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Multiple zeta values

Definition

For natural numbers 11, ..., Ny—1 > 1,n, > 2, the multiple zeta value (MZV) of weight
N = nq + ... + n, and length " is defined by

1
D DR el

o<mi<...<m,.

By Z v we denote the space spanned by all MZV of weight /N and by Z the space spanned by
all MzV.

@ The product of two MZV can be expressed as a linear combination of MZV with the
same weight (stuffle product). e.g:

C(r) - C(s) = C(r,8) + C(s,m) +C(r + 5).

@ MZV can be expressed as iterated integrals. This gives another way (shuffle product)
to express the product of two MZV as a linear combination of MZV.

@ These two products give a number of Q—relations (double shuffle relations) between
MzV.
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Multiple zeta-values

Example:
C(3,2) +3¢(2,3) + 6¢(1,4) "= ¢(2) - €(3) "= ¢(2,3) +¢(3,2) +¢(5) .

= 2¢(2,3) + 6¢(1,4) =" ((5).

But there are more relations between MZV. e.g.:

¢(1,2) = ¢(3).

These follow from the extended double shuffle relations.
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Classical Eisenstein series

27TiT)

For even k > 2 the Eisenstein series of weight & defined by (¢ = e

1 27rz
Z mZC(k) k Zak 1

(1,m)ez?
(1,m)#(0,0)

G;(T) =

N | =

are modular forms of weight k. The first sum vanishes for odd k (and there are no non trivial
modular forms of odd weight) since one sums over all lattice points.
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Classical Eisenstein series

For even k > 2 the Eisenstein series of weight k defined by (¢ = e2miT)

1 27rz
Z m = ((k) + k Zak 1

(1,m)ez?
(1,m)#(0,0)

G*(r) =

N | =

are modular forms of weight k. The first sum vanishes for odd k (and there are no non trivial
modular forms of odd weight) since one sums over all lattice points.

Similarly if one would define the Riemann zeta value as a sum over all integer, i.e.

then these series would vanish for odd & and (* (k) = ((k) for even k.
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A particular order on lattices

Let A, = Z7T + Zve alatice with 7 € H := {x 4+ iy € C | y > 0}. We define an
order < on A, by setting
AM <X A—N\ P

for A1, Ao € A and the following set which we call the set of positive lattice points

P={lr+melA |I>0vVv(I=0Am>0)}=UUR

m R
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Classical Eisenstein series are ordered sums

With this order on A, one gets for even k > 2:

11 1 -

Gr(r) =) 37 =3 > T mf = G¥(1).
0=<A (1,m)ez?
(Lm)#(0,0)

Since we are not summing over all lattice points the odd Eisenstein series don’t vanish
anymore and we get for all k:

Gulr) = ¢l + 2 Zakl

This order now allows us to define a multiple version of these series in the obvious way.
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Multiple Eisenstein series

For integers 11, . . . , - > 2, we define the multiple Eisenstein series G, . . (7) on H
by
1
Gnl,..-7nr(7.) = Z )\nl o )\nr *
0<A1<-=Ap 1 "
NiELTHZ

It is easy to see that these are holomorphic functions in the upper half plane and that they
fulfill the stuffle product, i.e. it is for example

G3(T) . G4(T) = G4’3(T) + G3’4(T) + G7(T> .

Remark

Use Eisenstein summation in the case n,, = 2.
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The function g

Definition

For integers 11, ...,Mn, > land N = ny + - - - + n,. define

N dpr! dprt @y Aol ]
Gnapnn (@) = (=2m)N - Y P g
0<my<...<m (nl - 1) (nr - 1)

0<dy,...,d,

This function can be seen as a multiple version of the generating function of the divisor sums.

—omi)k &
Gulr) = )+ LZ S o ()" = 60 + (o)
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Multiple Eisenstein series - Fourier expansion

Since Gy,,...n, (T + 1) = Gy,.... n, (T) we have a Fourier expansion:

Theorem (B. 2012)

Forni,...,n; > 2, N =nj + - - - + n, the Fourier expansion of Gm,...,nr is given by

Gny,ooon(7) =C(01, ..., 1)
+ ) &0 iy (q) + > 7 Gra ks (@)

kiska =N kitka+ky=N
k1,k2>2 K,k ks >2
++ Z é-k1 gk2’ Lk ( )+gn1,...,nr(q),
ki+-+k,=N
ki,....kr>2

d . L . .
where §,(€ ) ¢ Z. are QQ-linear combinations of multiple zeta values of weight k and length d.

