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1© MZV & Alg. Setup - Definition

Definition

For k1 ≥ 2, k2, . . . , kr ≥ 1 define the multiple zeta value (MZV)

ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 · · ·m

kr
r

∈ R .

By r we denote its depth and k1 + · · ·+ kr will be called its weight.

Z : Q-algebra of MZVs
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1© MZV & Alg. Setup - Stuffle & shuffle product

There are two different ways to express the product of MZV in terms of MZV.

Stuffle product (coming from the definition as iterated sums)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =
∑
m>0

1

mk1

∑
n>0

1

nk2

=
∑

0<m<n

1

mk1nk2
+

∑
0<n<m

1

mk1nk2
+

∑
m=n>0

1

mk1+k2

= ζ(k1, k2) + ζ(k2, k1) + ζ(k1 + k2) .

Shuffle product (coming from the expression as iterated integrals)

Example in depth two (k1, k2 ≥ 2)

ζ(k1) · ζ(k2) =

k1+k2−1∑
j=2

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
ζ(j, k1 + k2 − j) .
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1© MZV & Alg. Setup - Hoffman setup

Define the following spaces H0 ⊂ H1 ⊂ H

H = Q〈x, y〉 "Words in x and y"

H1 = Q + Hy "Words ending in y"

H0 = Q + xHy "Words starting in x and ending in y"

For k ≥ 1 we write

zk = xk−1y .

H1: span of words zk1 . . . zkr with k1, k2, . . . kr ≥ 1 for r ≥ 0.

H0: span of words zk1 . . . zkr with k1 ≥ 2, k2, . . . kr ≥ 1 for r ≥ 0.

We can view ζ as a Q-linear map

ζ : H0 −→ Z
zk1 . . . zkr 7−→ ζ(k1, . . . , kr) ,

where ζ(1) = 1.
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1© MZV & Alg. Setup - Hoffman setup

Definition (shuffle product�)

Define the Q-bilinear product� on H by 1�w = w� 1 = w for any wordw ∈ H and

a1w1 � a2w2 = a1(w1 � a2w2) + a2(a1w1 � w2)

for any letters a1, a2 ∈ {x, y} and wordsw1, w2 ∈ H.

Definition (stuffle product ∗)
Define the Q-bilinear product ∗ on H1 by 1 ∗ w = w ∗ 1 = w for any wordw ∈ H1 and

ziw1 ∗ zjw2 = zi(w1 ∗ zjw2) + zj(ziw1 ∗ w2) + zi+j(w1 ∗ w2)

for any i, j ≥ 1 and wordsw1, w2 ∈ H1.

We get Q-(sub)algebras

H0
�
⊂ H1

�
⊂ H� and H0

∗ ⊂ H1
∗ .
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1© MZV & Alg. Setup - Stuffle & shuffle product and finite double shuffle

Stuffle product Example in depth two (k1, k2 ≥ 1)

zk1 ∗ zk2 = zk1zk2 + zk2zk1 + zk1+k2 .

Shuffle product Example in depth two (k1, k2 ≥ 1)

zk1 � zk2 =

k1+k2−1∑
j=1

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
zjzk1+k2−j .

The map ζ : H0
• → Z is an algebra homomorphism for • ∈ {∗,�}.

Finite double shuffle relations (FDSR)

Forw, v ∈ H0 we have

ζ(w� v − w ∗ v) = 0 .
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1© MZV & Alg. Setup - Regularization & Extended double shuffle

We can extend the map ζ : H0 −→ Z in two ways to obtain algebra homomorphisms

ζ• : H1
• −→ Z

zk1 . . . zkr 7−→ ζ•(k1, . . . , kr) ,

for • ∈ {∗,�}, which are both uniquely determined by ζ•(z1) = 0 and ζ•|H0 = ζ .

ζ�(k1, . . . , kr) : shuffle regularized multiple zeta values.

ζ∗(k1, . . . , kr) : stuffle regularized multiple zeta values.

Extended double shuffle relations (EDSR)

Forw ∈ H0, v ∈ H1 and • ∈ {∗,�} we have

ζ•(w� v − w ∗ v) = 0 .

