Linear Algebra II

Overview notes

G30 Program, Nagoya University (Spring 2023)
Henrik Bachmann (Math. Building Room 457, henrik.bachmann@math.nagoya-u.ac.jp)
Lecture notes and exercises are available at: https://www.henrikbachmann.com/la2_2023.html

These notes serve as a compact overview of the definitions, propositions, lemmas, corollaries, and theorems given in the lectures. This is Version 1 from April 9, 2023. The proofs, examples, and explanations are provided in the handwritten notes/lectures. The reference book for this course is [B], and we will probably cover Chapters $4,6,7$ and 9 during this semester.

If you find any typos in this note, please let me know!

Contents

1 Vector spaces 2
$\begin{array}{ll}2 \text { Linear maps } & 4\end{array}$

3 The matrix of a linear map	6

4 Determinants 7
5 Eigenvalues and eigenvectors 9
$\begin{array}{lll}6 & \text { Linear differential equations } & 13\end{array}$

References

[B] O. Bretscher: Linear Algebra with Applications, 4th edition, Pearson 2009.

Linear Algebra II • Vector spaces

1 Vector spaces

Definition 1.1. A (real) vector space is a set V together with two functions

Addition

$$
\begin{aligned}
+: V \times V & \longrightarrow V \\
(u, v) & \longmapsto u+v
\end{aligned}
$$

Scalar multiplication

$$
\begin{aligned}
\cdot: \mathbb{R} \times V & \longrightarrow V \\
(\lambda, v) & \longmapsto \lambda \cdot v=\lambda v
\end{aligned}
$$

satisfying the following properties:

- Properties of the addition:
(A.1) $\forall u, v, w \in V:(u+v)+w=u+(v+w) . \quad$ (Associativity)
(A.2) $\forall u, v \in V: u+v=v+u . \quad$ (Commutativity)
(A.3) $\exists n \in V, \forall u \in V: n+u=u . \quad$ (Identity/neutral element of addition)
(A.4) $\forall u \in V, \exists v \in V: u+v=n . \quad$ (Inverse elements of addition)
- Compatibility of addition and scalar multiplication:
(C.1) $\forall u, v \in V, \lambda \in \mathbb{R}: \lambda \cdot(u+v)=\lambda u+\lambda v . \quad$ (Distributivity I)
(C.2) $\forall u \in V, \lambda, \mu \in \mathbb{R}:(\lambda+\mu) \cdot u=\lambda u+\mu u . \quad$ (Distributivity II)
(C.3) $\forall u \in V, \lambda, \mu \in \mathbb{R}: \lambda \cdot(\mu u)=(\lambda \mu) \cdot u$.
(C.4) $\forall u \in V: 1 \cdot u=u$.

We write $(V,+, \cdot)$ for the vector space V if we want to emphasize which addition and scalar multiplication we are using.

Proposition 1.2. Let V be a vector space and $u \in V$.
i) $u+n=u$.
ii) If $n, \tilde{n} \in V$ both satisfy (A.3) in Definition 1.1, then $n=\tilde{n}$. (The identity element is unique)
iii) If for a fixed $u \in V$ the elements $v, \tilde{v} \in V$ both satisfy (A.4), i.e. $u+v=u+\tilde{v}=n$, then $v=\tilde{v}$. (The inverse of an element u is unique)
iv) $u+(-1) u=n$.

The identity (also called neutral) element $n \in V$ of a vector space is usually (by abuse of notation) also denoted by 0 . Be always aware in the following if 0 means the real number 0 or the identity element of a vector space. (These are two different things!)

Linear Algebra II • Vector spaces

Definition 1.3. Let V be a vector space. A subset $U \subset V$ is a subspace if
i) $0 \in U$.
ii) $\forall u, v \in U: u+v \in U$.
iii) $\forall u \in U, \lambda \in \mathbb{R}: \lambda u \in U$.

Proposition 1.4. If $U \subset V$ is a subspace, then U is also a vector space with the operations inherited from V.

Definition 1.5. Let V be a vector space and $v_{1}, \ldots, v_{n} \in V$.
i) The span of the elements v_{1}, \ldots, v_{n} is given by the set of all their linear combinations, i.e.

