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Multiple zeta values

Definition

For natural numbers n1, ..., nr−1 ≥ 1,nr ≥ 2, the multiple zeta value (MZV) of weight

N = n1 + ...+ nr and length r is defined by

ζ(n1, ..., nr) =
∑

0<m1<...<mr

1

mn1
1 . . .mnr

r
.

ByZN we denote the space spanned by all MZV of weightN and byZ the space spanned by

all MZV.

The product of two MZV can be expressed as a linear combination of MZV with the

same weight (stuffle product). e.g:

ζ(r) · ζ(s) = ζ(r, s) + ζ(s, r) + ζ(r + s) .

MZV can be expressed as iterated integrals. This gives another way (shuffle product)

to express the product of two MZV as a linear combination of MZV.

These two products give a number ofQ-relations (double shuffle relations) between

MZV.
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Multiple zeta-values

Example:

ζ(3, 2) + 3ζ(2, 3) + 6ζ(1, 4)
shuffle
= ζ(2) · ζ(3)

stuffle
= ζ(2, 3) + ζ(3, 2) + ζ(5) .

=⇒ 2ζ(2, 3) + 6ζ(1, 4)
double shuffle

= ζ(5) .

But there are more relations between MZV. e.g.:

ζ(1, 2) = ζ(3).

These follow from the extended double shuffle relations.
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Classical Eisenstein series

For even k > 2 the Eisenstein series of weight k defined by (q = e2πiτ )

G♠k (τ) :=
1

2

∑
(l,m)∈Z2

(l,m)6=(0,0)

1

(lτ +m)k
= ζ(k) +

(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

are modular forms of weight k. The first sum vanishes for odd k (and there are no non trivial

modular forms of odd weight) since one sums over all lattice points.

Similarly if one would define the Riemann zeta value as a sum over all integer, i.e.

ζ♠(k) :=
1

2

∑
n∈Z
n 6=0

1

nk

then these series would vanish for odd k and ζ♠(k) = ζ(k) for even k.
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A particular order on lattices

Let Λτ = Zτ +Z be a lattice with τ ∈ H := {x+ iy ∈ C | y > 0}. We define an

order≺ on Λτ by setting

λ1 ≺ λ2 :⇔ λ2 − λ1 ∈ P
for λ1, λ2 ∈ Λτ and the following set which we call the set of positive lattice points

P := {lτ +m ∈ Λτ | l > 0 ∨ (l = 0 ∧m > 0)} = U ∪R

l

m R

U
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Classical Eisenstein series are ordered sums

With this order on Λτ one gets for even k > 2:

Gk(τ) :=
∑
0≺λ

1

λk
=

1

2

∑
(l,m)∈Z2

(l,m) 6=(0,0)

1

(lτ +m)k
= G♠k (τ).

Since we are not summing over all lattice points the odd Eisenstein series don’t vanish

anymore and we get for all k:

Gk(τ) = ζ(k) +
(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn .

This order now allows us to define a multiple version of these series in the obvious way.
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Multiple Eisenstein series

Definition

For integers n1, . . . , nr ≥ 2, we define the multiple Eisenstein seriesGn1,...,nr (τ) on H
by

Gn1,...,nr (τ) =
∑

0≺λ1≺···≺λr
λi∈Zτ+Z

1

λn1
1 · · ·λ

nr
r
.

It is easy to see that these are holomorphic functions in the upper half plane and that they

fulfill the stuffle product, i.e. it is for example

G3(τ) ·G4(τ) = G4,3(τ) +G3,4(τ) +G7(τ) .

Remark

Use Eisenstein summation in the case nr = 2.
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The function g

Definition

For integers n1, . . . , nr ≥ 1 andN = n1 + · · ·+ nr define

gn1,...,nr (q) := (−2πi)N ·
∑

0<m1<...<mr
0<d1,...,dr

dn1−1
1

(n1 − 1)!
· · · dnr−1

r

(nr − 1)!
qm1d1+···+mrdr .

This function can be seen as a multiple version of the generating function of the divisor sums.

