Multiple Eisenstein series and their Fourier coefficients

Henrik Bachmann
Nagoya University
based on a joint work with Koji Tasaka

$$
\begin{aligned}
G\left(k_{1}, \ldots, k_{r}\right) & =\sum_{\substack{\lambda_{1} \succ \cdots \succ \lambda_{r} \succ 0 \\
\lambda_{i} \in \mathbb{Z} \tau+\mathbb{Z}}} \frac{1}{\lambda_{1}^{k_{1}} \cdots \lambda_{r}^{k_{r}}} \\
= & \sum_{n \geq 0} \mathcal{E}_{n}\left(k_{1}, \ldots, k_{r}\right) q^{n}
\end{aligned}
$$

Kyushu MZV Seminar, at home, 25th May 2020 www.henrikbachmann.com

Overview

Multiple zeta values

\&
Algebraic setup

4

Multiple Eisenstein coefficients

These slides and related papers are available on my homepage: https://www.henrikbachmann.com/

(1) MZV \& Alg. Setup - Definition

Definition

For $k_{1} \geq 2, k_{2}, \ldots, k_{r} \geq 1$ define the multiple zeta value (MZV)

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{m_{1}>\cdots>m_{r}>0} \frac{1}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{R} .
$$

By r we denote its depth and $k_{1}+\cdots+k_{r}$ will be called its weight.

- $\mathcal{Z}: \mathbb{Q}$-algebra of MZVs

(1) MZV \& Alg. Setup - Stuffile \& shuffile product

There are two different ways to express the product of MZV in terms of MZV.

Stuffle product (coming from the definition as iterated sums)

Example in depth two ($k_{1}, k_{2} \geq 2$)

$$
\begin{aligned}
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right) & =\sum_{m>0} \frac{1}{m^{k_{1}}} \sum_{n>0} \frac{1}{n^{k_{2}}} \\
& =\sum_{0<m<n} \frac{1}{m^{k_{1}} n^{k_{2}}}+\sum_{0<n<m} \frac{1}{m^{k_{1}} n^{k_{2}}}+\sum_{m=n>0} \frac{1}{m^{k_{1}+k_{2}}} \\
& =\zeta\left(k_{1}, k_{2}\right)+\zeta\left(k_{2}, k_{1}\right)+\zeta\left(k_{1}+k_{2}\right)
\end{aligned}
$$

Shuffle product (coming from the expression as iterated integrals)
Example in depth two ($k_{1}, k_{2} \geq 2$)

$$
\zeta\left(k_{1}\right) \cdot \zeta\left(k_{2}\right)=\sum_{j=2}^{k_{1}+k_{2}-1}\left(\binom{j-1}{k_{1}-1}+\binom{j-1}{k_{2}-1}\right) \zeta\left(j, k_{1}+k_{2}-j\right)
$$

(1) MZV \& Alg. Setup - Hoffman setup

Define the following spaces $\mathfrak{H}^{0} \subset \mathfrak{H}^{1} \subset \mathfrak{H}$

- $\mathfrak{H}=\mathbb{Q}\langle x, y\rangle \quad$ "Words in x and y "
- $\mathfrak{H}^{1}=\mathbb{Q}+\mathfrak{H} y \quad$ "Words ending in y "
- $\mathfrak{H}^{0}=\mathbb{Q}+x \mathfrak{H} y \quad$ "Words starting in x and ending in y "

For $k \geq 1$ we write

$$
z_{k}=x^{k-1} y .
$$

- \mathfrak{H}^{1} : span of words $z_{k_{1}} \ldots z_{k_{r}}$ with $k_{1}, k_{2}, \ldots k_{r} \geq 1$ for $r \geq 0$.
- \mathfrak{H}^{0} : span of words $z_{k_{1}} \ldots z_{k_{r}}$ with $k_{1} \geq 2, k_{2}, \ldots k_{r} \geq 1$ for $r \geq 0$.

