2
}
.

This question was answered by Jacobi who gave the following explicit formula for r4(n).

Theorem 1.2 (Jacobi’s four-square theorem (1834)). For all n ∈ Z≥1 we have

r4(n) = 8
∑
d|n
4-d

d .

Here the sum runs over all positive divisors d of n, which are not divisible by 4.

Example 1.3. i) If p is prime, then there are 8(p+ 1) ways to write p as a sum of four squares.

ii) The divisors of 2018 are 1, 2, 1009 and 2018, which are all not divisible by 4 and therefore we have

r4(2018) = 8 (1 + 2 + 1009 + 2018) = 24240

ways of writing 2018 as a sum of four squares.

To prove theorems like Theorem 1.2 it is convenient to consider the generating series of r4(n), i.e.

F (q) =
∑
n≥0

r4(n)qn = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + 96q6 + 64q7 + 24q8 + 104q9 + . . .

It turns out that F (q) is an example of a ”modular form of weight 2 and level 4”. Using the theory
of modular forms, one knows that the space of modular forms of weight 2 and level 4 has dimension
2 and we can give an explicit basis for this space in terms of so-called Eisenstein series. Eisenstein
series are given by q-series, whose coefficients are divisor sums, and writing F as a linear combination
of them (see (1.2)) gives a proof of Theorem 1.2.

Definition 1.4. For l ∈ Z and n ∈ Z≥1 the l-th divisor sum σl(n) is defined by

σl(n) =
∑
d|n

dl ,

where the sum runs over all positive divisors d of n.

1Four is the smallest integer with this property, since 5 is not the sum of two squares and 7 is not the sum of three.
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In particular σ0(n) counts the divisors of n and σ1(n) is the sum of all divisor of n. For example since
the divisor of 6 are 1, 2, 3, 6, we have σ0(6) = 4 and σ1(6) = 1 + 2 + 3 + 6 = 12. A few more examples:

n σ1(n) σ3(n) σ5(n) σ7(n) σ9(n) σ11(n)
1 1 1 1 1 1 1
2 3 9 33 129 513 2049
3 4 28 244 2188 19684 177148
4 7 73 1057 16513 262657 4196353
5 6 126 3126 78126 1953126 48828126
6 12 252 8052 282252 10097892 362976252
7 8 344 16808 823544 40353608 1977326744
8 15 585 33825 2113665 134480385 8594130945
9 13 757 59293 4785157 387440173 31381236757

The Eisenstein series of weight 2,4,6 and 8 are given by2 the following q-series

E2(q) = 1− 24
∑
n≥1

σ1(n)qn = 1− 24q − 72q2 − 96q3 − 168q4 − 144q5 + . . .

E4(q) = 1 + 240
∑
n≥1

σ3(n)qn = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + . . .

E6(q) = 1− 504
∑
n≥1

σ5(n)qn = 1− 504q − 16632q2 − 122976q3 − 532728q4 + . . .

E8(q) = 1 + 480
∑
n≥1

σ7(n)qn = 1 + 480q + 61920q2 + 1050240q3 + 7926240q4 + . . . .

(1.1)

The space of modular forms of weight 2 and level 4 is spanned by the two q-series E2(q)−2E2(q2) and
E2(q) − 4E2(q4). One can show, using analytic methods, that F (q) is also an element in this space
and therefore has to be a linear combination of these two. It turns out that

F (q) = −1

3
(E2(q)− 4E2(q4)) , (1.2)

which proves Theorem 1.2 (see Section 8 for a bit more details).

In this course, we will focus on modular forms of level 1. The Eisenstein series E4, E6 and E8 are
examples of modular forms of level 1 and weight 4, 6 and 8 respectively. The goal of this course
is to prove a dimension formula for modular forms and show that every modular form is actually a
polynomial in just E4 and E6. As one small application, we will obtain relations among divisor-sums.

One example is the following: The space of all modular forms is a graded ring and E2
4 and E8 are both

modular forms of weight 8. As we will see, the space of modular forms of weight 8 has dimension 1
and since both E2

4 and E8 start with 1 + . . . they are equal, i.e.

E8(q) = E4(q)2 . (1.3)

This implies the following identity among divisor-sums by considering the coefficient of qn in (1.3).

2The factors −24, 240, −504 and 480 will become clear when we give the ”real definition” of the Eisenstein series in
Section 3 equation (3.5).
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Theorem 1.5 (Hurwitz identity). For all n ∈ Z≥1 we have

σ7(n) = σ3(n) + 120

n−1∑
j=1

σ3(j)σ3(n− j) .

For example for n = 3 we have σ7(3) = 1 + 37 = 2188 and

σ3(3) + 120

2∑
j=1

σ3(j)σ3(3− j) = 1 + 33 + 120(1 · (1 + 23) + (1 + 23) · 1) = 28 + 120 · 18 = 2188 .

This identity can also be proven without using modular forms (Bonus exercise), but the proof becomes
much more complicated.

2 The modular group and modular forms

The modular forms mentioned in the previous section were given by q-series. But actually modular
forms are functions from the upper half plane to the complex numbers. That they can be written as
q-series will follow later as a simple implication of their definition. We will start by giving the definition
of the upper half plane and the action of the modular group on this space. With this, we will define
modular functions and modular forms, before giving (non-trivial) examples in the next section.

The upper half plane, denoted H, is the set of all complex numbers with positive imaginary part:

H =
{
τ ∈ C | Im(τ) > 0

}
=
{
x+ iy ∈ C | x, y ∈ R , y > 0

}
.

The modular group (or special linear group) SL2(Z) is the group of 2 × 2-matrices with integer
entries and determinant one:

SL2(Z) =

{(
a b
c d

) ∣∣∣ a, b, c, d ∈ Z , ad− bc = 1

}
.

For γ =

(
a b
c d

)
∈ SL2(Z) and τ ∈ C we define the fractional linear transformation

γ(τ) :=
aτ + b

cτ + d
.

This gives a left action of SL2(Z) on H (Exercise 1).
The group SL2(Z) contains the following three matrices

I =

(
1 0
0 1

)
, S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,

which correspond to the identity and the fractional transformation τ 7→ − 1
τ and τ 7→ τ + 1. The latter

two fractional transformation will play the major role in our studies, since we have following:

Proposition 2.1. The matrices S and T generate SL2(Z).

Proof. Exercise 2 i).
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Remark 2.2. Some authors denote by the modular group the group of transformations generated by
γ( . ) for γ ∈ SL2(Z). Since (−I)(τ) = τ this group is isomorphic to PSL2(Z) = SL2(Z)/{±I}.

Definition 2.3. Two points τ1, τ2 ∈ H are called SL2(Z)-equivalent if there exists a γ ∈ SL2(Z) with
γ(τ1) = τ2. A fundamental domain F for SL2(Z) is a closed subset of H, such that

i) every τ ∈ H is SL2(Z)-equivalent to a point in F .

ii) no two points in the interior of F are SL2(Z)-equivalent.

