Linear Algebra II

Overview notes G30 Program, Nagoya University (Spring 2023)

Henrik Bachmann (Math. Building Room 457, henrik.bachmann@math.nagoya-u.ac.jp) Lecture notes and exercises are available at: https://www.henrikbachmann.com/la2_2023.html

These notes serve as a compact overview of the definitions, propositions, lemmas, corollaries, and theorems given in the lectures. This is Version 1 from April 9, 2023. The proofs, examples, and explanations are provided in the handwritten notes/lectures. The reference book for this course is [B], and we will probably cover Chapters 4,6,7 and 9 during this semester.

If you find any typos in this note, please let me know!

Contents

1	Vector spaces	2
2	Linear maps	4
3	The matrix of a linear map	6
4	Determinants	7
5	Eigenvalues and eigenvectors	9
6	Linear differential equations	13

References

[B] O. Bretscher: Linear Algebra with Applications, 4th edition, Pearson 2009.

1 Vector spaces

Definition 1.1. A (real) vector space is a set V together with two functions

Addition	Scalar multiplication
$+: V \times V \longrightarrow V$	$\cdot: \mathbb{R} \times V \longrightarrow V$
$(u,v) \longmapsto u+v$	$(\lambda,v)\longmapsto\lambda\cdot v=\lambda v$

satisfying the following properties:

• Properties of the addition:

(A.1) $\forall u, v, w \in V: (u+v) + w = u + (v+w).$ (Associativity)

 $(A.2) \ \forall u, v \in V: \ u + v = v + u. \qquad (Commutativity)$

(A.3) $\exists n \in V, \forall u \in V: n + u = u.$ (Identity/neutral element of addition)

(A.4) $\forall u \in V, \exists v \in V: u + v = n.$ (Inverse elements of addition)

• Compatibility of addition and scalar multiplication:

 $(C.1) \ \forall u, v \in V, \lambda \in \mathbb{R}: \lambda \cdot (u+v) = \lambda u + \lambda v. \quad (Distributivity I)$

(C.2) $\forall u \in V, \lambda, \mu \in \mathbb{R}: (\lambda + \mu) \cdot u = \lambda u + \mu u.$ (Distributivity II)

(C.3) $\forall u \in V, \lambda, \mu \in \mathbb{R}: \lambda \cdot (\mu u) = (\lambda \mu) \cdot u.$

```
(C.4) \quad \forall u \in V \colon 1 \cdot u = u.
```

We write $(V, +, \cdot)$ for the vector space V if we want to emphasize which addition and scalar multiplication we are using.

Proposition 1.2. Let V be a vector space and $u \in V$.

- i) u+n=u.
- ii) If $n, \tilde{n} \in V$ both satisfy (A.3) in Definition 1.1, then $n = \tilde{n}$. (The identity element is unique)
- iii) If for a fixed $u \in V$ the elements $v, \tilde{v} \in V$ both satisfy (A.4), i.e. $u + v = u + \tilde{v} = n$, then $v = \tilde{v}$. (The inverse of an element u is unique)
- *iv*) u + (-1)u = n.

The identity (also called neutral) element $n \in V$ of a vector space is usually (by abuse of notation) also denoted by 0. Be always aware in the following if 0 means the real number 0 or the identity element of a vector space. (These are two different things!)

Definition 1.3. Let V be a vector space. A subset $U \subset V$ is a subspace if

- i) $0 \in U$.
- $ii) \ \forall u, v \in U: \ u + v \in U.$
- *iii*) $\forall u \in U, \lambda \in \mathbb{R}: \lambda u \in U.$

Proposition 1.4. If $U \subset V$ is a subspace, then U is also a vector space with the operations inherited from V.

Definition 1.5. Let V be a vector space and $v_1, \ldots, v_n \in V$.

i) The span of the elements v_1, \ldots, v_n is given by the set of all their linear combinations, i.e.

span{
$$v_1, \ldots, v_n$$
} = $\left\{ \sum_{i=1}^n \lambda_i v_i \in V \mid \lambda_1, \ldots, \lambda_n \in \mathbb{R} \right\}$.