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\left\{\sum_{i=1}^{n} \lambda_{i} v_{i} \in V \mid \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}\right\}
$$

ii) The elements v_{1}, \ldots, v_{n} span (or generate) the space V if $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=V$.
iii) V is finitely generated if there exist $v_{1}, \ldots, v_{n} \in V$ with $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=V$. (i.e. one just needs finitely many elements to generate the space)
iv) The elements v_{1}, \ldots, v_{n} are linearly independent if

$$
\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n}=0 \Longrightarrow \lambda_{1}=\ldots=\lambda_{n}=0 .
$$

v) $B=\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V if v_{1}, \ldots, v_{n} are linearly independent and $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=V$.

Proposition 1.6. Let V be a vector space and $v_{1}, \ldots, v_{n} \in V$. The following statements are equivalent.
i) v_{1}, \ldots, v_{n} are linearly dependent.
ii) There exist a $1 \leq j \leq n$ such that $v_{j} \in \operatorname{span}\left\{v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right\}$.
iii) There exist $a 1 \leq j \leq n$ such that $\operatorname{span}\left\{v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$.

Lemma 1.7. If $v_{1}, \ldots, v_{l} \in V$ are linearly independent and $V=\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}$, then $l \leq m$.

Theorem 1.8. Let V be a finitely generated vector space. Then we have the following
i) V has a (finite) basis.
ii) All bases of V have the same number of elements.
iii) If $v_{1}, \ldots, v_{l} \in V$ are linearly independent then there exist $v_{l+1}, \ldots, v_{n} \in V$ such that $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V.
iv) If $V=\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}$, then there exist a subset $\left\{u_{1}, \ldots, u_{l}\right\} \subset\left\{w_{1}, \ldots, w_{m}\right\}$, such that $\left(u_{1}, \ldots, u_{l}\right)$ is a basis of V.

Linear Algebra II • Linear maps

Definition 1.9. Let V be a finitely generated vector space with basis $\left(v_{1}, \ldots, v_{n}\right)$. Then $\operatorname{dim}(V)=n$ is the dimension of \mathbf{V}.

Corollary 1.10. Let V be a vector space with $\operatorname{dim}(V)=n$ and $v_{1}, \ldots, v_{n} \in V$. Then the following statements are equivalent.
i) v_{1}, \ldots, v_{n} are linearly independent.
ii) $V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$.
iii) $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V.

Proposition 1.11. Let V be finitely generated and $U \subset V$ a subspace. Then U is also finitely generated.

Proposition 1.12. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V. Then for all $u \in V$ there exist unique $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$, such that

$$
u=\sum_{i=1}^{n} \lambda_{i} v_{i}
$$

Definition 1.13. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V.
i) The $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ in Proposition 1.12 are called the coordinates of $u \in V$ in the basis B.
ii) The vector $[u]_{B} \in \mathbb{R}^{n}$ given by

$$
[u]_{B}=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right)
$$

is called the coordinate vector of u with respect to the basis B.

2 Linear maps

Definition 2.1. Let V, W be vector spaces. A linear map is a function $F: V \rightarrow W$ satisfying
i) $F(u+v)=F(u)+F(v)$ for all $u, v \in V$.
ii) $F(\lambda \cdot u)=\lambda \cdot F(u)$ for all $u \in V, \lambda \in \mathbb{R}$.

Definition 2.2. Let $F: V \rightarrow W$ be a linear map.
i) The kernel of F is given by

$$
\operatorname{ker}(F)=\{u \in V \mid F(u)=0\} \subset V
$$

ii) The image of F is given by

$$
\operatorname{im}(F)=\{w \in W \mid \exists u \in V: w=F(u)\} \subset W
$$

Linear Algebra II • Linear maps

With the same arguments as in the \mathbb{R}^{n}-case we see that $\operatorname{ker}(F)$ is a subspace of V and $\operatorname{im}(F)$ is a subspace of W. If $\operatorname{im}(F)$ is finitely generated, we define the $\mathbf{r a n k}$ of F by $\operatorname{rk}(F)=\operatorname{dim}(\operatorname{im}(F))$.