Gk(τ) = ζ(k) +
(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn = ζ(k) + gk(q) .
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Multiple Eisenstein series - Fourier expansion

SinceGn1,...,nr (τ + 1) = Gn1,...,nr (τ) we have a Fourier expansion:

Theorem (B. 2012)

For n1, . . . , nr ≥ 2,N = n1 + · · ·+ nr the Fourier expansion ofGn1,...,nr is given by

Gn1,...,nr (τ) = ζ(n1, . . . , nr)

+
∑

k1+k2=N
k1,k2≥2

ξ
(r−1)
k1

gk2(q) +
∑

k1+k2+k3=N
k1,k2,k3≥2

ξ
(r−2)
k1

gk2,k3(q)

+ · · ·+
∑

k1+···+kr=N
k1,...,kr≥2

ξ
(1)
k1
gk2,...,kr (q) + gn1,...,nr (q),

where ξ
(d)
k ∈ Zk areQ-linear combinations of multiple zeta values of weight k and length d.

From now on we also writeGn1,...,nr (q) instead ofGn1,...,nr (τ).
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Multiple Eisenstein series - Fourier expansion - Multitangent functions

For n1, . . . , nr ≥ 2 and x ∈ H define the multitangent function by

Ψn1,...,nr (x) :=
∑

m1<···<mr
mi∈Z

1

(x+m1)n1 · · · (x+mr)nr
.

In the case r = 1 we also refer to these series as monotangent function.

Theorem (Bouillot 2011)

For n1, . . . , nr ≥ 2 andN = n1 + · · ·+ nr the multitangent function can be written as

Ψn1,...,nr (x) =

N∑
j=2

αN−jΨj(x)

with αN−j ∈ ZN−j .

Proof idea: Use partial fraction decomposition.
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Multiple Eisenstein series - Fourier expansion - Multitangent functions

Example:

Ψ2,3(x) =
∑

m1<m2

1

(x+m1)2(x+m2)3

=
∑

m1<m2

(
1

(m2 −m1)3(x+m1)2
− 3

(m2 −m1)4(x+m1)

)
+

∑
m1<m2

(
1

(m2 −m1)2(x+m2)3
+

2

(m2 −m1)3(x+m2)2
+

3

(m2 −m1)4(x+m2)

)
= 3ζ(3)Ψ2(x) + ζ(2)Ψ3(x) .
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Multiple Eisenstein series - Fourier expansion - Ψ and g

Since the Lipschitz formula

Ψk(τ) =
∑
m∈Z

1

(x+m)k
=

(−2πi)k

(k − 1)!

∑
d>0

dk−1qd

holds, we deduce:

Proposition

For n1, . . . , nr ≥ 2 we have

gn1,...,nr (q) =
∑

0<l1<···<lr

Ψn1
(l1τ) . . .Ψnr (lrτ) .
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Multiple Eisenstein series - Fourier expansion

Summing over 0 ≺ λ1 ≺ · · · ≺ λr is by definition equivalent to summing over all

λ1, . . . , λr with

λi − λi−1 ∈ P = U ∪R (λ0 := 0) .

Since λi − λi−1 can be either in U or inR we can split up the sum in the definition of the

MES into 2r terms. Forw1, . . . , wr ∈ {U,R} we define

Gw1...wr
n1,...,nr (τ) =

∑
λ1,...,λr∈Λτ
λi−λi−1∈wi

1

λn1
1 · · ·λ

nr
r
.

With this we get

Gn1,...,nr (τ) =
∑

w1,...,wr∈{U,R}

Gw1...wr
n1,...,nr (τ) .
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Example: w1w2w3w4w5 = URRUR

l

m
λ1 λ2 λ3

λ4 λ5

A summand ofGURRURn1,n2,n3,n4,n5
.