- ii) The elements v_1, \ldots, v_n span (or generate) the space V if span $\{v_1, \ldots, v_n\} = V$.
- iii) V is finitely generated if there exist $v_1, \ldots, v_n \in V$ with span $\{v_1, \ldots, v_n\} = V$. (i.e. one just needs finitely many elements to generate the space)
- iv) The elements v_1, \ldots, v_n are linearly independent if

$$\lambda_1 v_1 + \dots + \lambda_n v_n = 0 \implies \lambda_1 = \dots = \lambda_n = 0.$$

v) $B = (v_1, \ldots, v_n)$ is a basis of V if v_1, \ldots, v_n are linearly independent and span $\{v_1, \ldots, v_n\} = V$.

Proposition 1.6. Let V be a vector space and $v_1, \ldots, v_n \in V$. The following statements are equivalent.

- i) v_1, \ldots, v_n are linearly dependent.
- *ii)* There exist a $1 \leq j \leq n$ such that $v_j \in \operatorname{span}\{v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n\}$.
- *iii)* There exist a $1 \le j \le n$ such that $\operatorname{span}\{v_1, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n\} = \operatorname{span}\{v_1, \ldots, v_n\}.$

Lemma 1.7. If $v_1, \ldots, v_l \in V$ are linearly independent and $V = \operatorname{span}\{w_1, \ldots, w_m\}$, then $l \leq m$.

Theorem 1.8. Let V be a finitely generated vector space. Then we have the following

- i) V has a (finite) basis.
- ii) All bases of V have the same number of elements.
- iii) If $v_1, \ldots, v_l \in V$ are linearly independent then there exist $v_{l+1}, \ldots, v_n \in V$ such that (v_1, \ldots, v_n) is a basis of V.
- iv) If $V = \operatorname{span}\{w_1, \ldots, w_m\}$, then there exist a subset $\{u_1, \ldots, u_l\} \subset \{w_1, \ldots, w_m\}$, such that (u_1, \ldots, u_l) is a basis of V.

Definition 1.9. Let V be a finitely generated vector space with basis (v_1, \ldots, v_n) . Then dim(V) = n is the dimension of V.

Corollary 1.10. Let V be a vector space with $\dim(V) = n$ and $v_1, \ldots, v_n \in V$. Then the following statements are equivalent.

- i) v_1, \ldots, v_n are linearly independent.
- $ii) V = \operatorname{span}\{v_1, \dots, v_n\}.$
- iii) (v_1, \ldots, v_n) is a basis of V.

Proposition 1.11. Let V be finitely generated and $U \subset V$ a subspace. Then U is also finitely generated.

Proposition 1.12. Let $B = (v_1, \ldots, v_n)$ be a basis of V. Then for all $u \in V$ there exist unique $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, such that

$$u = \sum_{i=1}^n \lambda_i v_i \,.$$

Definition 1.13. Let $B = (v_1, \ldots, v_n)$ be a basis of V.

- i) The $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ in Proposition 1.12 are called the coordinates of $u \in V$ in the basis B.
- *ii*) The vector $[u]_B \in \mathbb{R}^n$ given by

$$[u]_B = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

is called the **coordinate vector** of u with respect to the basis B.

2 Linear maps

Definition 2.1. Let V, W be vector spaces. A linear map is a function $F: V \to W$ satisfying

- i) F(u+v) = F(u) + F(v) for all $u, v \in V$.
- *ii*) $F(\lambda \cdot u) = \lambda \cdot F(u)$ for all $u \in V, \lambda \in \mathbb{R}$.

Definition 2.2. Let $F: V \to W$ be a linear map.

i) The kernel of F is given by

$$\ker(F) = \{ u \in V \mid F(u) = 0 \} \subset V.$$

ii) The **image of** F is given by

 $\operatorname{im}(F) = \{ w \in W \mid \exists u \in V : w = F(u) \} \subset W.$

With the same arguments as in the \mathbb{R}^n -case we see that ker(F) is a subspace of V and im(F) is a subspace of W. If im(F) is finitely generated, we define the **rank of** F by rk(F) = dim(im(F)).