Theorem 2.3 (kernel-image theorem). Let V be finitely generated and let $F: V \rightarrow W$ be a linear map to an arbitrary vector space W. Then

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{ker}(F))+\operatorname{dim}(\operatorname{im}(F))
$$

Definition 2.4. i) (Recall) A function $f: X \rightarrow Y$ is invertible if there exist a function $g: Y \rightarrow X$ such that $f \circ g=\mathrm{id}_{Y}$ and $g \circ f=\mathrm{id}_{X} . f$ is invertible iff f is bijective, i.e. injective and surjective.
ii) An invertible linear map $F: V \rightarrow W$ is called an isomorphism.
iii) Two vector spaces V and W are called isomorphic (Notation: $V \cong W$) if there exists an isomorphism $F: V \rightarrow W$.

Theorem 2.5. i) A linear map $F: V \rightarrow W$ is an isomorphism iff $\operatorname{ker}(F)=\{0\}$ (F is injective) and $\operatorname{im}(F)=W$ (F is surjective).
ii) Let $F: V \rightarrow W$ be an isomorphism and $\left(b_{1}, \ldots, b_{n}\right)$ a basis of V. Then $\left(F\left(b_{1}\right), \ldots, F\left(b_{n}\right)\right)$ is a basis of W.
iii) Let V, W be finitely generated and $V \cong W$ then $\operatorname{dim}(V)=\operatorname{dim}(W)$.
iv) Let V, W be finitely generated and $\operatorname{dim}(V)=\operatorname{dim}(W)$. Then for a linear map $F: V \rightarrow W$ the following three statements are equivalent
(a) F is an isomorphism.
(b) $\operatorname{ker}(F)=\{0\}$.
(c) $\operatorname{im}(F)=W$.

Proposition 2.6. Let V be finitely generated with basis $B=\left(b_{1}, \ldots, b_{n}\right)$, i.e. $\operatorname{dim}(V)=n$.
Then the coordinate map

$$
\begin{aligned}
& c_{B}: \mathbb{R}^{n} \longrightarrow V, \\
& \left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right) \longmapsto \sum_{i=1}^{n} \lambda_{i} b_{i}
\end{aligned}
$$

is an isomorphism. The inverse is given by $c_{B}^{-1}(u)=[u]_{B}$ for $u \in V$.
Corollary 2.7. Let V, W be finitely generated. Then the following two statements are equivalent
i) $V \cong W$.
ii) $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Linear Algebra II • The matrix of a linear map

3 The matrix of a linear map

In the following V and W are finitely generated vector spaces.
Definition 3.1. Let $B_{V}=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of $V, B_{W}=\left(w_{1}, \ldots, w_{m}\right)$ be a basis of W and let $F: V \rightarrow W$ be a linear map. The matrix of F with respect to B_{V} and B_{W} is defined by

$$
[F]_{B_{V}}^{B_{W}}=\left[c_{B_{W}}^{-1} \circ F \circ c_{B_{V}}\right] .
$$

Here $c_{B_{W}}^{-1} \circ F \circ c_{B_{V}}$ is the linear map from \mathbb{R}^{n} to \mathbb{R}^{m} for which the corresponding matrix was defined before. We have the following diagram

We have

$$
[F]_{B_{V}}^{B_{W}}=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
{\left[F\left(v_{1}\right)\right]_{B_{W}}} & \cdots & {\left[F\left(v_{n}\right)\right]_{B_{W}}} \\
\mid & \cdots & \mid
\end{array}\right)
$$

In other words: The j-th column of $[F]_{B_{V}}^{B_{W}}$ is given by the vector $\left(\begin{array}{c}\lambda_{1} \\ \vdots \\ \lambda_{m}\end{array}\right)$, where $F\left(v_{j}\right)=\sum_{i=1}^{m} \lambda_{i} w_{i}$.
Definition 3.2. Let $B_{1}=\left(v_{1}, \ldots, v_{n}\right)$ and $B_{2}=\left(u_{1}, \ldots, u_{n}\right)$ be bases of V. The change-of-basis matrix from B_{1} to B_{2} is the matrix

$$
S_{B_{1}}^{B_{2}}=\left[\mathrm{id}_{V}\right]_{B_{1}}^{B_{2}}=\left[c_{B_{2}}^{-1} \circ c_{B_{1}}\right]=\left(\begin{array}{ccc}
\mid & \cdots & \mid \\
{\left[v_{1}\right]_{B_{2}}} & \ldots & {\left[v_{n}\right]_{B_{2}}} \\
\mid & \cdots & \mid
\end{array}\right)
$$

Linear Algebra II • Determinants

4 Determinants

Definition 4.1. A pattern in an $n \times n$-matrix is a choice of entries, such that precisely one entry from each row and each column is chosen.