By definition of the multitangent functions we can write

GURRURn1,n2,n3,n4,n5
(τ) =

∑
0<l1<l2

Ψn1,n2,n3(l1τ)Ψn4,n5(l2τ) .
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Multiple Eisenstein series - Fourier expansion

In length r = 2 the 22 = 4 terms are given by

GRRn1,n2
(τ) =

∑
0=l1=l2

0<m1<m2

1

(l1τ +m1)n1(l2τ +m2)n2
= ζ(n1, n2),

GURn1,n2
(τ) =

∑
0<l1=l2
m1<m2

1

(l1τ +m1)n1(l2τ +m2)n2
=
∑
0<l

Ψn1,n2
(lτ),

GRUn1,n2
(τ) =

∑
0=l1<l2

0<m1,m2∈Z

1

(l1τ +m1)n1(l2τ +m2)n2
= ζ(n1)

∑
0<l

Ψn2(lτ),

GUUn1,n2
(τ) =

∑
0<l1<l2
m1,m2∈Z

1

(l1τ +m1)n1(l2τ +m2)n2

=
∑

0<l1<l2

Ψn1(l1τ)Ψn2(l2τ).
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Fourier expansion - example

G2,3(τ) = ζ(2, 3) +
∑
0<l

Ψ2,3(lτ) + ζ(2)
∑
0<l

Ψ3(lτ) +
∑

0<l1<l2

Ψ2(l1τ)Ψ3(l2τ) .

To evaluate the second term we use Ψ2,3(x) = 3ζ(3)Ψ2(x) + ζ(2)Ψ3(x) and obtain

G2,3(τ) = ζ(2, 3)+3ζ(3)
∑
0<l

Ψ2(lτ)+2ζ(2)
∑
0<l

Ψ3(lτ)+
∑

0<l1<l2

Ψ2(l1τ)Ψ3(l2τ) .

With this we get the Fourier expansion ofG2,3:

G2,3(q) = ζ(2, 3) + 3ζ(3)g2(q) + 2ζ(2)g3(q) + g2,3(q) .
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Fourier expansion - general idea

The general idea to compute the Fourier expansion ofGn1,...,nr (τ):

For each of the 2r words of length r in the alphabet {U,R}, i.e a word of the form

w1 . . . wr = R
1
R
2
. . . RU

t1
R . . . RU

t2
. . . U

tk
R . . . R

r
,

where 1 ≤ t1 < · · · < tk ≤ r are the positions of theU , we get a term of the form

Gw1...wr
n1,...,nr =

ζ(n1, . . . , nt1−1)
∑

0<l1<···<lk

Ψnt1 ,...,nt2−1
(l1τ) . . .Ψntk ...,nr

(lkτ) .

Reduce the multitangent functions Ψntj ,...,nti−1
(x) to a linear combination of MZV

and monotangent functions Ψn(x) and then write the remaining sums of

monotangent functions in terms of the q-series g.
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Summary: Multiple Eisenstein series

For n1, . . . , nr ≥ 2 the multiple Eisenstein seriesGn1,...,nr (τ) are holomorphic

functions having a Fourier expansion with the multiple zeta value ζ(n1, . . . , nr) as the

constant term. By construction they fulfill the stuffle product.

This leads to the following questions:

Is there a "good" definition of multiple Eisenstein series for n1, . . . , nr ≥ 1 ?

Does then these multiple Eisenstein series fulfill the shuffle and stuffle product?

Henrik Bachmann Multiple Eisenstein series and their Fourier expansion



The space of formal iterated integrals

Following Goncharov we consider the algebra I generated by the elements

I(a0; a1, . . . , aN ; aN+1), ai ∈ {0, 1}, N ≥ 0.

together with the following relations

(i) For any a, b ∈ {0, 1} the unit is given by I(a; b) := I(a; ∅; b) = 1.

(ii) The product is given by the shuffle product�

I(a0; a1, . . . , aM ; aM+N+1)I(a0; aM+1, . . . , aM+N ; aM+N+1)

=
∑

σ∈shM,N

I(a0; aσ−1(1), . . . , aσ−1(M+N); aM+N+1),

(iii) The path composition formula holds: for anyN ≥ 0 and ai, x ∈ {0, 1}, one has

I(a0; a1, . . . , aN ; aN+1) =

N∑
k=0

I(a0; a1, . . . , ak;x)I(x; ak+1, . . . , aN ; aN+1).

(iv) ForN ≥ 1 and ai, a ∈ {0, 1}, I(a; a1, . . . , aN ; a) = 0.