We can view ζ as a \mathbb{Q}-linear map

$$
\begin{aligned}
\zeta: \mathfrak{H}^{0} & \longrightarrow \mathcal{Z} \\
z_{k_{1}} \ldots z_{k_{r}} & \longmapsto \zeta\left(k_{1}, \ldots, k_{r}\right),
\end{aligned}
$$

where $\zeta(1)=1$.

(1) MZV \& Alg. Setup - Hoffman setup

Definition (shuffle product \amalg)

Define the \mathbb{Q}-bilinear product \amalg on \mathfrak{H} by $1 \amalg w=w \amalg 1=w$ for any word $w \in \mathfrak{H}$ and

$$
a_{1} w_{1} \amalg a_{2} w_{2}=a_{1}\left(w_{1} \amalg a_{2} w_{2}\right)+a_{2}\left(a_{1} w_{1} \amalg w_{2}\right)
$$

for any letters $a_{1}, a_{2} \in\{x, y\}$ and words $w_{1}, w_{2} \in \mathfrak{H}$.

Definition (stuffle product *)

Define the \mathbb{Q}-bilinear product $*$ on \mathfrak{H}^{1} by $1 * w=w * 1=w$ for any word $w \in \mathfrak{H}^{1}$ and

$$
z_{i} w_{1} * z_{j} w_{2}=z_{i}\left(w_{1} * z_{j} w_{2}\right)+z_{j}\left(z_{i} w_{1} * w_{2}\right)+z_{i+j}\left(w_{1} * w_{2}\right)
$$

for any $i, j \geq 1$ and words $w_{1}, w_{2} \in \mathfrak{H}^{1}$.

We get \mathbb{Q}-(sub)algebras

$$
\mathfrak{H}_{\amalg}^{0} \subset \mathfrak{H}_{\amalg}^{1} \subset \mathfrak{H}_{\amalg} \quad \text { and } \quad \mathfrak{H}_{*}^{0} \subset \mathfrak{H}_{*}^{1} .
$$

(1) MZV \& Alg. Setup - Stuffile \& shuffile product and finite double shufile

Stuffle product Example in depth two ($k_{1}, k_{2} \geq 1$)

$$
z_{k_{1}} * z_{k_{2}}=z_{k_{1}} z_{k_{2}}+z_{k_{2}} z_{k_{1}}+z_{k_{1}+k_{2}}
$$

Shuffle product Example in depth two $\left(k_{1}, k_{2} \geq 1\right)$

$$
z_{k_{1}} Ш z_{k_{2}}=\sum_{j=1}^{k_{1}+k_{2}-1}\left(\binom{j-1}{k_{1}-1}+\binom{j-1}{k_{2}-1}\right) z_{j} z_{k_{1}+k_{2}-j}
$$

The map $\zeta: \mathfrak{H}_{\bullet}^{0} \rightarrow \mathcal{Z}$ is an algebra homomorphism for $\bullet \in\{*, Ш\}$.

Finite double shuffle relations (FDSR)

For $w, v \in \mathfrak{H}^{0}$ we have

$$
\zeta(w \amalg v-w * v)=0
$$

(1) MZV \& Alg. Setup - Regularization \& Extended double shuffile

We can extend the map $\zeta: \mathfrak{H}^{0} \longrightarrow \mathcal{Z}$ in two ways to obtain algebra homomorphisms

$$
\begin{aligned}
\zeta^{\bullet}: \mathfrak{H}_{\bullet}^{1} & \longrightarrow \mathcal{Z} \\
z_{k_{1}} \ldots z_{k_{r}} & \longmapsto \zeta^{\bullet}\left(k_{1}, \ldots, k_{r}\right),
\end{aligned}
$$

for $\bullet \in\{*, Ш\}$, which are both uniquely determined by $\zeta^{\bullet}\left(z_{1}\right)=0$ and $\zeta_{\mathfrak{F H}^{0}}^{\bullet}=\zeta$.

- $\zeta^{\amalg}\left(k_{1}, \ldots, k_{r}\right)$: shuffle regularized multiple zeta values.
- $\zeta^{*}\left(k_{1}, \ldots, k_{r}\right)$: stuffle regularized multiple zeta values.