Proposition 2.4. The following set is a fundamental domain for the action of SL2(Z)

F =
{
τ ∈ H | |τ | ≥ 1 and |Re(τ)| ≤ 1

2

}
.

ω
i

−ω

F

11
2

0− 1
2

−1

Figure 1: Fundamental domain F and the points ω = − 1
2 +

√
3

2 i and −ω = S(ω) = 1
2 +

√
3

2 i.

Proof. We first show that every element τ ∈ H is equivalent to a point in F : For γ =

(
a b
c d

)
we have

(see Exercise 1 i))

Im(γ(τ)) =
Im(τ)

|cτ + d|2
. (2.1)

Since c, d are integers, we can find a matrix γ0 =

(
a b
c d

)
∈ SL2(Z), such that |cτ + d| is minimal. In

particular we get by (2.1) that

Im(γ0(τ)) ≥ Im(γ(τ)) for all γ ∈ SL2(Z) . (2.2)

Since the action of T corresponds to a horizontal translation, we can find a j ∈ Z, such that γ1 = T jγ0

satisfies − 1
2 ≤ Re(γ1(τ)) ≤ 1

2 . We now already have γ1(τ) ∈ F because otherwise we would have
|γ1(τ)| < 1 and therefore

Im(Sγ1(τ)) =
Im(γ1(τ))

|γ1(τ)|2
> Im(γ1(τ)) = Im(γ0(τ)) ,

which is not possible by (2.2).
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We now prove that no two points in the interior of F are SL2(Z)-equivalent: Let τ ∈ F and assume

we have a γ =

(
a b
c d

)
∈ SL2(Z) such that also γ(τ) ∈ F . Without loss of generality we can assume

that Im(γ(τ)) ≥ Im(τ) (otherwise replace γ by γ−1). By (2.1) we therefore have |cτ + d| ≤ 1. Since
c, d ∈ Z and τ ∈ F this can just be the case if |c| ≤ 1, which leaves us with the following cases:

i) c = 0, d = ±1: In this case we have γ =

(
±1 b
0 ±1

)
and therefore we either have γ = I or

Re(τ) = ± 1
2 , i.e. τ is on one of the vertical boundary lines of F .

ii) c = ±1, d = 0 and |τ | = 1: In this case we have γ =

(
a ∓1
±1 0

)
= ±T aS. This gives either a = 0

with τ and γ(τ) on the unit circle (and symmetrically located with respect to the imaginary axis),
a = −1 with τ = γ(τ) = ω or a = 1 with τ = γ(τ) = −ω.

iii) c = d = ±1 and τ = ω = − 1
2 +

√
3

2 i: In this case we have γ =

(
a a∓ 1
±1 ±1

)
= ±T aST which

gives either a = 0 and γ(τ) = ω or a = 1 and γ(τ) = −ω.

iv) c = −d = ±1 and τ = −ω = 1
2 +

√
3

2 i: This case is similar to case iii).

In all cases we conclude that either γ = I or τ and γ(τ) are on the boundary of F .

Remark 2.5. The following diagram shows how the fundamental domain F is translated by different
matrices in SL2(Z).

Figure 2: Translations of the fundamental domain F .

We will now recall some basic definitions from complex analysis. For details we refer to [SS] and [FB].
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Definition 2.6. Let U ⊂ C be an open subset of the complex numbers. A function f : U → C is called
holomorphic on U , if for all z0 ∈ U the limit

lim
h→0

f(z0 + h)− f(z0)

h

exists. If it exists, it is denoted by f ′(z0). By O(U) we denote the set of all holomorphic functions on
the open set U .

A basic fact from complex analysis is that holomorphic functions are also analytic. This means that
if f is holomorphic on U , then for each z0 ∈ U there exists a ε > 0, such that f can be written as a
power series

f(z) =

∞∑
n=0

an(z − z0)n ,

for all z ∈ U with |z − z0| < ε and some an ∈ C.

Definition 2.7. A function f is meromorphic on U , if there exists a discrete subset P ⊂ U with

i) f is holomorphic on U\P .

ii) f has poles at pj ∈ P .

If f is meromorphic on U , then for each p ∈ U , there exists a unique integer vp(f) ∈ Z, a ε > 0 and a
non-vanishing holomorphic function g on the deleted neighborhood 0 < |z − p| < ε, such that

f(z) = (z − p)vp(f)g(z)

for all 0 < |z − p| < ε. The integer vp(f) is called the order of f at the point p ∈ U and we have:

i) If vp(f) < 0 then f has a pole of order |vp(f)| at p.

ii) If vp(f) = 0 then f has no pole and no zero at p.

iii) If vp(f) > 0 then f has a zero of order vp(f) at p.

Equivalent to above condition is that f has a Laurent expansion in all p ∈ U of the form

f(z) =

∞∑
n=vp(f)

an(z − p)n ,

for 0 < |z − p| < ε and an ∈ C with avp(f) 6= 0.

Example 2.8. i) The rational function f(z) = z−2
(z−1)(z+1)2 is meromorphic on C with v2(f) =

1, v1(f) = −1 and v−1(f) = −2. Its Laurent expansion around z = 1 is given by

f(z) = −1

4
(z − 1)−1 +

1

2
− 7

16
(z − 1) +

5

16
(z − 1)2 + . . . .

ii) The function e
1
z is holomorphic on C\{0}, but it is not meromorphic on C, since it has an essential

singularity at z = 0.

In the following k ∈ Z will always denote an integer.
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Definition 2.9. A meromorphic function f : H → C is called a weakly modular function of
weight k, if it satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) , (2.3)

for all

(
a b
c d

)
∈ SL2(Z) and all τ ∈ H.

Since −I ∈ SL2(Z), a weakly modular function of weight k satisfies f(τ) = (−1)kf(τ). This shows
that there are no non-trivial weakly modular functions of odd weight.
If f is a weakly modular function of weight k we have

f(τ + 1) = f(τ) ,

f(−1/τ) = τkf(τ) ,
(2.4)

by choosing the matrices T and S for (2.3). These two conditions are already sufficient for f to be
weakly modular function of weight k.

Proposition 2.10. A meromorphic function f : H → C which satisfies (2.4) is already a weakly
modular function of weight k.

Proof. Exercise 2

Definition 2.11. For a function f : H→ C and a matrix γ =

(
a b
c d

)
∈ SL2(Z) we define the slash

operator of weight k by

(f |kγ)(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)
.

This gives a right action of SL2(Z) on O(H) (Exercise 1) and the weakly modular functions of weight
k are exactly the meromorphic functions on H, which are invariant under this operator.

Now consider the following holomorphic map from the upper half plane to the punctured unit disc

H −→ D∗ := {z ∈ C | 0 < |z| < 1} ,
τ 7−→ qτ := e2πiτ .

First notice that this is indeed a map from H to D∗, since if τ = x+ iy then qτ = e2πiτ = e−2πye2πxi,
which lies in D∗ because of y > 0.
The equation f(τ + 1) = f(τ) implies that f can be written in the form

f(τ) = f̃(qτ ) ,

where f̃ is a meromorphic function on the punctured unit disc D∗.