From now on we also write G, . p,.(q) instead of G, . .. (T).
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Multiple Eisenstein series - Fourier expansion - Multitangent functions

Forni,...,Nn, > 2and x € H define the multitangent function by
) )
1
Uy, () = E .
reeTir ni... .
oy e, (x +mq) (x +m,)
m; EZ

In the case 7 = 1 we also refer to these series as monotangent function.

Theorem (Bouillot 2011)

Forni,...,N, > 2and N = nq + - - - + n, the multitangent function can be written as
N
Upyoom, (@) =D an—;0;(x)
Jj=2

with ay—; € Zn—j.

Proof idea: Use partial fraction decomposition.
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Multiple Eisenstein series - Fourier expansion - Multitangent functions

Example:

1
Vas(@) = Z (z +m1)2(z + me)3

m1<mg

= > ((m2 7m1)13(w+m1)2  (ma *m1§)4($+m1)) -

mi<mg

1 2 3
S (e mrerm * oGt e )

m1<m2

= 3C(3)W2(z) +((2)¥s(x) .
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Multiple Eisenstein series - Fourier expansion - W and ¢

Since the Lipschitz formula

- 1 (—2m)* .
i(r) = ng (z+m)*  (k—1)! > 4

T d>0

holds, we deduce:

Proposition

Forni,...,n, > 2 we have

Inq,...,n, (Q) = Z \Ilnl (117_) o \Ilnr (er) .

0<ly <<y
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Multiple Eisenstein series - Fourier expansion

Summing over 0 < A1 < - -+ < \,. is by definition equivalent to summing over all
ALy Ap with
)\if)\i_leP:UUR ()\0:0)

Since A\; — A\;_1 can be either in U or in 12 we can split up the sum in the definition of the
MES into 2" terms. For w1, . . ., w, € {U, R} we define

Gu1--wr (7_) —

M1y Ny
>\17~~-7A7‘€A7’
Ai—Ai—1€w;

AR

With this we get

Gny,oon (1) = Z Gﬁf,'.‘.‘.l,v& (7).

wl,...,er{U,R}

Multiple Eisenstein series and their Fourier expansion



Example: wiwowswaws = URRUR
l

A As
~

1 A2 A3

GURRUR

Asummand of G, "7y s

By definition of the multitangent functions we can write

Ggll?vi({nz,n4,n5 (T) = Z qj”h”%”s (llT)\IITM,"s (127) :
0<li<l2
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Multiple Eisenstein series - Fourier expansion

Inlength 7 = 2 the 22 = 4 terms are given by

1
RR _ —
CronalT) = ofzz; (Lt +ma)m (o7 +mo)ne ((m,ma),
O<;112m2
1
Gl (1) = Uy 0, (I7),
N2 0<l21;l2 (l1T+m1) (l2T+m2 ; e
my1<mz
1
Grtns (1) = C(n)> W, (I7),
p 0:;<l2 (L +my)™(lo + mo)” OZ<I 2
0<mi1,ma€Z

1
GUUY (1) =
L2 0<l21;l2 (ll’T + ml)"l (127' + mg)”Q
mi,m2€Z

Z \I/nl (llT)‘I/nz (ZQ'T).

o<l <ls
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Fourier expansion - example

Gg’g(’l’) Z\Ifzg ZT +< Z\Ijg l’T Z @2(117’)‘1’3([27’).

o<! 0<i 0<ii<la

To evaluate the second term we use o 3(x) = 3((3)Wa(x) 4+ ((2)¥3(x) and obtain

Ga3(1) = C(2,3)+3¢(3) > Wa(Im)+2¢(2) Y Ws(lr)+ > Wa(ly7)Ts(la7).

o<t 0<l 0<ii<la

With this we get the Fourier expansion of G2 3:

Ga3(q) = ¢(2,3) + 3¢(3)g2(q) + 2¢(2)g3(q) + 92.3(q) -
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Fourier expansion - general idea

The general idea to compute the Fourier expansion of Gn1 Ty (7'):

o For each of the 2" words of length 7 in the alphabet {U, R}, i.e a word of the form

wl...wr:]EJQ%...RQJR...RU...UR...R

t2 tk T ’

where 1 <ty < --- < t; < 7 are the positions of the U, we get a term of the form

Gwlmwr —
M1yeeeyMpe
Cnayoon—) Y Uy (7)o (7).