Extended double shuffle relations (EDSR)

For $w \in \mathfrak{H}^{0}, v \in \mathfrak{H}^{1}$ and $\bullet \in\{*, Ш\}$ we have

$$
\zeta^{\bullet}(w ш v-w * v)=0 .
$$

MZV-holy grail conjecture: All relations among MZV can be obtained from the EDSR.

(2) Multiple Eisenstein series - An order on lattices

Let $\tau \in \mathbb{H}=\{z \in \mathbb{C} \mid \Im(z)>0\}$. Define an order \succ on the lattice $\mathbb{Z} \tau+\mathbb{Z}$ by

$$
\lambda_{1} \succ \lambda_{2}: \Leftrightarrow \lambda_{1}-\lambda_{2} \in P
$$

for $\lambda_{1}, \lambda_{2} \in \mathbb{Z} \tau+\mathbb{Z}$ and the following set of positive lattice points

$$
P:=\{m \tau+n \in \mathbb{Z} \tau+\mathbb{Z} \mid m>0 \vee(m=0 \wedge n>0)\} .
$$

In other words: $\lambda_{1} \succ \lambda_{2}$ iff λ_{1} is above or on the right of λ_{2}.

(2) Multiple Eisenstein series-Multiple Eisenstein series

Definition

For integers $k_{1}, k_{2}, \ldots, k_{r} \geq 2$, we define the multiple Eisenstein series by

$$
G\left(k_{1}, \ldots, k_{r}\right):=G\left(k_{1}, \ldots, k_{r} ; \tau\right)=\sum_{\substack{\lambda_{1} \succ \cdots \succ \lambda_{r} \succ 0 \\ \lambda_{i} \in \mathbb{Z} \tau+\mathbb{Z}}} \frac{1}{\lambda_{1}^{k_{1}} \cdots \lambda_{r}^{k_{r}}} .
$$

These are holomorphic functions in the upper half plane and they satisfy the stuffle product formula, i.e. we have for example

$$
G(2) \cdot G(3)=G(2,3)+G(3,2)+G(5) .
$$

Remark

Use Eisenstein summation in the case $k_{1}=2$.

(2) Multiple Eisenstein series - Viewed as a map

- $\mathfrak{H}^{\geq 2}$: span of words $z_{k_{1}} \ldots z_{k_{r}}$ with $k_{1}, k_{2}, \ldots k_{r} \geq 2$ for $r \geq 0$. We view the multiple Eisenstein series as a \mathbb{Q}-linear map

$$
\begin{aligned}
G: \mathfrak{H}^{\geq 2} & \longrightarrow \mathcal{O}(\mathbb{H}) \\
z_{k_{1}} \ldots z_{k_{r}} & \longmapsto G\left(k_{1}, \ldots, k_{r}\right),
\end{aligned}
$$

with $G(1)=1$.

Facts

- $\mathfrak{H}^{\geq 2}$ is closed under the stuffle product, i.e. we have \mathbb{Q}-algebras

$$
\mathfrak{H}_{*}^{\geq 2} \subset \mathfrak{H}_{*}^{0} \subset \mathfrak{H}_{*}^{1} .
$$

- The map G is a \mathbb{Q}-algebra homomorphism from $\mathfrak{H}_{*}^{\geq 2}$ to $\mathcal{O}(\mathbb{H})$.

(2) Multiple Eisenstein series-Classical Eisenstein series

In depth $r=1$ we have for $k \geq 2$ and $q=e^{2 \pi i \tau}$

$$
\begin{aligned}
G(k)=G(k ; \tau) & =\sum_{\substack{\lambda \succ 0 \\
\lambda_{i} \in \mathbb{Z} \tau+\mathbb{Z}}} \frac{1}{\lambda^{k}}=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\
(m=0 \wedge n>0) \vee m>0}} \frac{1}{(m \tau+n)^{k}} \\
& =\zeta(k)+\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{\substack{m>0 \\
d>0}} d^{k-1} q^{m d}=: \zeta(k)+(-2 \pi i)^{k} \mathrm{~g}(k) .
\end{aligned}
$$

For even $k \geq 4$ the $G(k)$ are modular forms of weight k.