Definition 4.2. i) A bijective map $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is called a permutation of $\{1, \ldots, n\}$.
ii) S_{n} denotes the set of all permutations of $\{1, \ldots, n\}$.

Patterns in an $n \times n$-matrix corresponds exactly to the permutations of $\{1, \ldots, n\}$. For each $\sigma \in S_{n}$ we have the pattern

$$
P=\{(1, \sigma(1)),(2, \sigma(2)), \ldots,(n, \sigma(n))\},
$$

where (i, j) denotes the choice of the i-th row and the j-th column.
Definition 4.3. i) The number of inversion of a permutation $\sigma \in S_{n}$, denoted by $\operatorname{inv}(\sigma)$, is the number of pairs $(i, \sigma(i)),(j, \sigma(j))$ with $i<j$ and $\sigma(i)>\sigma(j)$.
ii) The sign of a permutation $\sigma \in S_{n}$ is defined by

$$
\operatorname{sign}(\sigma)=(-1)^{\operatorname{inv}(\sigma)}
$$

Definition 4.4. The determinant of a $n \times n$-matrix $A=\left(a_{i, j}\right) \in \mathbb{R}^{n \times n}$ is defined by

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

4.1 Properties of determinants

Lemma 4.5. For all $\sigma \in S_{n}$ we have $\operatorname{inv}(\sigma)=\operatorname{inv}\left(\sigma^{-1}\right)$.

Proposition 4.6. For any $A \in \mathbb{R}^{n \times n}$ we have $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
For $A=\left(a_{i, j}\right) \in \mathbb{R}^{n \times n}$ define for a vector $x \in \mathbb{R}^{n}$ and $1 \leq l \leq n$ the matrix $A(l ; x)$ as the matrix where the l-th row of A gets replaced by x, i.e.

$$
A(l ; x)=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
\vdots & & & \vdots \\
a_{l-1,1} & a_{l-1,2} & \cdots & a_{l-1, n} \\
x_{1} & x_{2} & \cdots & x_{n} \\
a_{l+1,1} & a_{l+1,2} & \cdots & a_{l+1, n} \\
\vdots & & & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right) \in \mathbb{R}^{n \times n}, \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} .
$$

Proposition 4.7. For any $A=\left(a_{i, j}\right) \in \mathbb{R}^{n \times n}$ and $1 \leq l \leq n$ the map

$$
\begin{aligned}
F_{A, l}: \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
x & \longmapsto \operatorname{det}(A(l ; x))
\end{aligned}
$$

is a linear map, i.e. the determinant is linear in each row,

Proposition 4.8. For $A \in \mathbb{R}^{n \times n}$ let $B \in \mathbb{R}^{n \times n}$ be a matrix obtained from the matrix A by swapping two rows. Then we have

$$
\operatorname{det}(A)=-\operatorname{det}(B)
$$

Corollary 4.9. If a matrix $A \in \mathbb{R}^{n \times n}$ contains two equal rows or columns, then $\operatorname{det}(A)=0$.
Recall from Linear Algebra I that there are three types of row operations for a matrix $A \in \mathbb{R}^{n \times n}$. $(1 \leq i, j \leq n, i \neq j, \lambda \in \mathbb{R})$.
(R1) Add λ-times the j-th row to the i-th row.
(R2) For $\lambda \neq 0$ multiply the i-th row with λ.
(R3) Swap the j-th row with the i-th row.
Two matrices $A, B \in \mathbb{R}^{n \times n}$ are called row equivalent, if one can obtain B from A by using the row operations (R1), (R2) and (R3). Notation: $A \sim B$.
Proposition 4.10. Let $A, B \in \mathbb{R}^{n \times n}$.
i) If B is obtained from A by using (R1), then $\operatorname{det}(B)=\operatorname{det}(A)$.
ii) If B is obtained from A by using (R2), then $\operatorname{det}(B)=\lambda \operatorname{det}(A)$.
iii) If B is obtained from A by using (R3), then $\operatorname{det}(B)=-\operatorname{det}(A)$.