(v)*

I(a0; a1, . . . , aN ; aN+1) = (−1)N I(aN+1; aN , . . . , a1; a0)
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Formal iterated integrals - coproduct

Goncharov defines a coproduct on I by

∆ (I(a0; a1, . . . , aN ; aN+1)) :=∑( k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)
)
⊗ I(a0; ai1 , . . . , aik ; aN+1),

where the sum runs over all i0 = 0 < i1 < · · · < ik < ik+1 = N + 1 with

0 ≤ k ≤ N .

Proposition (Goncharov)

The triple (I,�,∆) becomes a commutative graded Hopf algebra overQ.

The calculation of ∆ can be visualized by marking k ofN + 2 points on a half circle.
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Coproduct - diagrams

To calculate ∆ (I(a0; a1, . . . , a8; a9)) one sums over all possible diagrams of the

following form.

a8

a7

a6

a5a4
a3

a2

a1

a0 a9
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Coproduct - diagrams

To calculate ∆ (I(a0; a1, . . . , a8; a9)) one sums over all possible diagrams of the

following form.

a8

a7

a6

a5a4
a3

a2

a1

a0 a9

I(a
7 ; a

8 ; a
9 )

I(a4 ; a5 , a6 ; a7)

I(a
1
; a

2
, a

3
; a

4
)

I(
a 0

; a
1
)

This diagram corresponds to the summand

I(a0; a1)I(a1; a2, a3; a4)I(a4; a5, a6; a7)I(a7; a8; a9)⊗ I(a0; a1, a4, a7; a9) .
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The space I1

We will consider the quotient space

I1 = I/I(0; 0; 1)I.

Let us denote by

I(a0; a1, . . . , aN ; aN+1)

the image of I(a0; a1, . . . , aN ; aN+1) in I1. The quotient map I → I1 induces a

Hopf algebra structure on I1, but for our application we just need the following statement.

Proposition

For anyw1, w2 ∈ I1, one has ∆(w1 � w2) = ∆(w1) � ∆(w2).

The coproduct on I1 is given by the same formula as before by replacing I with I .
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The space I1

For integers n ≥ 0, n1, . . . , nr ≥ 1, we set

In(n1, . . . , nr) := I(0; 0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

; 1).

In particular, we write I(n1, . . . , nr) to denote I0(n1, . . . , nr).

Proposition

For integers n ≥ 0, n1, . . . , nr ≥ 1,

In(n1, . . . , nr) = (−1)n
∗∑( r∏

j=1

(
kj − 1

nj − 1

))
I(k1, . . . , kr).

where the sum runs over all k1 + · · ·+ kr = n1 + · · ·+ nr + n with

k1, . . . , kr ≥ 1.

The set {I(n1, . . . , nr) | r ≥ 0, ni ≥ 1} forms a basis of the space I1.
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Example : Write In as a linear combination in I ’s

In I1 it is I(0; 0; 1) = 0 and therefore

0 = I(0; 0; 1)I(0; 1, 0; 1)

= I(0; 0, 1, 0; 1) + I(0; 1, 0, 0; 1) + I(0; 1, 0, 0; 1)

= I1(2) + 2I(3)

which gives I1(2) = −2I(3) = (−1)1
(

2
1

)
I(3).
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Coproduct - example

In the following we are going to calculate ∆(I(2, 3)) = ∆(I(0; 1, 0, 1, 0, 0; 1)) and

therefore we have to determine all possible markings of the diagram

,

where the corresponding summand in the coproduct does not vanish. For simplicity we draw

◦ to denote a 0 and • to denote a 1.

We will consider the 4 = 22 ways of marking the two • in the top part of the circle

separately .
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Calculation of ∆(I(2, 3))

Diagrams with no marked •:

I(0
; 1,

0, 1
; 0)

Corresponding sum in the coproduct:

I(0; 1, 0, 1, 0, 0; 1)⊗ I(0; ∅; 1) = I(2, 3)⊗ 1 .
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Calculation of ∆(I(2, 3))

Diagrams with the first • marked:

I(0; 0; 1)

Corresponding sum in the coproduct:

I(0; 1) · I(1; 0) · I(0; 1, 0, 0; 1)⊗ I(0; 1, 0; 1)

+I(0; 1) · I(1; 0, 1, 0; 0) · I(0; 1)⊗ I(0; 1, 0; 1)

+I(0; 1) · I(1; 0, 1; 0) · I(0; 0) · I(0; 1)⊗ I(0; 1, 0, 0; 1)

= I(3)⊗ I(2)− I1(2)⊗ I(2) + I(2)⊗ I(3) .