Definition

For $k_{1}, \ldots, k_{r} \geq 1$ we define the q-series

$$
\mathrm{g}\left(k_{1}, \ldots, k_{r}\right)=\sum_{\substack{m_{1}>\cdots>m_{r}>0 \\ d_{1}, \ldots, d_{r}>0}} \frac{d_{1}^{k_{1}-1}}{\left(k_{1}-1\right)!} \cdots \frac{d_{r}^{k_{r}-1}}{\left(k_{r}-1\right)!} q^{m_{1} d_{1}+\cdots+m_{r} d_{r}} \in \mathbb{Q}[[q]] .
$$

(2) Multiple Eisenstein series-Fourier expansion

Theorem (Gangl-Kaneko-Zagier 2006 ($r=2$), B. 2012)

For $k_{1}, \ldots, k_{r} \geq 2$ the $G\left(k_{1}, \ldots, k_{r}\right)$ have a Fourier expansion of the form

$$
G\left(k_{1}, \ldots, k_{r}\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)+\sum_{n>0} a_{n} q^{n}
$$

and they can be written as a $\mathcal{Z}[2 \pi i]$-linear combination of the q-series g .

Examples

$$
\begin{aligned}
G(k) & =\zeta(k)+(-2 \pi i)^{k} \mathrm{~g}(k) \\
G(3,2) & =\zeta(3,2)+3 \zeta(3)(-2 \pi i)^{2} \mathrm{~g}(2)+2 \zeta(2)(-2 \pi i)^{3} \mathrm{~g}(3)+(-2 \pi i)^{5} \mathrm{~g}(3,2)
\end{aligned}
$$

Question

Can we extend the definition of $G\left(k_{1}, \ldots, k_{r}\right)$ for $k_{1}, \ldots, k_{r} \geq 1$, such that we have $\zeta^{\bullet}\left(k_{1}, \ldots, k_{r}\right)$ as a constant term?

(3) Shuffle regularized MES - Goncharov Coproduct

On the \mathbb{Q}-algebra $\mathfrak{H}_{\amalg}^{1}$ one can define the Goncharov coproduct Δ, which gives $\mathfrak{H}_{\amalg}^{1}$ the structure of a Hopf algebra.
There exist explicit formulas for Δ and we have for example for $k \geq 1$

$$
\begin{aligned}
\Delta\left(z_{k}\right) & =z_{k} \otimes 1+1 \otimes z_{k} \\
\Delta\left(z_{3} z_{2}\right) & =z_{3} z_{2} \otimes 1+3 z_{3} \otimes z_{2}+2 z_{2} \otimes z_{3}+1 \otimes z_{3} z_{2}
\end{aligned}
$$

Compare this to the Fourier expansion of $G(3,2)$:

$$
\begin{aligned}
G(k) & =\zeta(k)+(-2 \pi i)^{k} \mathrm{~g}(k), \quad(k \geq 2) \\
G(3,2) & =\zeta(3,2)+3 \zeta(3)(-2 \pi i)^{2} \mathrm{~g}(2)+2 \zeta(2)(-2 \pi i)^{3} \mathrm{~g}(3)+(-2 \pi i)^{5} \mathrm{~g}(3,2) .
\end{aligned}
$$

Question (Gangl-Kaneko-Zagier)

Is there a connection of Goncharovs coproduct and the Fourier expansion of MES?

Answer (B. - Tasaka, (2014) 2017)

Yes.