Theorem 4.11. A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem 4.12. i) For all $A, B \in \mathbb{R}^{n \times n}$ we have $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
ii) If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Corollary 4.13. Let V be a finitely generated vector space, $F: V \rightarrow V$ a linear map and B_{1}, B_{2} two bases of V. Then

$$
\operatorname{det}\left([F]_{B_{1}}\right)=\operatorname{det}\left([F]_{B_{2}}\right),
$$

where $[F]_{B}=[F]_{B}^{B}$ denotes the matrix of F with respect to the basis B (Definition 3.1).

Definition 4.14. Let V be a finitely generated vector space, $F: V \rightarrow V$ a linear map and B any basis of V. We define the determinant of the linear map F by

$$
\operatorname{det}(F)=\operatorname{det}\left([F]_{B}\right)
$$

Linear Algebra II • Eigenvalues and eigenvectors

Definition 4.15. For $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ and $1 \leq i, j \leq n$ we define the elementary matrices $R_{i}^{\lambda, j}, R_{i}^{\lambda}, R_{i, j} \in \mathbb{R}^{n \times n}$ by

Here the λ in $R_{i}^{\lambda, j}$ is in the i-th row and j-th column, in R_{i}^{λ} it is in the i-th row, and in $R_{i, j}$ the 0 are on the diagonal in the i-th row and j-th column.

Proposition 4.16. Let $A \in \mathbb{R}^{n \times n}$.
i) $R_{i}^{\lambda, j} A$ is the matrix obtained from A by row operation (R1). (Add λ-times the j-th row to the i-th row)
ii) $R_{i}^{\lambda} A$ is the matrix obtained from A by row operation (R2). (Multiply the i-th row with λ)
iii) $R_{i, j} A$ is the matrix obtained from A by row operation ($R 3$). (Swap the j-th row with the i-th row)

Corollary 4.17. Let $A \in \mathbb{R}^{n \times n}$.
i) The matrix A is invertible if and only if it is a product of elementary matrices.
ii) If C is an elementary matrix then $\operatorname{det}(C A)=\operatorname{det}(C) \operatorname{det}(A)$.

For a matrix $A \in \mathbb{R}^{n \times n}$ and $1 \leq i, j \leq n$ we denote by $A_{i, j} \in \mathbb{R}^{(n-1) \times(n-1)}$ the matrix which is obtained from A by removing the i-th row and the j-th column.

Theorem 4.18 (Laplace expansion). For a matrix $A=\left(a_{i, j}\right) \in \mathbb{R}^{n \times n}$ and $1 \leq i, j \leq n$ we have

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{l=1}^{n}(-1)^{i+l} a_{i, l} \operatorname{det}\left(A_{i, l}\right) \\
& =\sum_{l=1}^{n}(-1)^{j+l} a_{l, j} \operatorname{det}\left(A_{l, j}\right) .
\end{aligned}
$$

5 Eigenvalues and eigenvectors

In this section V always denotes a vector space.
Definition 5.1. Let $F: V \rightarrow V$ be a linear map.
i) $A \lambda \in \mathbb{R}$ is called an eigenvalue of F, if there exist a vector $v \in V$ with $v \neq 0$, such that

$$
\begin{equation*}
F(v)=\lambda v \tag{5.1}
\end{equation*}
$$

ii) A vector $v \in V$ with $v \neq 0$, satisfying (5.1), is called an eigenvector of F with eigenvalue λ.

Linear Algebra II • Eigenvalues and eigenvectors

Notice that $v=0$ always satisfies 5.1 for any $\lambda \in \mathbb{R}$, since F is a linear map. This is one of many reasons why $v=0$ is not called an eigenvector of F.

In the following, we always assume that V is a finitely generated vector space.
Definition 5.2. Let $F: V \rightarrow V$ be a linear map let $\mathrm{id}_{V}: V \rightarrow V$ be the identity map on V.
i) The polynomial $f_{F}(\lambda)=\operatorname{det}\left(F-\lambda \mathrm{id}_{V}\right)$ is called the characteristic polynomial of F.
ii) Let $\lambda \in \mathbb{R}$ be an eigenvalue of F. Then the space

$$
\begin{aligned}
E_{\lambda}(F) & =\operatorname{ker}\left(F-\lambda \operatorname{id}_{V}\right) \\
& =\{v \in V \mid F(v)=\lambda v\}
\end{aligned}
$$