Together with I1(2) = −2I(3) this gives

3I(3)⊗ I(2) + I(2)⊗ I(3) .
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Calculation of ∆(I(2, 3))

Diagrams with the second • marked:

Corresponding sum in the coproduct:

I(0; 1, 0; 1) · I(1; 0) · I(0; 0) · I(0; 1)⊗ I(0; 1, 0, 0; 1) = I(2)⊗ I(3) .
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Calculation of ∆(I(2, 3))

Diagrams with both • marked:

Corresponding sum in the coproduct:

1⊗ I(2, 3) .
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Comparison of ∆(I(2, 3)) andG2,3(τ)

Summing all 4 parts together we obtain

∆(I(2, 3)) = I(2, 3)⊗ 1 + 3I(3)⊗ I(2) + 2I(2)⊗ I(3) + 1⊗ I(2, 3) .

Compare this to the Fourier expansion ofG2,3(τ):

G2,3(τ) = ζ(2, 3) + 3ζ(3)g2(q) + 2ζ(2)g3(q) + g2,3(q) .

Since ∆(I(n1, . . . , nr)) ∈ I1 ⊗ I1 exists for all n1, . . . , nr ≥ 1 this comparison

suggests, that there might be a extended definition ofGn1,...,nr by defining a map

I1 ⊗ I1 → C[[q]]

which sends the first component to the corresponding zeta values and the second

component to the functions g.
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Shuffle regularized zeta values and g�

Theorem (Ihara, Kaneko, Zagier)

There exist an algebra homomorphism Z� : I1 → Z with

ζ�(n1, . . . , nr) = Z�(I(n1, . . . , nr)) such that

ζ�(n1, . . . , nr) = ζ(n1, . . . , nr)

for n1, . . . , nr−1 ≥ 1 and nr ≥ 2. It is uniquely determined by Z�(I(1)) = 0.

Theorem (B., K. Tasaka)

There exist an algebra homomorphism g� : I1 → C[[q]] with

g�n1,...,nr (q) := g�(I(n1, . . . , nr)) such that

g�n1,...,nr (q) = gn1,...,nr (q)

for n1, . . . , nr ≥ 2.

Proof sketch: We use generating functions and give an explicit form of g�.
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Shuffle regularized MES

Definition

For integers n1, . . . , nr ≥ 1, we define the q-seriesG�n1,...,nr (q) ∈ C[[q]], which we call

shuffle regularized multiple Eisenstein series, as the image of the generator I(n1, . . . , nr)
in I1 under the algebra homomorphism (Z� ⊗ g�) ◦∆:

G�n1,...,nr (q) := (Z� ⊗ g�) ◦∆
(
I(n1, . . . , nr)

)
.

We denote the space spanned by all shuffle regularized multiple Eisenstein series where the

corresponding MZV exists by

EN = 〈G�n1,...,nr (q) | N = n1 + · · ·+ nr, r ≥ 0, ni ≥ 1, nr ≥ 2〉Q.

In the definition we identifyZ ⊗C[[q]] withC[[q]] in the obvious way.
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Shuffle regularized multiple Eisenstein series

Theorem (B., K. Tasaka 2014)

For all n1, . . . , nr ≥ 1 the shuffle regularized multiple Eisenstein seriesG�n1,...,nr have the

following properties:

Setting q = e2πiτ they are holomorphic functions on the upper half plane having a

Fourier expansion with the shuffle regularized multiple zeta values as the constant term.

They fulfill the shuffle product, i.e. we have an algebra homomorphism I1 → C[[q]] by

sending the generators I(n1, . . . , nr) toG�n1,...,nr (q).

For integers n1, . . . , nr ≥ 2 they equal the multiple Eisenstein series

G�n1,...,nr (q) = Gn1,...,nr (q)

and therefore they fulfill the stuffle product in these cases.