Definition 2.12. i) A weakly modular function f is called meromorphic (resp. holomorphic)

in ∞, if the function f̃ extends to a meromorphic (resp. holomorphic) function at 0.

ii) The order at ∞ of a meromorphic weakly modular function f is defined by v∞(f) := v0(f̃).
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Extending to a meromorphic (resp. holomorphic) function at 0, means that there exists a N ∈ Z (resp.

N ∈ Z≥0) such that the Laurent expansion of f̃ around 0 has the form

f̃(q) =

∞∑
n=N

anq
n ,

for some an ∈ C. The smallest such N is given by v0(f̃).

Definition 2.13. A weakly modular function (of weight k) f is called modular function (of weight
k) if it is meromorphic at ∞.

Definition 2.14. A holomorphic function f : H→ C is called a modular form of weight k, if

i) f is a modular function of weight k,

ii) f is holomorphic at ∞.

By Mk we denote the space of all modular forms of weight k.

In other words, modular forms of weight k are holomorphic functions f : H → C, which satisfy (2.3)
and which have a Fourier expansion of the form

f(τ) =

∞∑
n=0

anq
n
τ

for some an ∈ C, which are called the Fourier coefficients of f . By abuse of notation we will in the
following always write q instead of qτ .

Example 2.15. i) For all k ∈ Z the function f(τ) = 0 is a modular form of weight k.

ii) There are no non-trivial modular forms of odd weight.

iii) For all c ∈ C the constant function f(τ) = c is a modular form of weight 0.

Of course there are other non-trivial examples of modular forms, as we will see in the next section.

3 Eisenstein series

In this section we will introduce Eisenstein series, which are one of the most important examples of
modular forms. These already appeared in the first section as q-series. Here we will give their ”correct”
definition as a function in a complex variable τ ∈ H and calculate their Fourier expansion. For this
we will also need to recall the Riemann zeta function

ζ(k) =

∞∑
n=1

1

nk
, (k ∈ C, Re(k) > 1)

which will give the constant term in the Fourier expansion of the Eisenstein series.

Proposition 3.1. For even k ≥ 4 the Eisenstein series of weight k, defined by

Gk(τ) =
1

2

∑
m,n∈Z

(m,n)6=(0,0)

1

(mτ + n)k
,

is a modular form of weight k.
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Proof. First one can check that for k > 2 the above sum is absolutely convergent and uniformly conver-
gent on compacts subset (actually also on F) of H and therefore Gk is a holomorphic function on H. For
the proof of this fact we refer to the literature (see for example [Ki, Lemma 2.7] or [S, p. 82, Lemma 1]).

To check that Gk is holomorphic at infinity, we will show that Gk(τ) approaches an explicit finite limit
as τ → i∞. By the uniformly convergence we can exchange summation and the limit and obtain

lim
τ→i∞

Gk(τ) =
1

2
lim
τ→i∞

∑
m,n∈Z

(m,n) 6=(0,0)

1

(mτ + n)k
=

1

2

∑
06=n∈Z

1

nk
= ζ(k) .

Now we check the modularity conditions for Gk. For this it is important that the sum converges
absolutely and therefore we are allowed to arrange the terms in any way. To show that Gk(τ + 1) =
Gk(τ) we calculate

Gk(τ + 1) =
1

2

∑
m,n∈Z

(m,n)6=(0,0)

1

(m(τ + 1) + n)k
=

1

2

∑
m,n∈Z

(m,n) 6=(0,0)

1

(mτ + (m+ n))k
.

As (m,n) runs over Z2\{(0, 0)}, so does (m,m+ n) = (m,n′), so by the absolute convergence we get

Gk(τ + 1) =
1

2

∑
m,n∈Z

(m,n) 6=(0,0)

1

(mτ +m+ n)k
=

1

2

∑
m,n′∈Z

(m,n′)6=(0,0)

1

(mτ + n′)k
= Gk(τ) .

Similarly, to show Gk(−1/τ) = τkGk(τ) we derive

Gk(−1/τ) =
1

2

∑
m,n∈Z

(m,n) 6=(0,0)

1

(−m/τ + n)k
= τk

1

2

∑
m,n∈Z

(m,n) 6=(0,0)

1

(nτ −m)k
= τkGk(τ) ,

since also (n,−m) runs over Z2\{(0, 0)}.

We will now calculate the Fourier expansion of Gk for which we will need the following lemma.

Lemma 3.2. (Lipschitz‘s formula) For k ≥ 2 and τ ∈ H we have

∑
n∈Z

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∞∑
d=1

dk−1qd . (3.1)

Proof. (Sketch) This follows by differentiating the following two expression of the cotangent k−1-times

∑
n∈Z

1

τ + n
=

π

tan(πτ)
= −πi− 2πi

∞∑
d=1

qd .

See for example [Z, Proposition 5] for more details.

Proposition 3.3 (Fourier expansion of Gk). For even k ≥ 4 the Fourier expansion of Gk is given by

Gk(τ) = ζ(k) +
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn . (3.2)
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Proof. Again we use the absolute convergence which allows the following rearrangements

Gk(τ) =
1

2

∑
m,n∈Z

(m,n)6=(0,0)

1

(mτ + n)k
k even

=
1

2

∑
06=n∈Z

1

nk
+

∞∑
m=1

∑
n∈Z

1

(mτ + n)k

(3.1)
= ζ(k) +

(2πi)k

(k − 1)!

∞∑
m=1

∞∑
d=1

dk−1qmd = ζ(k) +
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn .

In the definition of Gk we needed k > 2 to assure absolute convergence. But the q-series in (3.2) also
makes sense for k = 2 and also defines a holomorphic function in τ ∈ H. We therefore use this equation
to define the Eisenstein series of weight 2 by

G2(τ) := ζ(2) + (2πi)2
∞∑
n=1

σ1(n)qn . (3.3)

This is not a modular form anymore, but plays an important role in the theory of modular forms. We
have the following Proposition which gives the failure of G2 to be a modular form.

Proposition 3.4 (Modular transformation of G2). For τ ∈ H and

(
a b
c d

)
∈ SL2(Z) we have

G2

(
aτ + b

cτ + d

)
= (cτ + d)2G2(τ)− πic(cτ + d) . (3.4)

Proof. See for example [Z, Proposition 6] or [Ko, Chapter III, Proposition 7].

Proposition 3.5 (L. Euler (1735)). For even k ≥ 2 we have

ζ(k) = −Bk
2k

(2πi)k

(k − 1)!
,

where Bk denotes the k-th Bernoulli number defined by the generating function

∞∑
k=0

Bk
k!
Xk =

X

eX − 1
.

Proof. See for example [FB, Proposition III.7.14].