is called the eigenspace of F with respect to the eigenvalue λ.
The eigenspace $E_{\lambda}(F)$ contains therefore all eigenvectors of F with eigenvalue λ and the zero vector.
Definition 5.3. i) Let $\operatorname{dim} V=n$. A linear map $F: V \rightarrow V$ is called diagonalizable if there exist a basis B of V, such that

$$
[F]_{B}=\left(\begin{array}{ccc}
d_{1} & & 0 \\
& \ddots & \\
0 & & d_{n}
\end{array}\right)
$$

for some $d_{1}, \ldots, d_{n} \in \mathbb{R}$.
ii) A matrix $A \in \mathbb{R}^{n \times n}$ is called diagonalizable if there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ with

$$
S^{-1} A S=\left(\begin{array}{ccc}
d_{1} & & 0 \\
& \ddots & \\
0 & & d_{n}
\end{array}\right)
$$

for some $d_{1}, \ldots, d_{n} \in \mathbb{R}$.

Lemma 5.4. Let B be a basis of V and let $F: V \rightarrow V$ be a linear map. Then the following two statements are equivalent
i) The linear map F is diagonalizable.
ii) The matrix $[F]_{B}$ is diagonalizable.

Lemma 5.5. Let $F: V \rightarrow V$ be a linear map and $B=\left(b_{1}, \ldots, b_{n}\right)$ be a basis of V, such that all b_{i} are eigenvectors of F, i.e. $F\left(b_{i}\right)=d_{i} b_{i}$ for some $d_{i} \in \mathbb{R}$ and $i=1, \ldots, n$. Then F is diagonalizable and

$$
[F]_{B}=\left(\begin{array}{ccc}
d_{1} & & 0 \\
& \ddots & \\
0 & & d_{n}
\end{array}\right)
$$

Conversely, if F is diagonalizable then there exists a basis of eigenvectors.

Linear Algebra II • Eigenvalues and eigenvectors

Theorem 5.6. Let $v_{1}, \ldots, v_{m} \in V$ be eigenvectors of a linear map $F: V \rightarrow V$ with different eigenvalues $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$. Then v_{1}, \ldots, v_{m} are linearly independent.

Corollary 5.7. Let $F: V \rightarrow V$ be a linear map with eigenvalues $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ and $\operatorname{dim} V=n$.
i) If F has n distinct eigenvalues, i.e. $m=n$, then F is diagonalizable.
ii) If B_{1}, \ldots, B_{m} are bases of $E_{\lambda_{1}}(F), \ldots, E_{\lambda_{m}}(F)$, then $B_{1} \cup \cdots \cup B_{m}$ are linearly independent.
iii) The map F is diagonalizable if and only if

$$
\sum_{j=1}^{m} \operatorname{dim} E_{\lambda_{j}}(F)=n
$$

Definition 5.8. Let $F: V \rightarrow V$ be a linear map and let $\lambda \in \mathbb{R}$ be an eigenvalue of F.
i) The algebraic multiplicity of λ, denoted by $\operatorname{algmu}_{F}(\lambda)$, is the multiplicity of λ in the characteristic polynomial f_{F}.
ii) The geometric multiplicity of λ is given by $\operatorname{geomu}_{F}(\lambda)=\operatorname{dim} E_{\lambda}(F)$.

Theorem 5.9. Let $F: V \rightarrow V$ be a linear map and $\lambda \in \mathbb{R}$ be an eigenvalue of F. Then

$$
\operatorname{geomu}_{F}(\lambda) \leq \operatorname{algmu}_{F}(\lambda)
$$

Corollary 5.10. If F is diagonalizable then $\operatorname{geomu}_{F}(\lambda)=\operatorname{algmu}_{F}(\lambda)$ for all eigenvalues λ of F.

5.1 The spectral theorem

In this section we will just consider the vector space $V=\mathbb{R}^{n}$. Recall that the norm of a vector $x \in \mathbb{R}^{n}$ is defined by

$$
\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}, \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

Definition 5.11. An orthogonal map is a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that

$$
\|F(x)\|=\|x\|, \quad \forall x \in \mathbb{R}^{n}
$$

i.e. the map F does not change the norm of a vector. We call a matrix $A \in \mathbb{R}^{n \times n}$ orthogonal if $\|A x\|=\|x\|$ for all $x \in \mathbb{R}^{n}$.