MZV-holy grail conjecture: All relations among MZV can be obtained from the EDSR.
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2© Multiple Eisenstein series - An order on lattices

Let τ ∈ H = {z ∈ C | =(z) > 0}. Define an order� on the lattice Zτ + Z by

λ1 � λ2 :⇔ λ1 − λ2 ∈ P

for λ1, λ2 ∈ Zτ + Z and the following set of positive lattice points

P := {mτ + n ∈ Zτ + Z | m > 0 ∨ (m = 0 ∧ n > 0)} .

m

n

In other words: λ1 � λ2 iff λ1 is above or on the right of λ2.
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2© Multiple Eisenstein series - Multiple Eisenstein series

Definition

For integers k1, k2, . . . , kr ≥ 2, we define the multiple Eisenstein series by

G(k1, . . . , kr) := G(k1, . . . , kr; τ) =
∑

λ1�···�λr�0
λi∈Zτ+Z

1

λk11 · · ·λ
kr
r

.

These are holomorphic functions in the upper half plane and they satisfy the stuffle

product formula, i.e. we have for example

G(2) ·G(3) = G(2, 3) +G(3, 2) +G(5) .

Remark

Use Eisenstein summation in the case k1 = 2.
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2© Multiple Eisenstein series - Viewed as a map

H≥2: span of words zk1 . . . zkr with k1, k2, . . . kr ≥ 2 for r ≥ 0.

We view the multiple Eisenstein series as a Q-linear map

G : H≥2 −→ O(H)

zk1 . . . zkr 7−→ G(k1, . . . , kr) ,

withG(1) = 1.

Facts

H≥2 is closed under the stuffle product, i.e. we have Q-algebras

H≥2
∗ ⊂ H0

∗ ⊂ H1
∗ .

The mapG is a Q-algebra homomorphism from H≥2
∗ toO(H).
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2© Multiple Eisenstein series - Classical Eisenstein series

In depth r = 1 we have for k ≥ 2 and q = e2πiτ

G(k) = G(k; τ) =
∑
λ�0

λi∈Zτ+Z

1

λk
=

∑
(m,n)∈Z2

(m=0∧n>0)∨m>0

1

(mτ + n)k

= ζ(k) +
(−2πi)k

(k − 1)!

∑
m>0
d>0

dk−1qmd =: ζ(k) + (−2πi)k g(k) .

For even k ≥ 4 theG(k) are modular forms of weight k.

Definition

For k1, . . . , kr ≥ 1 we define the q-series

g(k1, . . . , kr) =
∑

m1>···>mr>0
d1,...,dr>0

dk1−1
1

(k1 − 1)!
. . .

dkr−1
r

(kr − 1)!
qm1d1+···+mrdr ∈ Q[[q]] .
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2© Multiple Eisenstein series - Fourier expansion

Theorem (Gangl-Kaneko-Zagier 2006 (r = 2), B. 2012)

For k1, . . . , kr ≥ 2 theG(k1, . . . , kr) have a Fourier expansion of the form

G(k1, . . . , kr) = ζ(k1, . . . , kr) +
∑
n>0

anq
n

and they can be written as aZ[2πi]-linear combination of the q-series g.

Examples

G(k) = ζ(k) + (−2πi)k g(k) ,

G(3, 2) = ζ(3, 2) + 3ζ(3)(−2πi)2 g(2) + 2ζ(2)(−2πi)3 g(3) + (−2πi)5 g(3, 2) .

Question

Can we extend the definition ofG(k1, . . . , kr) for k1, . . . , kr ≥ 1, such that we have

ζ•(k1, . . . , kr) as a constant term?
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3© Shuffle regularized MES - Goncharov Coproduct

On the Q-algebra H1
�

one can define the Goncharov coproduct ∆, which gives H1
�

the structure of a Hopf algebra.

There exist explicit formulas for ∆ and we have for example for k ≥ 1

∆(zk) = zk ⊗ 1 + 1⊗ zk ,
∆(z3z2) = z3z2 ⊗ 1 + 3z3 ⊗ z2 + 2z2 ⊗ z3 + 1⊗ z3z2 .