A few example for the first Bernoulli numbers are given by the following table

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bk 1 − 1
2

1
6 0 − 1

30 0 1
42 0 - 1

30 0 5
66 0 − 691

2730 0 7
6 0 − 3617

510

From this we get the following values of ζ(k) for k = 2, 4, 6, 8, 10, 12:

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, ζ(10) =

π10

93555
, ζ(12) =

691π12

638512875
.
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Using Proposition 3.5 we define for even k ≥ 2 the normalized version the Eisenstein series by

Ek(τ) =
1

ζ(k)
Gk(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn . (3.5)

These are the q-series which also appeared in (1.1).

4 Cusp forms and the discriminant function ∆

In this section, we will talk about a special class of modular forms, called cusp forms, which are modular
forms vanishing at the ”cusps”. By cusps, one usually denotes the classes of Q ∩ {∞} modulo the
action of a subgroup of SL2(Z). For the level one case, where we consider the whole group SL2(Z), we
have |SL2(Z)\(Q∩ {∞})| = 1, because every rational number can be send to ∞ by a linear fractional
transformation. This means there is just one cusp. A cusp form of level one is, therefore, a modular
form which vanishes at ∞ or, equivalently, has a vanishing constant term in its Fourier expansion.

Definition 4.1. i) A modular form f(τ) =
∑∞
n=0 anq

n is called a cusp form, if a0 = 0.

ii) By Sk we denote3 the space of all cusp forms of weight k.

In other words, cusp forms are modular forms which vanish as τ → i∞ or equivalently have order
v∞(f) > 0 at infinity. We have the decomposition Mk = CEk ⊕ Sk (Exercise 3).

Definition 4.2. We define the discriminant function ∆ by (q = e2πiτ )

∆(τ) = q

∞∏
n=1

(1− qn)
24
. (4.1)

The function τ(n) defined by ∆(τ) =
∑∞
n=1 τ(n)qn is called Ramanujan tau function.

Expanding the product in the definition of ∆ gives the following first values for τ(n)

∆(τ) = q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + 84480q8 − 113643q9 + . . . . (4.2)

Remark 4.3. i) Ramanujan observed in 1915 that τ(n) is multiplicative, i.e. τ(m · n) = τ(m) · τ(n)
for coprime m,n ∈ Z≥1. For example τ(6) = −6048 = −24 · 252 = τ(2) · τ(3). This was proved by
Mordell the next year and later generalized by Hecke to the theory of Hecke operators. We will
not discuss Hecke operators in this lecture but they play a major role in the theory of modular
forms. The function ∆ is an example of a Hecke eigenform (meaning it is an eigenvector for all
Hecke operators having 1 as the coefficient of q), which all satisfy the property that their Fourier
coefficients are multiplicative.
The divisor-sums σk−1(n) are also multiplicative and the Eisenstein series, after some normaliza-
tion, are also examples of Hecke eigenforms.

ii) Lehmer (1947) conjectured that τ(n) 6= 0 for all n ≥ 1, an assertion sometimes known as Lehmer’s
conjecture. This conjecture is still unproven but checked for all 1 ≤ n ≤ 816212624008487344127999
(due to Derickx, van Hoeij, and Zeng in 2013).

3”S” in Sk stands for the german word ”Spitzenform” for cusp form.
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Introduction to modular forms • Structure of the space of modular forms

Since |e2πiτ | < 1 for τ ∈ H, the terms of the infinite product (4.1) are all non-zero and tend exponen-
tially rapidly to 1, so ∆ gives a holomorphic and everywhere non-zero function on H. It gives the first
example of a non-trivial cusp form.

Proposition 4.4. The function ∆(τ) is a cusp form of weight 12.

Proof. Since ∆(τ) 6= 0, we can consider its logarithmic derivative. We find

1

2πi

d

dτ
log ∆(τ) =

1

2πi

d

dτ
log

(
q

∞∏
n=1

(1− qn)
24

)
=

1

2πi

d

dτ

(
log(q) + 24

∞∑
n=1

log(1− qn)

)
.

Since q = e2πiτ we have 1
2πi

d
dτ = q ddq and therefore

1

2πi

d

dτ
log ∆(τ) = 1− 24

∞∑
n=1

n
qn

1− qn
= 1− 24

∞∑
n=1

n

∞∑
d=1

qdn = 1− 24

∞∑
n=1

σ1(n)qn = E2(τ) . (4.3)

By Proposition 3.4 and E2(τ) = 6
π2G2(τ) we have

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− 6

π
ic(cτ + d) . (4.4)

Combining (4.3), (4.4) and using

d

dτ

(
aτ + b

cτ + d

)
=

ad− bc
(cτ + d)2

=
1

(cτ + d)2

for γ =

(
a b
c d

)
∈ SL2(Z), we deduce

1

2πi

d

dτ
log

 ∆
(
aτ+b
cτ+d

)
(cτ + d)12∆(τ)

 =
1

(cτ + d)2
E2

(
aτ + b

cτ + d

)
− 12

2πi

c

cτ + d
− E2(τ) = 0 .

In other words, (∆|12γ)(τ) = C(γ)∆(τ) for all τ ∈ H and all γ ∈ SL2(Z), where C(γ) is a non-zero
complex number depending only on γ. We want to show that C(γ) = 1 for all γ.
The slash operator |k gives a right action of SL2(Z) on H (Exercise 1), i.e. for γ1, γ2 we get

C(γ1)C(γ2)∆ = C(γ1)∆|12γ2 = ∆|12(γ1)|12γ2 = ∆|12(γ1γ2) = C(γ1γ2)∆ .

Therefore C : SL2(Z) → C is a homomorphism and we just need to prove C(T ) = C(S) = 1. By
definition we have ∆(T (τ)) = ∆(τ), since it is defined by a q-series, which gives C(T ) = 1. To show
C(S) = 1, we set τ = i in τ−12∆(− 1

τ ) = (∆|12S)(τ) = C(S)∆(τ).

Remark 4.5. Since E3
4 and ∆ are modular forms of weight 12 and ∆(τ) 6= 0 for τ ∈ H, the modular

invariant (or j-invariant), defined by

j(τ) =
E4(τ)3

∆(τ)

is a holomorphic function in H satisfying j(γ(τ)) = j(τ) for all γ ∈ SL2(Z). Since ∆ has a zero of
order 1 at ∞ and E4 does not vanish there, the function j has a pole of order 1 at ∞. Therefore j
is a modular function of weight 0, which is not a modular form. Its Fourier expansion, the Laurent
expansion at q = 0 of j̃, starts with

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 + 20245856256q4 + . . . .

These Fourier coefficients, for the positive exponents of q, are the dimensions of the graded part of an
infinite-dimensional graded algebra representation of the so called monster group.
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5 Structure of the space of modular forms

We now come to a very important technical result about modular forms. To state and prove this result,
we will use some definitions and results from complex analysis that can be found again in [FB] or [SS].
Especially the notion of contour integration will be necessary, which can be found in [SS, Section 1.3]
or [FB, Chapter 2].

Proposition 5.1 (Argument principle). If f is a meromorphic function inside and on some closed
contour C with interior D ⊂ C, and f has no zeros or poles on C, then

1

2πi

∫
C

f ′(z)

f(z)
dz =

∑
p∈D

vp(f) .