Recall that the dot product \bullet for two vectors $x, y \in \mathbb{R}^{n}$ is defined by

$$
x \bullet y=x^{T} y=x_{1} y_{1}+\cdots+x_{n} y_{n} \in \mathbb{R}
$$

With this the norm of a vector can also be written as $\|x\|=\sqrt{x \bullet x}$.

Linear Algebra II • Eigenvalues and eigenvectors

Lemma 5.12. For all $x, y \in \mathbb{R}^{n}$ we have

$$
x \bullet y=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right) .
$$

Proposition 5.13. A linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal if and only if

$$
F(x) \bullet F(y)=x \bullet y
$$

for all $x, y \in \mathbb{R}^{n}$.
Recall: We say that x and y are orthogonal if $x \bullet y=0$. A basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n} is called an orthonormal basis if b_{i} and b_{j} for $i \neq j$ are orthogonal and $\left\|b_{i}\right\|=1$ for all i, i.e.

$$
b_{i} \bullet b_{j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

Theorem 5.14. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a linear map and $A=[F]_{B}$ the matrix of F for $B=\left(e_{1}, \ldots, e_{n}\right)$. The following statements are equivalent.
i) F is orthogonal.
ii) A is orthogonal.
iii) For all $x, y \in \mathbb{R}^{n}$ we have $F(x) \bullet F(y)=x \bullet y$.
iv) A is invertible and $A^{-1}=A^{T}$.
v) $\left(F\left(e_{1}\right), \ldots, F\left(e_{n}\right)\right)$ (the columns of A) is an orthonormal basis of \mathbb{R}^{n}.
vi) If $\left(b_{1}, \ldots, b_{n}\right)$ is an orthonormal basis of \mathbb{R}^{n} then $\left(F\left(b_{1}\right), \ldots, F\left(b_{n}\right)\right)$ is also an orthonormal basis.

Corollary 5.15. i) $A \in \mathbb{R}^{n \times n}$ is orthogonal if and only if A^{T} is orthogonal.
ii) If $A, B \in \mathbb{R}^{n \times n}$ are orthogonal then $A B$ is orthogonal.
iii) If B_{1} and B_{2} are two orthonormal bases, then the change of basis matrix $S_{B_{1}}^{B_{2}}$ is orthogonal.

Definition 5.16. i) An eigenbasis of a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a basis consisting of eigenvectors of F.
ii) Let $U \subset \mathbb{R}^{n}$ be a subspace. A linear map $F: U \rightarrow U$ is called symmetric if we have for all $x, y \in U$

$$
x \bullet F(y)=F(x) \bullet y .
$$

Theorem 5.17. (Spectral theorem) Let $U \subset \mathbb{R}^{n}$ be a subspace and $F: U \rightarrow U$ a linear map. Then F is symmetric if and only if there exists an orthonormal eigenbasis of F.

Linear Algebra II • Linear differential equations

Corollary 5.18. A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$, such that

$$
S^{T} A S=\left(\begin{array}{ccc}
d_{1} & & 0 \\
& \ddots & \\
0 & & d_{n}
\end{array}\right)
$$

for some $d_{1}, \ldots, d_{n} \in \mathbb{R}$.
Lemma 5.19. Every symmetric linear map $F: U \rightarrow U$ has an eigenvalue.

6 Linear differential equations

Let $x: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a function written as

$$
x(t)=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right)
$$

where the entries x_{1}, \ldots, x_{n} are differentiable functions in $C^{(1)}(\mathbb{R}, \mathbb{R})$. By $x^{\prime}(t)=\frac{d}{d t} x(t)$ we denote

$$
x^{\prime}(t)=\left(\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right) .
$$

For a matrix $A \in \mathbb{R}^{n \times n}$ the equation

$$
x^{\prime}(t)=A x(t)
$$

is called a continuous (linear) dynamical system.
One dimensional ($n=1$) continuous dynamical systems have the following solutions:
Proposition 6.1. Let $a \in \mathbb{R}$. The only solutions to