Theorem 2.3 (kernel-image theorem). Let V be finitely generated and let $F : V \to W$ be a linear map to an arbitrary vector space W. Then

 $\dim V = \dim(\ker(F)) + \dim(\operatorname{im}(F)).$

- **Definition 2.4.** i) (Recall) A function $f : X \to Y$ is invertible if there exist a function $g : Y \to X$ such that $f \circ g = id_Y$ and $g \circ f = id_X$. f is invertible iff f is bijective, i.e. injective and surjective.
- ii) An invertible linear map $F: V \to W$ is called an isomorphism.
- iii) Two vector spaces V and W are called **isomorphic** (Notation: $V \cong W$) if there exists an isomorphism $F: V \to W$.
- **Theorem 2.5.** i) A linear map $F: V \to W$ is an isomorphism iff ker $(F) = \{0\}$ (F is injective) and im(F) = W (F is surjective).
- ii) Let $F: V \to W$ be an isomorphism and (b_1, \ldots, b_n) a basis of V. Then $(F(b_1), \ldots, F(b_n))$ is a basis of W.
- *iii*) Let V, W be finitely generated and $V \cong W$ then $\dim(V) = \dim(W)$.
- iv) Let V, W be finitely generated and $\dim(V) = \dim(W)$. Then for a linear map $F: V \to W$ the following three statements are equivalent
 - (a) F is an isomorphism.
 - (b) $\ker(F) = \{0\}.$
 - (c) $\operatorname{im}(F) = W$.

Proposition 2.6. Let V be finitely generated with basis $B = (b_1, \ldots, b_n)$, i.e. $\dim(V) = n$. Then the coordinate map

$$c_B : \mathbb{R}^n \longrightarrow V,$$
$$\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \longmapsto \sum_{i=1}^n \lambda_i b_i$$

is an isomorphism. The inverse is given by $c_B^{-1}(u) = [u]_B$ for $u \in V$.

Corollary 2.7. Let V, W be finitely generated. Then the following two statements are equivalent

- i) $V \cong W$.
- ii) dim(V) = dim(W).

3 The matrix of a linear map

In the following V and W are finitely generated vector spaces.

Definition 3.1. Let $B_V = (v_1, \ldots, v_n)$ be a basis of V, $B_W = (w_1, \ldots, w_m)$ be a basis of W and let $F: V \to W$ be a linear map. The matrix of F with respect to B_V and B_W is defined by

$$[F]_{B_V}^{B_W} = \left[c_{B_W}^{-1} \circ F \circ c_{B_V}\right]$$

Here $c_{B_W}^{-1} \circ F \circ c_{B_V}$ is the linear map from \mathbb{R}^n to \mathbb{R}^m for which the corresponding matrix was defined before. We have the following diagram

We have

$$[F]_{B_{V}}^{B_{W}} = \begin{pmatrix} | & \cdots & | \\ [F(v_{1})]_{B_{W}} & \cdots & [F(v_{n})]_{B_{W}} \end{pmatrix}.$$

In other words: The *j*-th column of $[F]_{B_{V}}^{B_{W}}$ is given by the vector $\begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{m} \end{pmatrix}$, where $F(v_{j}) = \sum_{i=1}^{m} \lambda_{i} w_{i}.$

Definition 3.2. Let $B_1 = (v_1, \ldots, v_n)$ and $B_2 = (u_1, \ldots, u_n)$ be bases of V. The change-of-basis matrix from B_1 to B_2 is the matrix

$$S_{B_1}^{B_2} = [\mathrm{id}_V]_{B_1}^{B_2} = [c_{B_2}^{-1} \circ c_{B_1}] = \begin{pmatrix} | & \dots & | \\ [v_1]_{B_2} & \dots & [v_n]_{B_2} \\ | & \dots & | \end{pmatrix}.$$

4 Determinants

Definition 4.1. A pattern in an $n \times n$ -matrix is a choice of entries, such that precisely one entry from each row and each column is chosen.

Definition 4.2. *i)* A bijective map $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ *is called a* **permutation** *of* $\{1, \ldots, n\}$ *.*

ii) S_n denotes the set of all permutations of $\{1, \ldots, n\}$.