Compare this to the Fourier expansion ofG(3, 2):

G(k) = ζ(k) + (−2πi)k g(k) , (k ≥ 2)

G(3, 2) = ζ(3, 2) + 3ζ(3)(−2πi)2 g(2) + 2ζ(2)(−2πi)3 g(3) + (−2πi)5 g(3, 2) .

Question (Gangl-Kaneko-Zagier)

Is there a connection of Goncharovs coproduct and the Fourier expansion of MES?

Answer (B. - Tasaka, (2014) 2017)

Yes.
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3© Shuffle regularized MES - The q-series g�

Proposition (B. - Tasaka 2017)

There exist a Q-algebra homomorphism

g� : H1
�
−→ Q[[q]]

zk1 . . . zkr 7−→ g�(k1, . . . , kr) ,

such that g�(k1, . . . , kr) = g(k1, . . . , kr) for k1, . . . , kr ≥ 2.

These g� can be written down explicitly.

Proposition (see my MZV lecture)

For k1, k2 ≥ 1 and k = k1 + k2 we have

g(k1) g(k2) =

k−1∑
j=1

((
j − 1

k1 − 1

)
+

(
j − 1

k2 − 1

))
g(j, k − j)

+

(
k − 2

k1 − 1

)(
q
d

dq

g(k − 2)

k − 2
− g(k − 1)

)
+ δk1,1δk2,1 g(2) .
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3© Shuffle regularized MES - Definition

Define algebra homomorphism ĝ� : H1
�
→ Q[πi][[q]] by

ĝ�(k1, . . . , kr) = (−2πi)k1+···+kr g�(k1, . . . , kr).

Definition (Shuffle regularized multiple Eisenstein series (B. - Tasaka 2017))

We define the Q-algebra homomorphism

G� : H1
�
−→ Z[πi][[q]]

zk1 . . . zkr 7−→ G�(k1, . . . , kr) ,

byG� = m ◦ (ζ� ⊗ ĝ�) ◦∆, wherem denotes usual multiplication.

H1 G� //

∆

��

Z[πi][[q]]

H1 ⊗ H1 ζ�⊗ĝ� // Z ⊗Q[πi][[q]]

m

OO
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3© Shuffle regularized MES - Connection to G & RDSR

Theorem (B.-Tasaka 2017)

For k1, . . . , kr ≥ 2 we have

G�(k1, . . . , kr) = G(k1, . . . , kr) .

Corollary (Restricted double shuffle relations (RDSR))

Forw, v ∈ H≥2 we have

G�(w� v − w ∗ v) = 0 .

Therefore multiple Eisenstein series satisfy some of the relations of MZV and we have

Restricted DSR ⊂ Finite DSR ⊂ Extended DSR .

Questions

Are there more relations amongG� than RDSR?
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3© Shuffle regularized MES - Example of RDSR

Proposition (Homework in my MZV course)

For all n ≥ 1 we have

n∑
j=−n

(−1)jzn−j2 � zn+j
2 −

n∑
j=−n

(−1)jzn−j2 ∗ zn+j
2 = 4n(z3z1)n − zn4 .

In particular, this gives

4nG�({3, 1}n) = G�({4}n) .

This implies thatG�({3, 1}n) is a modular form of weight 4n, which follows from∑
n≥0

G({4}n)Xn = exp

( ∞∑
m=1

(−1)m−1

m
G(4m)Xm

)
.

This fact can be seen as an analogue of the classical 3-1 formula of MZV

ζ({3, 1}n) =
2π4n

(4n+ 2)!
.
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3© Shuffle regularized MES - More relations of G�

In weight 5 there are relations amongG� which do not come from RDSR. For
example, one can check that the following FDSR holds

G�(z2 � z2z1 − z2 ∗ z2z1) = G�(2, 2, 1) + 6G�(3, 1, 1)−G�(2, 3)−G�(4, 1)

= 0 .

Proposition (B., 2020+)

For k1, k2 ≥ 2 we haveG�(zk1 � zk2z1 − zk1 ∗ zk2z1) = 0 .

Proof sketch: There exist a stuffle regularized versionG∗, which satisfies

G∗(k, 1) = G�(k, 1) for k ≥ 2.