(3) Shuffle regularized MES - The q-series $g^{\text {Ш }}$

Proposition (B. - Tasaka 2017)

There exist a \mathbb{Q}-algebra homomorphism

$$
\begin{aligned}
\mathrm{g}^{\amalg}: \mathfrak{H}_{Ш}^{1} & \longrightarrow \mathbb{Q}[[q]] \\
z_{k_{1}} \ldots z_{k_{r}} & \longmapsto \mathrm{~g}^{\amalg}\left(k_{1}, \ldots, k_{r}\right),
\end{aligned}
$$

such that $\mathrm{g}^{\amalg}\left(k_{1}, \ldots, k_{r}\right)=\mathrm{g}\left(k_{1}, \ldots, k_{r}\right)$ for $k_{1}, \ldots, k_{r} \geq 2$.
These g^{\amalg} can be written down explicitly.

Proposition (see my MZV lecture)

For $k_{1}, k_{2} \geq 1$ and $k=k_{1}+k_{2}$ we have

$$
\begin{aligned}
\mathrm{g}\left(k_{1}\right) \mathrm{g}\left(k_{2}\right)= & \sum_{j=1}^{k-1}\left(\binom{j-1}{k_{1}-1}+\binom{j-1}{k_{2}-1}\right) \mathrm{g}(j, k-j) \\
& +\binom{k-2}{k_{1}-1}\left(q \frac{d}{d q} \frac{\mathrm{~g}(k-2)}{k-2}-\mathrm{g}(k-1)\right)+\delta_{k_{1}, 1} \delta_{k_{2}, 1} \mathrm{~g}(2) .
\end{aligned}
$$

(3) Shuffle regularized MES - Definition

Define algebra homomorphism $\hat{\mathrm{g}}^{\amalg}: \mathfrak{H}_{\amalg}^{1} \rightarrow \mathbb{Q}[\pi i][[q]]$ by

$$
\hat{\mathrm{g}}^{Ш}\left(k_{1}, \ldots, k_{r}\right)=(-2 \pi i)^{k_{1}+\cdots+k_{r}} \mathrm{~g}^{\amalg}\left(k_{1}, \ldots, k_{r}\right) .
$$

Definition (Shuffle regularized multiple Eisenstein series (B. - Tasaka 2017))

We define the \mathbb{Q}-algebra homomorphism

$$
\begin{aligned}
G^{\amalg}: \mathfrak{H}_{Ш}^{1} & \longrightarrow \mathcal{Z}[\pi i][[q]] \\
z_{k_{1}} \ldots z_{k_{r}} & \longmapsto G^{\amalg}\left(k_{1}, \ldots, k_{r}\right),
\end{aligned}
$$

by $G^{\amalg}=m \circ\left(\zeta^{\amalg} \otimes \hat{\mathrm{g}}^{\amalg}\right) \circ \Delta$, where m denotes usual multiplication.

(3) Shuffile regularized MES - Connection to G \& RDSR

Theorem (B.-Tasaka 2017)

For $k_{1}, \ldots, k_{r} \geq 2$ we have

$$
G^{Ш}\left(k_{1}, \ldots, k_{r}\right)=G\left(k_{1}, \ldots, k_{r}\right) .
$$

Corollary (Restricted double shuffle relations (RDSR))

For $w, v \in \mathfrak{H}^{\geq 2}$ we have

$$
G^{Ш}(w \amalg v-w * v)=0
$$

Therefore multiple Eisenstein series satisfy some of the relations of MZV and we have

$$
\text { Restricted DSR } \subset \text { Finite DSR } \subset \text { Extended DSR . }
$$

Questions

Are there more relations among G^{\amalg} than RDSR?

(3) Shuffle regularized MES - Example of RDSR

Proposition (Homework in my MZV course)

For all $n \geq 1$ we have

$$
\sum_{j=-n}^{n}(-1)^{j} z_{2}^{n-j} \amalg z_{2}^{n+j}-\sum_{j=-n}^{n}(-1)^{j} z_{2}^{n-j} * z_{2}^{n+j}=4^{n}\left(z_{3} z_{1}\right)^{n}-z_{4}^{n}
$$