Patterns in an $n \times n$ -matrix corresponds exactly to the permutations of $\{1, \ldots, n\}$. For each $\sigma \in S_n$ we have the pattern

$$P = \{ (1, \sigma(1)), (2, \sigma(2)), \dots, (n, \sigma(n)) \},\$$

where (i, j) denotes the choice of the *i*-th row and the *j*-th column.

- **Definition 4.3.** *i)* The number of inversion of a permutation $\sigma \in S_n$, denoted by $inv(\sigma)$, is the number of pairs $(i, \sigma(i)), (j, \sigma(j))$ with i < j and $\sigma(i) > \sigma(j)$.
- ii) The sign of a permutation $\sigma \in S_n$ is defined by

$$\operatorname{sign}(\sigma) = (-1)^{\operatorname{inv}(\sigma)}.$$

Definition 4.4. The determinant of a $n \times n$ -matrix $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$ is defined by

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

4.1 **Properties of determinants**

Lemma 4.5. For all $\sigma \in S_n$ we have $inv(\sigma) = inv(\sigma^{-1})$.

Proposition 4.6. For any $A \in \mathbb{R}^{n \times n}$ we have $det(A) = det(A^T)$.

For $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$ define for a vector $x \in \mathbb{R}^n$ and $1 \le l \le n$ the matrix A(l; x) as the matrix where the *l*-th row of A gets replaced by x, i.e.

$$A(l;x) = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{l-1,1} & a_{l-1,2} & \cdots & a_{l-1,n} \\ x_1 & x_2 & \cdots & x_n \\ a_{l+1,1} & a_{l+1,2} & \cdots & a_{l+1,n} \\ \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \in \mathbb{R}^{n \times n}, \qquad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

Proposition 4.7. For any $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$ and $1 \le l \le n$ the map

$$F_{A,l}: \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$x \longmapsto \det(A(l;x))$$

is a linear map, i.e. the determinant is linear in each row,

Proposition 4.8. For $A \in \mathbb{R}^{n \times n}$ let $B \in \mathbb{R}^{n \times n}$ be a matrix obtained from the matrix A by swapping two rows. Then we have

$$\det(A) = -\det(B).$$

Corollary 4.9. If a matrix $A \in \mathbb{R}^{n \times n}$ contains two equal rows or columns, then det(A) = 0.

Recall from Linear Algebra I that there are three types of row operations for a matrix $A \in \mathbb{R}^{n \times n}$. $(1 \le i, j \le n, i \ne j, \lambda \in \mathbb{R}).$

- (R1) Add λ -times the *j*-th row to the *i*-th row.
- (R2) For $\lambda \neq 0$ multiply the *i*-th row with λ .
- (R3) Swap the j-th row with the i-th row.

Two matrices $A, B \in \mathbb{R}^{n \times n}$ are called **row equivalent**, if one can obtain B from A by using the row operations (R1), (R2) and (R3). Notation: $A \sim B$.

Proposition 4.10. Let $A, B \in \mathbb{R}^{n \times n}$.

- i) If B is obtained from A by using (R1), then det(B) = det(A).
- ii) If B is obtained from A by using (R2), then $det(B) = \lambda det(A)$.
- iii) If B is obtained from A by using (R3), then det(B) = -det(A).

Theorem 4.11. A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if det $(A) \neq 0$.

Theorem 4.12. *i)* For all $A, B \in \mathbb{R}^{n \times n}$ we have det(AB) = det(A) det(B).

ii) If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.

Corollary 4.13. Let V be a finitely generated vector space, $F: V \to V$ a linear map and B_1, B_2 two bases of V. Then

$$\det([F]_{B_1}) = \det([F]_{B_2}) ,$$

where $[F]_B = [F]_B^B$ denotes the matrix of F with respect to the basis B (Definition 3.1).