Questions

DoG� satifsy all FDSH? ... No! There seems to be an unknown set of relations

Restricted DSR ( relations satisfied byG� ( Extended DSR .

Maybe finite double shuffle relations among words, which do not contain the substring z1z1?
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4© Multiple Eisenstein coefficients - Definition

Definition

We define the multiple Eisenstein coefficients En(k1, . . . , kr) by

G�(k1, . . . , kr) =
∑
n≥0

En(k1, . . . , kr)q
n .

These can also be seen as maps En : H1 → Z[πi] = Z + πiZ .

Basic facts

E0(k1, . . . , kr) = ζ�(k1, . . . , kr).

For all n ≥ 0 andw, v ∈ H≥2 we have

En(w� v − w ∗ v) = 0 .

Relations among En Relations among elements inZ[πi].
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4© Multiple Eisenstein coefficients - Examples

We write P = −2πi.

Examples In depth one we have for k ≥ 2, n ≥ 1

E0(k) = ζ(k) , En(k) = σk−1(n)
P k

(k − 1)!
.

In depth two we get E0(k1, k2) = ζ�(k1, k2) and for k1, k2 ≥ 2

E1(k1, k2) =
P k1

(k1 − 1)!
ζ(k2) +

∑
m1+m2=k1+k2

m1,m2≥2

Cm2

k1,k2

Pm1

(m1 − 1)!
ζ(m2) ,

where

Cm2

k1,k2
= (−1)k1

(
m2 − 1

k2 − 1

)
+ (−1)m2−k1

(
m2 − 1

k1 − 1

)
.

General: For n ≥ 1 the En(k1, . . . , kr) are products of P and MZV in depth< r.
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4© Multiple Eisenstein coefficients - Relation Examples

P = −2πi.

Examples We saw that 4G�(3, 1) = G�(4). Since we have

4E1(3, 1) = −4ζ(2)P 2,

E1(4) =
P 4

6
,

we obtain ζ(2) = −P 2

24 = π2

6 .

Remark

The stuffle product formula forG(2)G(k) can be used to get Euler’s formula

ζ(2m) = − B2m

2(2m)!
P 2m ,

by using an explicit "stuffle-product" analogue for g(k1) g(k2).

(The proofs of these do not use Euler’s formula)
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4© Multiple Eisenstein coefficients - Relation Examples

P = −2πi.

Examples We saw thatG�(2, 2, 1) + 6G�(3, 1, 1)−G�(2, 3)−G�(4, 1) = 0.
This gives

E1(2, 2, 1) + 6E1(3, 1, 1)− E1(2, 3)− E1(4, 1) = 3ζ(3)P 2 − 3ζ(2, 1)P 2 = 0

from which we deduce ζ(2, 1) = ζ(3).

This example show that relations among the E can give (some) extended double shuffle

relations.

Questions

Can we obtain all extended double shuffle relations of MZV?
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Open problems & Future work

Possible future joint works & student projects:

Understand which relations are satisfied byG�.

Give explicit formulas for En.

Understand the relationship between relations among En and MZV & π2.

Study the operator q ddq . Conjecturally the spaced spanned byG� is closed

under this operator.

Consider a rational versionC� ofG�. Assume we have a map Z : H1 → Q,

which maps zk1 . . . zkr to the coefficient of an rational associator. Then define

H1 C� //

∆

��

Q[[q]]

H1 ⊗ H1 Z⊗g� // Q⊗Q[[q]]

m

OO

This construction should be closely related to ongoing projects with A. Burmester,

U. Kühn and N. Matthes.
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5© Bonus - Stuffle product for g

Proposition

For k1, k2 ≥ 1 and we have

g(k1) g(k2) = g(k1, k2) + g(k2, k1) + g(k1 + k2) +

k1+k2−1∑
j=1

(
λjk1,k2

+ λjk2,k1

)
g(j) ,

where the rational numbers λjk1,k2 are given by

λjk1,k2 = (−1)k2−1

(
k1 + k2 − 1− j

k1 − j

)
Bk1+k2−j

(k1 + k2 − j)!
.
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