Proof. See for example [FB, Proposition III.7.4].

Example 5.2. We again consider the rational function f(z) = z−2
(z−1)(z+1)2 , which is meromorphic on

C with v2(f) = 1, v1(f) = −1, v−1(f) = −2 and vp(f) = 0 for p ∈ C\{−1, 1, 2}.

With the two contours C1 and C2 shown on the
right, we get for example

1

2πi

∫
C1

f ′(z)

f(z)
dz = v1(f) + v2(f) = 0 ,

1

2πi

∫
C2

f ′(z)

f(z)
dz = v−1(f) + v1(f) + v2(f) = −2 .

C1

C2

210−1

Lemma 5.3. (Integration over arcs) Let f be a meromorphic function on some open set U ⊂ C. For
an arc Aε ⊂ U of radius ε > 0, center p ∈ U , angle ϕ not intersecting any zeros or poles of f , we have

lim
ε→0

1

2πi

∫
Aε

f ′(z)

f(z)
dz =

ϕ

2π
vp(f) .

ε

ϕ

Aε

p

Proof. See for example part (4) in the proof of [FB, Theorem VI.2.3].

Lemma 5.4. Let f be a modular function with no zeros or poles on a contour C ⊂ H. Then∫
C

f ′(τ)

f(τ)
dτ −

∫
γ(C)

f ′(τ)

f(τ)
dτ = −k

∫
C

c

cτ + d
dτ

for all γ =

(
a b
c d

)
∈ SL2(Z).

Proof. Differentiating f(γ(τ)) = (cτ + d)kf(τ) gives

f ′(γ(τ))
d(γ(τ))

dτ
= (cτ + d)kf ′(τ) + kc(cτ + d)k−1f(τ) .
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Dividing the left-hand side by f(γ(τ)) and the right-hand side by (cτ + d)kf(τ) leads to

f ′(γ(τ))

f(γ(τ))
d(γ(τ)) =

f ′(τ)

f(τ)
dτ + k

c

cτ + d
dτ

and therefore ∫
C

(
f ′(τ)

f(τ)
dτ − f ′(γ(τ))

f(γ(τ))
d(γ(τ))

)
= −k

∫
C

c

cτ + d
dτ .

Example 5.5. For γ = S Lemma 5.4 gives for a modular function f of weight k∫
C

f ′(τ)

f(τ)
dτ −

∫
S(C)

f ′(τ)

f(τ)
dτ = −k

∫
C

1

τ
dτ . (5.1)

Since the factor (cτ + d)k does not vanish for τ ∈ H and c, d ∈ Z, we have vp(f) = vγ(p)(f) for
γ ∈ SL2(Z) and a modular function f . The following theorem gives a restriction on the orders of a
modular functions, which will be crucial to describe the space Mk afterwards.

Theorem 5.6 (Valence formula). For a non-zero modular function f of weight k we have

v∞(f) +
1

2
vi(f) +

1

3
vω(f) +

∑
p∈SL2(Z)\H

p 6=i,ω

vp(f) =
k

12
. (5.2)

Proof. The idea of the proof is to count the (order) of the zeros and poles in SL2(Z)\H by integrating
the logarithmic derivative f ′/f of f around the boundary of the fundamental domain F and then
applying the argument principle.

Figure 3: The contour C.
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More precisely, we need an approximation first and start with a curve as shown in Figure 3. The
contour C is chosen in such a way that it contains exactly one represent in SL2(Z)\H of each pole and
zero, except i, ω (and −ω = S(ω)) which are kept outside.

Since f is a modular functions, it is meromorphic at ∞. This means that for some T ∈ R the function
f has no poles or zeros with imaginary part larger than T . Therefore we can choose the the top line
from H = 1

2 + iT to A = − 1
2 + iT such that f does not have any poles or zeros on or on top of the

line HA.

The rest of the contour follows the boundary of F with a few exceptions: For each zero or pole P 6= i, ω
on the boundary, we simply circle around it with a small enough radius and the other way round for
the congruent point on the other side of the boundary (this way we will only count the point once).
This procedure is illustrated for two such points P and Q in Figure 3.

So far we still followed the boundary of F (modulo SL2(Z)) but since we dont want to include i and ω we
also have to circle around those points with a small enough radius ε (and the same way for −ω = S(ω)).

By the argument principle (Proposition 5.1) we obtain

1

2πi

∫
C

f ′(τ)

f(τ)
dτ =

∑
p∈SL2(Z)\H

p 6=i,ω

vp(f) . (5.3)

On the other hand we can evaluate the contour integral over C on the left-hand side section by section:

i) AB and GH: The integral from A to B cancels the integral from G to H, because f(τ+1) = f(τ),
and the lines go in opposite direction, i.e.

1

2πi

(∫ B

A

+

∫ H

G

)
f ′(τ)

f(τ)
dτ = 0 .

ii) HA: By the map q = e2πiτ the line from H to A gets send to a circle in the unit disc of radius e−2πT

running clockwise around 0. Recall that f(τ) = f̃(q) and therefore we have f ′(τ)
f(τ) dτ = f̃ ′(q)

f̃(q)
dq. By

the argument principle we get

1

2πi

∫ A

H

f ′(τ)

f(τ)
dτ =

1

2πi

∫
|q|=e−2πT

f̃ ′(q)

f̃(q)
dq = −v0(f̃) = −v∞(f) .

Here the minus sign comes from the fact that the contour integral runs clockwise around 0.

iii) BC, DE and FG: All these three sections are small arcs of a small radius ε which approach angles
π
3 , π and π

3 as ε → 0. Using Lemma 5.3 and noticing that all three arcs run clockwise (minus
sign), we obtain

lim
ε→0

1

2πi

(∫ C

B

+

∫ E

D

+

∫ G

F

)
f ′(τ)

f(τ)
dτ = − 1

2π

(π
3
vω(f) + πvi(f) +

π

3
v−ω(f)

)
= −1

2
vi(f)− 1

3
vω(f) ,

where we used v−ω(f) = vS(ω)(f) = vω(f) in the last equation.
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iv) CD and EF : First notice that the transformation S(τ) = − 1
τ sends the contour CD to the

contour EF , but with directions reversed. By (5.1) we therefore have

1

2πi

(∫ D

C

f ′(τ)

f(τ)
dτ +

∫ F

E

f ′(τ)

f(τ)
dτ

)
= − k

2πi

∫ D

C

1

τ
dτ .

Sending ε→ 0, the integral on the right-hand side is just an integral over an arc from ω to i:

lim
ε→0
− k

2πi

∫ D

C

1

τ
dτ = − k

2πi

∫
arc from ω to i

1

τ
dτ

τ=eΘi
= = − k

2π

∫ π
2

2π
3

dΘ =
k

2π

(
2π

3
− π

2

)
=

k

12

and therefore we obtain
1

2πi

(∫ D

C

+

∫ F

E

)
f ′(τ)

f(τ)
dτ =

k

12
.