0<ly <<

@ Reduce the multitangent functions ¥,,, ., _, () to alinear combination of MZV
el

and monotangent functions W, () and then write the remaining sums of
monotangent functions in terms of the g-series g.
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Summary: Multiple Eisenstein series

Fornq,..., N, > 2 the multiple Eisenstein series G, ... . (T) are holomorphic
functions having a Fourier expansion with the multiple zeta value (11, - . . , 1;-) as the
constant term. By construction they fulfill the stuffle product.

This leads to the following questions:

@ Is there a "good" definition of multiple Eisenstein series for 11, ...,71, > 1?

@ Does then these multiple Eisenstein series fulfill the shuffle and stuffle product?
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The space of formal iterated integrals

Following Goncharov we consider the algebra Z generated by the elements
]I(ao; ai,...,aN; aN_H), a; € {0, 1}, N > 0.

together with the following relations
(i) Foranya,b € {0, 1} the unitis given by I(a; b) := I(a; 0;b) = 1.
(i) The product is given by the shuffle product LLI

[(ag; a1, -, an;an+n+1)l(ao; anrtt, - -+ anr N A+ N+1)
= Z I(ao; ag-1(1ys -+ s Qo1 (M4 N); AM+N+1)5
ocshy, N

(ii)y The path composition formula holds: for any N > 0 and a;, 2 € {0, 1}, one has
N
I(ap;a1,...,an;an+1) = Z]I(ao; a1, .. 0k )@ akg, ..o, aN;ANF1)-
k=0
(iv) For N > landa;,a € {0,1},1(a;aq,...,an;a) = 0.

(v)*
I(ag;a1,...,an;an+1) = (—l)N]I(aNH;aN, co.,a1;a0)
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Formal iterated integrals - coproduct

Goncharov defines a coproduct on Z by

A (I(ag; a1, ..., an;an41)) =

k
E ( H Wai,; aipg1s- -0 Qg —1; ai,,ﬂ)) ® I(ao; as,, . . ., a4, an 1),
p=0

where the sum runsoverall g = 0 < i1 < -+ < i < i1 = N + 1 with
0<k<N.

Proposition (Goncharov)

The triple (Z, LLI, A) becomes a commutative graded Hopf algebra over Q.

The calculation of A can be visualized by marking k& of N + 2 points on a half circle.
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Coproduct - diagrams

To calculate A (]I(ao; ai,...,as; (19)) one sums over all possible diagrams of the
following form.

a4 as
as ae

asz ar

ai as

ao ag
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Coproduct - diagrams

To calculate A (]I(ao; ai,...,as; ag)) one sums over all possible diagrams of the
following form.

This diagram corresponds to the summand

I(ao; a1)l(ar; a2, as; as)l(as; as, as; ar)l(ar; as; ag) ®I(ao; a1, as, az; ag) .
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The space Z!

We will consider the quotient space
7' = 7/1(0;0; 1)T.
Let us denote by
I(ao;a1,...,an;an+1)

the image of [(ag; a1, ...,an;an1)in Z1. The quotient map Z — Z" induces a
Hopf algebra structure on Il, but for our application we just need the following statement.

Proposition

Forany wi,wy € Z', one has A(w; LW wy) = A(wy) W A(ws).

The coproduct on Ilis given by the same formula as before by replacing I with 1.
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The space Z!

Forintegersn > 0,n1,...,n, > 1, we set
I,(ny,...,n.):=1(0;0,...,0,1,0,...,0,...,1,0,...,0;1).
——— ——
n ny Ny

In particular, we write I (11, . . ., n;-) to denote Io(n1, ..., n;).

@ Forintegersn > 0,n1,...,n, > 1,

L(ni,...,n.) = (—1)”i <J1;[1 (Z i D)I(kl, k).

where the sumruns over all k1 + - - - + k. = nq + - - - + n,. + n with
ki,..., k. > 1.

o Theset {I(n1,...,n,) | r > 0,n; > 1} forms a basis of the space Z".
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Example : Write [,, as a linear combination in I’s

InZ' itis 1(0;0; 1) = 0 and therefore

0=1(0;0;1)I(0;1,0;1)
= 7(0;0,1,0; 1) + I(0;1,0,0; 1) + I(0;1,0,0; 1)
= 1,(2) + 21(3)

which gives I (2) = —2I(3) = (—1)! (%)1(3)
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Coproduct - example

In the following we are going to calculate A(1(2,3)) = A(1(0;1,0,1,0,0;1)) and

therefore we have to determine all possible markings of the diagram

where the corresponding summand in the coproduct does not vanish. For simplicity we draw
o to denote a 0 and @ to denote a 1.