In particular, this gives

$$
4^{n} G^{Ш}\left(\{3,1\}^{n}\right)=G^{Ш}\left(\{4\}^{n}\right)
$$

This implies that $G^{\amalg}\left(\{3,1\}^{n}\right)$ is a modular form of weight $4 n$, which follows from

$$
\sum_{n \geq 0} G\left(\{4\}^{n}\right) X^{n}=\exp \left(\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m} G(4 m) X^{m}\right)
$$

This fact can be seen as an analogue of the classical 3-1 formula of MZV

$$
\zeta\left(\{3,1\}^{n}\right)=\frac{2 \pi^{4 n}}{(4 n+2)!}
$$

(3) Shuffle regularized MES - More relations of $G^{\text {Ш }}$

In weight 5 there are relations among G^{\amalg} which do not come from RDSR. For example, one can check that the following FDSR holds
$G^{\amalg}\left(z_{2} \amalg z_{2} z_{1}-z_{2} * z_{2} z_{1}\right)=G^{\amalg}(2,2,1)+6 G^{\amalg}(3,1,1)-G^{\amalg}(2,3)-G^{\amalg}(4,1)$ $=0$.

Proposition (B., 2020+)

For $k_{1}, k_{2} \geq 2$ we have $G^{Ш}\left(z_{k_{1}} Ш z_{k_{2}} z_{1}-z_{k_{1}} * z_{k_{2}} z_{1}\right)=0$.
Proof sketch: There exist a stuffle regularized version G^{*}, which satisfies $G^{*}(k, 1)=G^{\amalg}(k, 1)$ for $k \geq 2$.

Questions

Do G^{\amalg} satifsy all FDSH? ... No! There seems to be an unknown set of relations

$$
\text { Restricted DSR } \subsetneq \text { relations satisfied by } G^{Ш} \subsetneq \text { Extended DSR }
$$

Maybe finite double shuffle relations among words, which do not contain the substring $z_{1} z_{1}$?

(4) Multiple Eisenstein coefficients - Definition

Definition

We define the multiple Eisenstein coefficients $\mathcal{E}_{n}\left(k_{1}, \ldots, k_{r}\right)$ by

$$
G^{Ш}\left(k_{1}, \ldots, k_{r}\right)=\sum_{n \geq 0} \mathcal{E}_{n}\left(k_{1}, \ldots, k_{r}\right) q^{n}
$$

These can also be seen as maps $\mathcal{E}_{n}: \mathfrak{H}^{1} \rightarrow \mathcal{Z}[\pi i]=\mathcal{Z}+\pi i \mathcal{Z}$.

Basic facts

- $\mathcal{E}_{0}\left(k_{1}, \ldots, k_{r}\right)=\zeta^{Ш}\left(k_{1}, \ldots, k_{r}\right)$.
- For all $n \geq 0$ and $w, v \in \mathfrak{H}^{\geq 2}$ we have

$$
\mathcal{E}_{n}(w \amalg v-w * v)=0
$$

Relations among $\mathcal{E}_{n} \rightsquigarrow$ Relations among elements in $\mathcal{Z}[\pi i]$.

(4) Multiple Eisenstein coefficients - Examples

We write $P=-2 \pi i$.
Examples In depth one we have for $k \geq 2, n \geq 1$

$$
\mathcal{E}_{0}(k)=\zeta(k), \quad \mathcal{E}_{n}(k)=\sigma_{k-1}(n) \frac{P^{k}}{(k-1)!} .
$$

In depth two we get $\mathcal{E}_{0}\left(k_{1}, k_{2}\right)=\zeta^{\amalg}\left(k_{1}, k_{2}\right)$ and for $k_{1}, k_{2} \geq 2$

$$
\mathcal{E}_{1}\left(k_{1}, k_{2}\right)=\frac{P^{k_{1}}}{\left(k_{1}-1\right)!} \zeta\left(k_{2}\right)+\sum_{\substack{m_{1}+m_{2}=k_{1}+k_{2} \\ m_{1}, m_{2} \geq 2}} C_{k_{1}, k_{2}}^{m_{2}} \frac{P^{m_{1}}}{\left(m_{1}-1\right)!} \zeta\left(m_{2}\right),
$$

where

$$
C_{k_{1}, k_{2}}^{m_{2}}=(-1)^{k_{1}}\binom{m_{2}-1}{k_{2}-1}+(-1)^{m_{2}-k_{1}}\binom{m_{2}-1}{k_{1}-1} .
$$

General: For $n \geq 1$ the $\mathcal{E}_{n}\left(k_{1}, \ldots, k_{r}\right)$ are products of P and MZV in depth $<r$.