$$
x^{\prime}(t)=a x(t)
$$

in $C^{(1)}(\mathbb{R}, \mathbb{R})$ are given by $x(t)=c e^{\text {at }}$ for $c \in \mathbb{R}$.
Recall that the space $C^{\infty}(\mathbb{R}, \mathbb{R})$, the space of smooth functions, denotes the space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ for which derivatives of all orders exist. This means that for any $n \geq 0$ and $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$, the n-th derivative $f^{(n)} \in C^{\infty}(\mathbb{R}, \mathbb{R})$ exists. The space $C^{\infty}(\mathbb{R}, \mathbb{R})$ is a vector space.
Definition 6.2. i) A differential operator of order n is a map $T: C^{\infty}(\mathbb{R}, \mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}, \mathbb{R})$ of the form

$$
T(f)=a_{0} f+a_{1} f^{\prime}+a_{2} f^{(2)}+\cdots+a_{n} f^{(n)}
$$

for some $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ with $a_{n} \neq 0$.
(More precisely this is a "linear differential operator of order n with constant coefficients".)

Linear Algebra II • Linear differential equations

ii) A linear differential equation is an equation of the form $T(f)=g$, where T is a differential operator and $g \in \mathbb{C}^{\infty}(\mathbb{R}, \mathbb{R})$.
iii) A linear differential equation is called homogeneous if $g=0$, i.e. if $T(f)=0$.

Lemma 6.3. Let $F: V \rightarrow W$ be a linear map between two vector spaces V and W. Assume that $F(v)=w$ for a fixed $v \in V$ and $w \in W$. Then the following two statements are equivalent:
i) $F(x)=w$.
ii) $x=v+u$ for some $u \in \operatorname{ker}(F)$.

Theorem 6.4. Let $T: C^{\infty}(\mathbb{R}, \mathbb{R}) \rightarrow C^{\infty}(\mathbb{R}, \mathbb{R})$ be a differential operator of order n. Then we have

$$
\operatorname{dim}(\operatorname{ker}(T))=n
$$

Definition 6.5. Let $T(f)=a_{0} f+a_{1} f^{\prime}+\cdots+a_{n} f^{(n)}$ be a differential operator of order n. The characteristic polynomial of T is defined by

$$
p_{T}(x)=\sum_{i=0}^{n} a_{i} x^{i}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

In the following, T always denotes a differential operator.
Proposition 6.6. i) The function $e^{\lambda t}$ is an eigenvector of T with eigenvalue $p_{T}(\lambda)$.
ii) We have $e^{\lambda t} \in \operatorname{ker}(T)$ if and only if $p_{T}(\lambda)=0$.

Corollary 6.7. Let T be a differential operator of order n.
i) If $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ are distinct, then $e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}$ are linearly independent.
ii) If p_{T} has n distinct zeroes $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ then $\left(e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right)$ is a basis of $\operatorname{ker}(T)$.

Lemma 6.8. For two differential operators T_{1} and T_{2} we have $T_{1} \circ T_{2}=T_{2} \circ T_{1}$.
Theorem 6.9. Let T be a differential operator with characteristic polynomial

$$
p_{T}(x)=\left(x-\lambda_{1}\right)^{m_{1}} \cdots\left(x-\lambda_{r}\right)^{m_{r}}
$$

where $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}$ with $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$.
Then $B=B_{1} \cup \cdots \cup B_{r}$ is a basis of $\operatorname{ker}(T)$, where we have for $1 \leq j \leq r$

$$
B_{j}=\left(e^{\lambda_{j} t}, t e^{\lambda_{j} t}, \ldots, t^{m_{j}-1} e^{\lambda_{j} t}\right)
$$

Theorem 6.10. Let T be a differential operator. If $p_{T}(x)$ contains a factor $\left((x-a)^{2}+b^{2}\right)^{m}$, then

$$
\left\{e^{a t} \cos (b t), e^{a t} \sin (b t), t e^{a t} \cos (b t), t e^{a t} \sin (b t), \ldots, t^{m-1} e^{a t} \cos (b t), t^{m-1} e^{a t} \sin (b t)\right\}
$$

are $2 m$ linearly independent elements in $\operatorname{ker}(T)$.
Lemma 6.11. Let $F: U \rightarrow V$ and $G: V \rightarrow W$ be surjective linear maps between vector spaces U, V, W, such that $\operatorname{ker}(F)$ and $\operatorname{ker}(G)$ are finitely generated. Then we have

$$
\operatorname{dim}(\operatorname{ker}(G \circ F))=\operatorname{dim}(\operatorname{ker}(F))+\operatorname{dim}(\operatorname{ker}(G))
$$