We will consider the 4 = 22 ways of marking the two @ in the top part of the circle
separately .
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Calculation of A(7(2, 3))

Diagrams with no marked e:

Corresponding sum in the coproduct:

1(0;1,0,1,0,0; 1) @ I(0;0:1) = I(2,3) @ 1.
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Calculation of A(7(2, 3))

Diagrams with the first ® marked:

Corresponding sum in the coproduct:

I(0;1) - I(1;0) - 1(0;1,0,0;1) ® 1(0;1,0; 1)
+1(0;1) - I(1;0,1,0;0) - I(0; 1) ® I(0;1,0; 1)
0;1

+1(0;1)-I(1;0,1;0) - I(0;0) - I(0;1) ® 1(0;1,0,0;1)
=13)©1(2) - L(2)@1(2) +1(2) ® I(3).
Together with I1(2) = —21(3) this gives

3I(3) @ I(2) + I(2) ® I(3).
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Calculation of A(7(2, 3))

Diagrams with the second ® marked:

iz

1(0;1,0;1) - I(1;0) - I(0;0) - I(0; 1) ® I(0;1,0,0;1) = I(2) ® I(3).

Corresponding sum in the coproduct:
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Calculation of A(7(2, 3))

Diagrams with both @ marked:

Corresponding sum in the coproduct:

191(2,3).
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Comparison of A(1(2,3)) and G

Summing all 4 parts together we obtain
A(I(2,3)) =1(2,3)® 1 +31(3) @ I(2) +2I(2) @ I(3) + 1 ® I(2,3).
Compare this to the Fourier expansion of G 3(7):
G2,3(1) = ((2,3) +3¢(3)g2(q) +2¢(2)g3(q) + g2,3(a) -

Since A(I(nq,...,n.)) € I' @ I' exists forall ny, . . .,y > 1 this comparison
suggests, that there might be a extended definition of Gnh---ﬂ%r by defining a map

T' 1" — C[q]]

which sends the first component to the corresponding zeta values and the second
component to the functions g.
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Shuffle regularized zeta values and g

Theorem (lhara, Kaneko, Zagier)

There exist an algebra homomorphism Z% : 1 — Z with

¢ (ny,...,np) = Z%(I(ng,...,ny)) suchthat
C(ny,..ony) =C(n, .oy my)
forny,...,np—1 > 1andn, > 2. Itis uniquely determined by Z*(1(1)) = 0.

Theorem (B., K. Tasaka)

There exist an algebra homomorphism g™ : Z1 — C[[g]] with
gf{l’_“’nr (q) =g (I(nq,...,n,)) such that

I (@) = Gny,n, (@)
forng,...,n, > 2.

Proof sketch: We use generating functions and give an explicit form of gm.
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Shuffle regularized MES

Definition
For integers 121, - . . , . > 1, we define the g-series G0, (q) € C[[g]], which we call
shuffle regularized multiple Eisenstein series, as the image of the generator I(nl, ey nr)

in Z1 under the algebra homomorphism (Z" ® g) o A:

G (q) :==(Z" @ g™) o A(I(n1,...,n,)).

MN1yeees My

We denote the space spanned by all shuffle regularized multiple Eisenstein series where the
corresponding MZV exists by

En = (G (@) | N=n1+-+n.,r>0,n; >1n, >2)q.

L PRV

In the definition we identify Z ®C|[g]] with C[[g¢]] in the obvious way.
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Shuffle regularized multiple Eisenstein series

Theorem (B., K. Tasaka 2014)

Forallmy, ..., n, > 1 the shuffle regularized multiple Eisenstein series GELJI,W”T have the

following properties:

o Setting ¢ = 2™ they are holomorphic functions on the upper half plane having a
Fourier expansion with the shuffle regularized multiple zeta values as the constant term.

o They fulfill the shuffle product, i.e. we have an algebra homomorphism Z! — C[[q]] by
sending the generators I (11, ..., n,)t0 Gy, (q).

o Forintegers i, ..., N, > 2 they equal the multiple Eisenstein series

le_zul,.,‘,m (Q> = Gnl,m,nr (Q)

and therefore they fulfill the stuffle product in these cases.