Combining the parts i) - iv) and plugging them into the left-hand side of (5.3) finishes the proof.

Recall that the difference between a modular function and a modular form is, that a modular form is
holomorphic on H and at ∞. This means that for f ∈ Mk all the numbers in (5.2) are positive and
therefore for a fixed k there are just finitely many solutions. This leads to the following proposition.

Proposition 5.7. Let k ∈ Z be an integer. Then

i) M0 = C,

ii) If k = 2, k < 0 or if k is odd then Mk = 0.

iii) If k ∈ {4, 6, 8, 10, 14}, then Mk = CEk.

iv) If k < 12 or k = 14 then Sk = 0.

v) S12 = C∆ and if k > 12 then Sk = ∆ ·Mk−12.

vi) If k ≥ 4 then Mk = CEk ⊕ Sk.

Proof. i) We know that the constant functions are elements in M0 and we want to show the reverse.
Let f ∈M0 be an arbitrary modular form of weight 0 and let z ∈ C be any element in the image
of f . Then f(z)− c ∈M0 has a zero in H, i.e. one of the terms in (5.2) is strictly positive. Since
the right-hand side is 0, this can only happen if f(z)− c is the zero function, i.e. f is constant.

ii) We already saw that Mk = 0 if k is odd. If k = 2 or k < 0 then the right-hand side of (5.2) is
negative or 1

6 , which has no positive solutions on the left-hand side.

iii) When k ∈ {4, 6, 8, 10, 14}, then there is only one possible way of choosing the vp(f), such that
(5.2) holds:

k = 4 : vω(f) = 1 and all other vp(f) = 0.

k = 6 : vi(f) = 1 and all other vp(f) = 0.

k = 8 : vω(f) = 2 and all other vp(f) = 0.

k = 10 : vω(f) = vi(f) = 1 and all other vp(f) = 0.

k = 14 : vω(f) = 2, vi(f) = 1 and all other vp(f) = 0.
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For such k two arbitrary modular forms f1, f2 ∈ Mk have the same order at all points, i.e. f1

f2
is

a modular form of weight 0, which by i) must be constant. Therefore f1 and f2 are proportional
and since Ek ∈Mk the statement follows.

iv) If f ∈ Sk we have v∞(f) > 0, which is not possible in (5.2) for k < 12 or k = 14.

v) We know that v∞(∆) = 1 and by (5.2) this can be the only zero of ∆. Therefore for any f ∈ Sk
the function f

∆ is a modular form of weight k − 12.

vi) This is Exercise 3.

Theorem 5.8. (Dimension formula) For an even positiver integer k we have

dimCMk =

{
b k12c+ 1 , k 6≡ 2 mod 12

b k12c , k ≡ 2 mod 12
. (5.4)

Proof. This will now follow by induction on k from the results in Proposition 5.7. For k < 12 the
above dimension formula is already proven. Combing the results of Proposition 5.7 we have

Mk+12 = CEk+12 ⊕∆ ·Mk

and since b k12c+ 1 = bk+12
12 c the statement follows inductively.

k 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

dimCMk 1 0 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 4

Figure 4: Dimension of Mk for even 0 ≤ k ≤ 36.

Proof of Theorem 1.5. Both E2
4 and E8 are modular forms of weight 8. Since dimCM8 = 1 there must

exists a c ∈ C with E2
4 = cE8. But since both have 1 as the constant term in their Fourier expansion

we deduce c = 1.

Both E3
4 and E2

6 are modular forms of weight 12 having 1 as the constant term in their Fourier
expansion and therefore E3

4 − E2
6 ∈ S12. By Proposition 5.7 v) this has to be a multiple of ∆ and

comparing the first few Fourier coefficients gives

∆(τ) =
E4(τ)3 − E6(τ)2

1728
. (5.5)

In general every modular form can be written (uniquely) as a polynomial in E4 and E6:

Proposition 5.9. For k ≥ 0, the set {Ea4Eb6 | a, b ≥ 0, 4a+ 6b = k} is a basis of the space Mk.

Proof. We first check that the mentioned set has the correct size. Let Nk be the number of solutions
to 4a+ 6b = k in nonnegative integers a and b. For k ≤ 12 one can check directly that Nk = dimCMk

(given in (5.4)) and for k ≥ 12 one can check that Nk = Nk−12 + 1. Therefore we have Nk = dimCMk
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for all k. It remains to show that the set is linearly independent. Suppose we have a relation of the
form ∑

4a+6b=k
a,b≥0

λa,bE4(τ)aE6(τ)b = 0

for all τ ∈ H. If there is a pure E4 term, say λa,0E4(τ)a, then setting τ = i shows λa,0E4(i)a = 0 since
E6(i) = 0 (Exercise 6 ii)). Since E4(i) 6= 0 (which follows from the valence formula (5.2)) we deduce
λa,0 = 0. Therefore all nonzero terms in the sum have b ≥ 1. As E6 is not identically 0, we can divide
by it and get ∑

4a+6b=k
a,b≥0

λa,bE4(τ)aE6(τ)b−1 = 0 ,

which is a linear relation in weight k−6. By induction we see that the remaining coefficients are 0.

Remark 5.10. Starting with a modular form f =
∑∞
n=0 anq

n ∈Mk and choosing a and b with 4a+6b =
k, we have f − a0E

a
4E

b
6 ∈ Sk. By Proposition 5.7 v) we have Sk = ∆ ·Mk−12, i.e. we find a g ∈Mk−12

with f = a0E
a
4E

b
6 +∆ ·g. With the explicit expression (5.5) of ∆, this gives a recursive algorithm (and

in fact another way of proving Proposition 5.9) to write f as a polynomial in E4 and E6.

Proposition 5.11. Modular forms with different weights are linearly independent over C.

Proof. Suppose we have nonzero modular forms f1, f2, . . . , fm with respective weights k1 < k2 < · · · <
km, such that they admit a nontrivial linear relation

α1f1(τ) + α2f2(τ) + · · ·+ αmfm(τ) = 0 (5.6)

for all τ ∈ H and αj 6= 0 for j = 1, . . . ,m. Replacing τ by S(τ) and using the modularity, i.e.
fj(S(τ)) = τkjfj(τ), we obtain

α1τ
k1f1(τ) + α2τ

k2f2(τ) + · · ·+ αmτ
kmfm(τ) = 0

for all τ ∈ H. With Fourier expansions fj(τ) =
∑∞
n=0 a

(j)
n qn where q = e2πiτ , this is equivalent to

∞∑
n=0

(
α1τ

k1a(1)
n + α2τ

k2a(2)
n + · · ·+ αmτ

kma(m)
n

)
e2πinτ = 0 .