Proof sketch: The first statement follows directly by definition. The second statement

follows from the fact that ∆, Z� and g� are algebra homomorphism and hence

(Z� ⊗ g�) ◦∆ is also an algebra homomorphism.
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Coproduct↔ multiple Eisenstein series

Proof sketch continued:

To show that theG� coincide with theG in the case n1, . . . , nr ≥ 2 we give an

explicit formula for the coproduct.

For this we also split up the possible diagrams into 2r =
∑r
k=0

(
r
k

)
groups, where(

r
k

)
gives the number of ways marking k of the r •.

We show that the term

Gw1...wr
n1,...,nr

in the calculation of the Fourier expansion corresponds to the diagrams where the

positions of the U in the wordw1 . . . wr coincide with the positions of the marked •
by giving explicit formulas for both terms.

The reduction of multitangent to monotangent functions (i.e. partial fraction expansion)

in some sense then corresponds to the reduction of the In into linear combinations of

the I ’s.
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Shuffle regularized MES - double shuffle relations

Since the shuffle regularized Eisenstein series fulfill the shuffle product we have

G�2 (q) ·G�3 (q)
shuffle
= G�3,2(q) + 3G�2,3(q) + 6G�1,4(q)

We also have the stuffle product whenever the indices are greater equal to 2:

G�2 (q) ·G�3 (q)
stuffle
= G�3,2(q) +G�2,3(q) +G�5 (q) .

This gives the same relation between MES as we had before for MZV:

2G�2,3(q) + 6G�1,4(q)
double shuffle

= G�5 (q) .

But we don’t have all relations of MZV since the stuffle product of MES fails when at least

one nj = 1. While Euler has shown that ζ(3)− ζ(1, 2) = 0 we get

G�3 (q)−G�1,2(q) =
1

2
q
d

dq
G�1 (q) 6= 0 .
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Shuffle regularized MES - double shuffle relations

Euler also showed that

ζ(6)2 =
715

691
ζ(12)

and this relation can also be proven by using the extended double shuffle relations of multiple

zeta values.

For multiple Eisenstein series this relation does not hold since there are cusp forms in weight

12 and it is

G6(τ)2 =
715

691
G12(τ) + α∆(q)

with some α ∈ C\{0} and ∆(q) = q
∏
n>0(1− qn)24.
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Shuffle regularized MES - Current project

Currently we are interested in the following question:

Question

Is theC-vector space spanned by allG� (or equivalently by all g�) closed under d = q ddq ?

Theorem

For k ≥ 1 we have

(−2πi)2

k
d g�k (q) = (k + 1)g�k+2(q)−

k+1∑
n=2

(2n − 2)g�k+2−n,n(q) .

There is a similar formula for dG�k proven by Kaneko.
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Shuffle regularized MES - Open questions

There are a lot of other open questions for multiple Eisenstein series:

What is exactly the failure of the stuffle product of shuffle regularized multiple

Eisenstein series?

What is the dimension of the space EN?

Consider the projection π : EN −→ ZN to the constant term, i.e

π(G�n1,...,nr (q)) = ζ(n1, . . . , nr) .

What is the kernel of π and are there elements in the kernel which are not derivatives

of MES or cusp forms?

Which linear combinations of MES are modular forms?

Is there an iterated integral expression for g� orG�?

Functional equations and special values of the L-series of g, g� andG�?
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Summary

Multiple Eisenstein seriesGn1,...,nr which are defined for n1, . . . , nr ≥ 2 are

multiple versions of the classical Eisenstein series and they fulfill the stuffle product.

Their Fourier expansions are similar to the coproduct ∆ on the space I1 of formal

iterated integrals.

This connections enables one to define shuffle regularized multiple Eisenstein series

G�n1,...,nr for all n1, . . . , nr ≥ 1.

They fulfill the shuffle product and for n1, . . . , nr ≥ 2 the stuffle product since in

these cases they are equal to the multiple Eisenstein series.

Since the algebra of shuffle regularized Eisenstein series contains all modular forms

this setup gives a framework to study the connection of multiple zeta values and

modular forms. Yet there are a lot of open and interesting problems to be solved.
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