Proof sketch: The first statement follows directly by definition. The second statement
follows from the fact that A, Z* and gu are algebra homomorphism and hence
(ZUJ & gu) o Ais also an algebra homomorphism.
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Coproduct < multiple Eisenstein series

Proof sketch continued:

@ To show that the G coincide with the GG in the case 1, . . . , T1,. > 2 we give an
explicit formula for the coproduct.

o For this we also split up the possible diagrams into 2" = >} _, (Z) groups, where
(,7;) gives the number of ways marking k of the 7" ®.

@ We show that the term

Gw1 W

N yeeey Ny

in the calculation of the Fourier expansion corresponds to the diagrams where the
positions of the U in the word w1 . . . w,. coincide with the positions of the marked ®
by giving explicit formulas for both terms.

@ The reduction of multitangent to monotangent functions (i.e. partial fraction expansion)
in some sense then corresponds to the reduction of the I, into linear combinations of
the Is.
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Shuffle regularized MES - double shuffle relations

Since the shuffle regularized Eisenstein series fulfill the shuffle product we have
LU LUl shuffle Ll LU L
Gy'(q)-G3'(q) = G35(q) +3G53(q) +6G14(q)
We also have the stuffle product whenever the indices are greater equal to 2:
LUl L stuffle LUl LU LU
Gy'(q)-G3'(q9) = G3a(q) +Gas(q) +G5'(q) -
This gives the same relation between MES as we had before for MZV:

2G5(g) + 6G14(a) “"E" G (q) -

But we don’t have all relations of MZV since the stuffle product of MES fails when at least
one 1; = 1. While Euler has shown that {(3) — ((1,2) = 0 we get

1 d

G3'(q) — Gis(g) = §qdqu?J(q) #0.
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Shuffle regularized MES - double shuffle relations

Euler also showed that

715
((6)° = 5 ¢(12)

and this relation can also be proven by using the extended double shuffle relations of multiple

zeta values.

For multiple Eisenstein series this relation does not hold since there are cusp forms in weight

12 anditis 15
Go(7)* = @Glz(ﬂ + aA(q)

with some o € C\{0} and A(q) = ¢ ]],,~o(1 — qm)*h.
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Shuffle regularized MES - Current project

Currently we are interested in the following question:

Is the C-vector space spanned by all G* (or equivalently by all g“") closed under d = qd%?
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Shuffle regularized MES - Current project

Currently we are interested in the following question:

Is the C-vector space spanned by all G* (or equivalently by all g“") closed under d = qd%?

Theorem

For k > 1 we have

(—2mi)? =
g (@) = (B + Dgiha(0) — Y (2" — 2)gi2-n,n(0)-
n=2

There is a similar formula for d G+ proven by Kaneko.
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Shuffle regularized MES - Open questions

There are a lot of other open questions for multiple Eisenstein series:

What is exactly the failure of the stuffle product of shuffle regularized multiple
Eisenstein series?

What is the dimension of the space £ ?

Consider the projection ™ : £y — Z y to the constant term, i.e

71—(G';I-Il,...,nr (q)) = C(nlv e ,TLT) .

What is the kernel of 71 and are there elements in the kernel which are not derivatives
of MES or cusp forms?

Which linear combinations of MES are modular forms?
Is there an iterated integral expression for g"~ or G™'?

Functional equations and special values of the L-series of g, gu and G*'?
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Summary

@ Multiple Eisenstein series Gnl,..‘,nr which are defined for n1,...,n, > 2are
multiple versions of the classical Eisenstein series and they fulfill the stuffle product.

@ Their Fourier expansions are similar to the coproduct /A on the space " of formal
iterated integrals.

@ This connections enables one to define shuffle regularized multiple Eisenstein series
Gy, foraling, ... ,n. > 1.

@ They fulfill the shuffle product and for 121, . . . , 1, > 2 the stuffle product since in

n

these cases they are equal to the multiple Eisenstein series.

@ Since the algebra of shuffle regularized Eisenstein series contains all modular forms
this setup gives a framework to study the connection of multiple zeta values and
modular forms. Yet there are a lot of open and interesting problems to be solved.
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