Now consider the case of τ = iy (y > 0) being on the positive imaginary axis, then

∞∑
n=0

(
α1(iy)k1a(1)

n + α2(iy)k2a(2)
n + · · ·+ αm(iy)kma(m)

n

)
e−2πny = 0 . (5.7)

For n > 0 and any r ≥ 0 we have limy→∞ yre−2πny = 0. Now let N be the smallest integer, such that

at least for one 1 ≤ j ≤ m we have a
(j)
N 6= 0. Dividing (5.7) by e−2πNy and taking the limit y →∞ we

obtain
lim
y→∞

α1(iy)k1a
(1)
N + α2(iy)k2a

(2)
N + · · ·+ αm(iy)kma

(m)
N = 0 .

But the left-hand side of this equation is the limit y → ∞ of a non-constant polynomial in y, which
can not be zero and therefore a relation of the form (5.6) can not exist.

Proposition 5.12. The modular forms E4 and E6 are algebraically independent over C.
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Proof. Let P ∈ C[X,Y ] be with P (E4(τ), E6(τ)) = 0 for all τ ∈ H. By Proposition 5.11 we can reduce
this to the case where P (E4, E6) is a sum of modular forms of the same weight k. But by Proposition
5.9 we know that Ea4E

b
6 with 4a+6b = k are linearly independent and therefore we conclude P = 0.

Summarizing all the results we get the following description of the space of modular forms.

Corollary 5.13. Let M denote the space of all modular forms (of level 1), then we have

M =

∞⊕
k=0

Mk = C[E4, E6] ∼= C[X,Y ] ,

i.e. M is a graded C-algebra, which is isomorphic to the polynomial ring in two variables.

6 Derivatives of modular forms

Modular forms are holomorphic function and therefore we can differentiate them with respect to τ . It
is convenient to consider the following notation for a modular form f =

∑∞
n=0 anq

n:

f ′ :=
1

2πi

d

dτ
f = q

d

dq
f =

∞∑
n=1

nanq
n .

Here the factor 2πi has been included in order to preserve the rationality properties of the Fourier
coefficients. The derivative of a modular form is, in general, not a modular form anymore. The failure
of modularity is given by the following proposition.

Proposition 6.1. The derivative of a modular form f ∈Mk satisfies

f ′
(
aτ + b

cτ + d

)
= (cτ + d)k+2f ′(τ) +

k

2πi
c(cτ + d)k+1f(τ) .

for all

(
a b
c d

)
∈ SL2(Z).

Proof. Exercise 6.

Definition 6.2. For a modular form f ∈Mk, we define the Serre derivative by

∂kf := f ′ − k

12
E2f .

Proposition 6.3. For a modular form f ∈Mk we have ∂kf ∈Mk+2.

Proof. We set g(τ) = f ′(τ)− k
12E2(τ)f(τ) and by using Proposition 6.1 and the formula

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− 6

π
ic(cτ + d) , (6.1)
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which was a consequence of Proposition 3.4, we obtain for

(
a b
c d

)
∈ SL2(Z)

g

(
aτ + b

cτ + d

)
= f ′

(
aτ + b

cτ + d

)
− k

12
E2

(
aτ + b

cτ + d

)
f

(
aτ + b

cτ + d

)
= (cτ + d)k+2f ′(τ) +

k

2πi
c(cτ + d)k+1f(τ)

− k

12

(
(cτ + d)2E2(τ)− 6

π
ic(cτ + d)

)
(cτ + d)kf(τ)

= (cτ + d)k+2

(
f ′(τ)− k

12
E2(τ)f(τ)

)
= (cτ + d)k+2g(τ) .

Since g is also holomorphic in H and at ∞ we obtain g ∈Mk+2.

Definition 6.4. The ring of quasimodular forms is defined by M̃ = C[E2, E4, E6].

Proposition 6.5. The ring of quasimodular forms is closed under differentiation and we have

E′2 =
E2

2 − E4

12
, E′4 =

E2E4 − E6

3
, E′6 =

E2E6 − E2
4

2
.

Proof. By Proposition 6.3 we have ∂4E4 = E′4 − 1
3E2E4 ∈ M6 and ∂6E6 = E′6 − 1

2E2E6 ∈ M8.

Since both spaces are one-dimensional with basis E6 and E2
4 respectively we get the second and third

equation after comparing the first Fourier coefficients. Using again the modularity formula (4.4) of E2

and doing a similar calculation as in Proposition 6.3 one can also show that E′2− 1
12E

2
2 ∈M4. Therefore

this is also a multiple of E4, which turns out to be − 1
12 by comparing the Fourier coefficients.

7 Relations and congruences among Fourier coefficients

We know that for even k1, . . . , kr ≥ 4 and a1, . . . , ar ≥ 1 we have Ea1

k1
. . . Earkr ∈ Ma1k1+···+arkr .

The possible choices of kj and aj are much larger than the dimension of Ma1k1+···+arkr given by the
dimension formula before. Therefore we obtain various relations among the divisor-sums, such as

σ7(n) = σ3(n) + 120

n−1∑
j=1

σ3(j)σ3(n− j)

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040

n−1∑
j=1

σ3(j)σ5(n− j) ,

which are consequences of the equalities E8 = E2
4 and E10 = E4E6 in the one-dimensional spaces M8

and M10. These also imply non-trivial congruences, such as for example 11σ9(n) ≡ 21σ5(n)− 10σ3(n)
mod 5040. The results on the derivatives of modular forms, given in the section before, even give more
relations. For example since E′2(τ) = −24

∑∞
n=1 nσ1(n)qn the first equation in Proposition 6.5 gives

for all n ∈ Z≥1 the relation

6nσ1(n) = 5σ3(n) + σ1(n)− 12

n−1∑
j=1

σ1(j)σ1(n− j) .

As a last example we give the following famous congruence for the Ramanujan tau function.
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Proposition 7.1. i) We have

∆ =
691

65520
E12 −

691

156

(
E3

4

720
+

E2
6

1008

)
.

ii) For all n ∈ Z≥1 we have
τ(n) ≡ σ11(n) mod 691 .

Proof. We know that E3
4 and E2

6 are basis of the space M12 and by comparing the first Fourier
coefficients we get the equation in i). Since 691 is prime and

691

65520
E12(τ) =

691

65520
+

∞∑
n=1

σ11(n)qn ,

ii) follows from i) by considering the coefficient of qn.

8 Modular forms of higher level

In this course, we just considered modular forms of level 1. We want to end this lecture notes with a few
comments on higher level modular forms or more precisely modular forms for congruence subgroups. A
complete discussion of modular forms for higher level can be found for example in [DS]. So far we always
required that a modular form (or (weakly-)modular function) satisfies f |kγ = f for all γ ∈ SL2(Z).
This condition will be weakened now and we will just require it for γ ∈ Γ, where Γ ⊆ SL2(Z) are
certain subgroups of SL2(Z).

Definition 8.1. i) For N ∈ Z≥1 we define the following subgroups of SL2(Z)

Γ0(N) =
{(a b

c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 mod N
}
,

Γ1(N) =
{(

a b
c d

)
∈ Γ0(N)

∣∣∣ a ≡ d ≡ 1 mod N
}
,

Γ(N) =
{(a b

c d

)
∈ Γ1(N)

∣∣∣ b ≡ 0 mod N
}
.