(4) Multiple Eisenstein coefficients - Relation Examples

$$
P=-2 \pi i
$$

Examples We saw that $4 G^{\amalg}(3,1)=G^{\amalg}(4)$. Since we have

$$
\begin{aligned}
4 \mathcal{E}_{1}(3,1) & =-4 \zeta(2) P^{2}, \\
\mathcal{E}_{1}(4) & =\frac{P^{4}}{6},
\end{aligned}
$$

we obtain $\zeta(2)=-\frac{P^{2}}{24}=\frac{\pi^{2}}{6}$.

Remark

The stuffle product formula for $G(2) G(k)$ can be used to get Euler's formula

$$
\zeta(2 m)=-\frac{B_{2 m}}{2(2 m)!} P^{2 m}
$$

by using an explicit "stuffle-product" analogue for $\mathrm{g}\left(k_{1}\right) \mathrm{g}\left(k_{2}\right)$.
(The proofs of these do not use Euler's formula)

(4) Multiple Eisenstein coefficients - Relation Examples

$P=-2 \pi i$.
Examples We saw that $G^{\amalg}(2,2,1)+6 G^{\amalg}(3,1,1)-G^{\amalg}(2,3)-G^{\amalg}(4,1)=0$. This gives

$$
\mathcal{E}_{1}(2,2,1)+6 \mathcal{E}_{1}(3,1,1)-\mathcal{E}_{1}(2,3)-\mathcal{E}_{1}(4,1)=3 \zeta(3) P^{2}-3 \zeta(2,1) P^{2}=0
$$

from which we deduce $\zeta(2,1)=\zeta(3)$.
This example show that relations among the \mathcal{E} can give (some) extended double shuffle relations.

Questions

Can we obtain all extended double shuffle relations of MZV?

Open problems \& Future work

Possible future joint works \& student projects:

- Understand which relations are satisfied by G^{\amalg}.
- Give explicit formulas for \mathcal{E}_{n}.
- Understand the relationship between relations among \mathcal{E}_{n} and MZV \& π^{2}.
- Study the operator $q \frac{d}{d q}$. Conjecturally the spaced spanned by $G^{Ш}$ is closed under this operator.
- Consider a rational version C^{\amalg} of G^{\amalg}. Assume we have a map $Z: \mathfrak{H}^{1} \rightarrow \mathbb{Q}$, which maps $z_{k_{1}} \ldots z_{k_{r}}$ to the coefficient of an rational associator. Then define

This construction should be closely related to ongoing projects with A. Burmester, U. Kühn and N. Matthes.

(5) Bonus - Stuffle product for g

Proposition

For $k_{1}, k_{2} \geq 1$ and we have

$$
\mathrm{g}\left(k_{1}\right) \mathrm{g}\left(k_{2}\right)=\mathrm{g}\left(k_{1}, k_{2}\right)+\mathrm{g}\left(k_{2}, k_{1}\right)+\mathrm{g}\left(k_{1}+k_{2}\right)+\sum_{j=1}^{k_{1}+k_{2}-1}\left(\lambda_{k_{1}, k_{2}}^{j}+\lambda_{k_{2}, k_{1}}^{j}\right) \mathrm{g}(j)
$$

where the rational numbers $\lambda_{k_{1}, k_{2}}^{j}$ are given by

$$
\lambda_{k_{1}, k_{2}}^{j}=(-1)^{k_{2}-1}\binom{k_{1}+k_{2}-1-j}{k_{1}-j} \frac{B_{k_{1}+k_{2}-j}}{\left(k_{1}+k_{2}-j\right)!} .
$$