By definition we have the inclusions

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z) .

ii) A subgroup Γ ⊆ SL2(Z) is called congruence subgroup if there exists a N with Γ(N) ⊂ Γ. The
smallest such N is called the level of Γ.

We have Γ(1) = Γ1(1) = Γ0(1) = SL2(Z) and hence SL2(Z) is the only congruence subgroup of level 1.

Definition 8.2. Let Γ ⊂ SL2(Z) be a congruence subgroup and let k ∈ Z. A holomorphic function
f : H→ C is a modular form of weight k for Γ if

i) f |kγ = f for all γ ∈ Γ,

ii) f |kγ is holomorphic at ∞ for all γ ∈ SL2(Z).
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By Mk(Γ) we denote the space of modular forms of weight k for Γ, i.e. with the notation used before
we have Mk = Mk(SL2(Z)).

Similar to the level 1 case there exist dimension formulas for the higher level case. In the following,
we will just mention some details for the level 4 and weight 2 example given in the introduction.

Lemma 8.3. i) For all N > 0 the function

G2,N (τ) = G2(τ)−NG2(Nτ)

is an element in M2(Γ0(N)).

ii) The group Γ0(4) is generated by ±T and ±
(

1 0
4 1

)
.

iii) We have dimCM2(Γ0(4)) = 2.

Proof. The first statement can be proven directly by using the modular transformation of G2 given in
Proposition 3.4. For ii) we refer to [DS, Exercise 1.2.4] and iii) follows from the general formula given
in [DS, Theorem 3.5.1].

We now come back to the example from the motivation. For this we define the theta-function by

Θ(τ) =
∑
n∈Z

qn
2

.

Proposition 8.4. The theta-function satisfies the two functional equations

Θ(τ + 1) = Θ(τ) , Θ

(
− 1

4τ

)
=

√
2τ

i
Θ(τ) (τ ∈ H) . (8.1)

Proof. The first equation follows directly from definition and the second follows from the Poisson
transformation formula. See [Z, Proposition 9] for details.

Now recall that we were interested in counting the number of ways to write a positive number as the
sum of for squares, i.e. we wanted to evaluate

r4(n) = #
{

(a, b, c, d) ∈ Z4 | n = a2 + b2 + c2 + d2
}
.

For this we considered the generating series of r4(n), i.e.

F (q) =
∑
n≥0

r4(n)qn = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + 96q6 + 64q7 + 24q8 + 104q9 + . . . .

By the definition of the theta-function, it is easy to see that

F (q) = Θ(τ)4 .

Corollary 8.5. We have Θ4 ∈M2(Γ0(4)).

Proof. By Lemma 8.3 ii), we just need to check that

Θ(τ + 1)4 = Θ(τ)4 , Θ

(
τ

4τ + 1

)4

= (4τ + 1)2Θ(τ)4 (τ ∈ H) .

which can be checked directly by writing τ
4τ+1 = − 1

4(−1
4τ −1)

and using (8.1).
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With all this we can now give a proof of Jacobi’s four-square theorem:

Proof of Theorem 1.2. By Lemma 8.3 i) and iii) one can check that G2,2 and G2,4 are a basis of
M2(Γ0(4)) by checking that they are linearly independent. Looking at the first two Fourier coefficients
of Θ4, we deduce Θ4 = − 1

π2G2,4, which gives the formula for r4(n) given in the Theorem.
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Introduction to modular forms
Exercises
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Deadline: 24th December 2018.

•

Exercise 1. For a matrix γ =

(
a b
c d

)
∈ SL2(Z), a complex number τ ∈ C and a holomorphic

function in the upper half plane f ∈ O(H), we defined

γ(τ) :=
aτ + b

cτ + d
and (f |kγ)(τ) := (cτ + d)−kf

(
aτ + b

cτ + d

)
.

i) Show that for all τ ∈ C and γ ∈ SL2(Z) we have

Im(γ(τ)) =
Im(τ)

|cτ + d|2
,

where Im(τ) denotes the imaginary part of τ .

ii) Show that SL2(Z) acts on H from the left by γ(τ).

(i.e. show that γ(τ) ∈ H, I(τ) = τ and γ′ (γ(τ)) = (γ′ · γ)(τ) for all γ, γ′ ∈ SL2(Z) and τ ∈ H.)

iii) Show that SL2(Z) acts on O(H) from the right by f |kγ.

(i.e. show that f |kγ ∈ O(H), f |kI = f and (f |kγ′) |kγ = f |k(γ′ · γ) for all γ, γ′ ∈ SL2(Z), f ∈ O(H).)

Exercise 2.

i) Show that SL2(Z) is generated by S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

(i.e. any γ ∈ SL2(Z) can be written as γ = Ss1T t1 . . . SsrT tr with integers s1, t1, . . . , sr, tr ∈ Z.)

ii) Show that if f is a meromorphic function on the upper half plan satisfying

f(τ + 1) = f(τ) ,

f(−1/τ) = τkf(τ) ,

for all τ ∈ H, then f is a weakly modular function of weight k.

Exercise 3.

i) Show that the space Mk is a C-vector space and that for k ≥ 4 we have Mk = CEk ⊕ Sk.

ii) Prove that if f ∈Mk and g ∈Ml, then f · g ∈Mk+l.
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Exercise 4.

i) Let f be a modular form of weight 4. Show that f
(
− 1

2 +
√

3
2 i
)

= 0.

ii) Let g be a modular form of weight 6. Show that g(i) = 0.

iii) Let h be a modular form of weight 8 with h(i) = 1. Calculate h
(
− 2

5 + 1
5 i
)
.

Exercise 5. Express E18 as a linear combination of E3
6 and E3

4E6.

Exercise 6. Show that the derivative of a modular form f ∈Mk satisfies

f ′
(
aτ + b

cτ + d

)
= (cτ + d)k+2f ′(τ) +

k

2πi
c(cτ + d)k+1f(τ) .

for all

(
a b
c d

)
∈ SL2(Z).

Exercise 7.

i) Show that the Serre derivative maps cusp forms to cusp forms, i.e. it gives a map ∂k : Sk → Sk+2.

ii) Compute ∆′ and ∂12∆.

iii) Show that for all n ∈ Z≥1 we have

(n− 1)τ(n) ≡ 0 mod 24 ,

where τ(n) is the Ramanujan tau function.

Exercise 8. Prove the following identity among divisor sums by using the theory of modular forms:
For all n ∈ Z≥1 we have

11σ9(n) = 21σ5(n)− 10σ3(n) + 5040

n−1∑
j=1

σ3(j)σ5(n− j) .

•

Bonus exercise: Find an elementary proof of Theorem 1.5, i.e. show that for all n ∈ Z≥1 we have

σ7(n) = σ3(n) + 120

n−1∑
j=1

σ3(j)σ3(n− j) ,

without using the theory of modular forms.

(The Bonus exercise is just for fun and does not count for the grading, so you do not need to do it.
You can find elementary proofs for this in the literature. Try to find your own proof!)
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