Definition 4.14. Let V be a finitely generated vector space, $F: V \to V$ a linear map and B any basis of V. We define the determinant of the linear map F by

$$\det(F) = \det\left([F]_B\right) \,.$$

Version 1 (April 9, 2023)

- 8 -

Definition 4.15. For $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ and $1 \leq i, j \leq n$ we define the elementary matrices $R_i^{\lambda,j}, R_i^{\lambda}, R_{i,j} \in \mathbb{R}^{n \times n}$ by

$$R_i^{\lambda,j} = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & \ddots & & \\ & & \lambda & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}, \quad R_i^{\lambda} = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}, \quad R_{i,j} = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & \ddots & & \\ & & & & 1 & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$

Here the λ in $R_i^{\lambda,j}$ is in the *i*-th row and *j*-th column, in R_i^{λ} it is in the *i*-th row, and in $R_{i,j}$ the 0 are on the diagonal in the *i*-th row and *j*-th column.

Proposition 4.16. Let $A \in \mathbb{R}^{n \times n}$.

- i) $R_i^{\lambda,j}A$ is the matrix obtained from A by row operation (R1). (Add λ -times the j-th row to the i-th row)
- ii) $R_i^{\lambda}A$ is the matrix obtained from A by row operation (R2). (Multiply the *i*-th row with λ)
- iii) $R_{i,j}A$ is the matrix obtained from A by row operation (R3). (Swap the j-th row with the i-th row)

Corollary 4.17. Let $A \in \mathbb{R}^{n \times n}$.

- i) The matrix A is invertible if and only if it is a product of elementary matrices.
- ii) If C is an elementary matrix then $\det(CA) = \det(C) \det(A)$.

For a matrix $A \in \mathbb{R}^{n \times n}$ and $1 \leq i, j \leq n$ we denote by $A_{i,j} \in \mathbb{R}^{(n-1) \times (n-1)}$ the matrix which is obtained from A by removing the *i*-th row and the *j*-th column.

Theorem 4.18 (Laplace expansion). For a matrix $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$ and $1 \le i, j \le n$ we have

$$\det(A) = \sum_{l=1}^{n} (-1)^{i+l} a_{i,l} \det(A_{i,l})$$
$$= \sum_{l=1}^{n} (-1)^{j+l} a_{l,j} \det(A_{l,j})$$

5 Eigenvalues and eigenvectors

In this section V always denotes a vector space.

Definition 5.1. Let $F: V \to V$ be a linear map.

i) A $\lambda \in \mathbb{R}$ is called an eigenvalue of F, if there exist a vector $v \in V$ with $v \neq 0$, such that

$$F(v) = \lambda v \,. \tag{5.1}$$

ii) A vector $v \in V$ with $v \neq 0$, satisfying (5.1), is called an eigenvector of F with eigenvalue λ .

Version 1 (April 9, 2023) - 9 -

Notice that v = 0 always satisfies (5.1) for any $\lambda \in \mathbb{R}$, since F is a linear map. This is one of many reasons why v = 0 is not called an eigenvector of F.

In the following, we always assume that V is a finitely generated vector space.

Definition 5.2. Let $F: V \to V$ be a linear map let $id_V: V \to V$ be the identity map on V.

- i) The polynomial $f_F(\lambda) = \det(F \lambda \operatorname{id}_V)$ is called the characteristic polynomial of F.
- *ii)* Let $\lambda \in \mathbb{R}$ be an eigenvalue of F. Then the space

$$E_{\lambda}(F) = \ker(F - \lambda \operatorname{id}_{V})$$
$$= \{v \in V \mid F(v) = \lambda v\}$$

is called the **eigenspace** of F with respect to the eigenvalue λ .

The eigenspace $E_{\lambda}(F)$ contains therefore all eigenvectors of F with eigenvalue λ and the zero vector.

Definition 5.3. *i)* Let dim V = n. A linear map $F : V \to V$ is called diagonalizable if there exist a basis B of V, such that

$$[F]_B = \begin{pmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix}$$

for some $d_1, \ldots, d_n \in \mathbb{R}$.

ii) A matrix $A \in \mathbb{R}^{n \times n}$ is called **diagonalizable** if there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ with

$$S^{-1}AS = \begin{pmatrix} d_1 & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix}$$

for some $d_1, \ldots, d_n \in \mathbb{R}$.

Lemma 5.4. Let B be a basis of V and let $F : V \to V$ be a linear map. Then the following two statements are equivalent

- i) The linear map F is diagonalizable.
- ii) The matrix $[F]_B$ is diagonalizable.

Lemma 5.5. Let $F: V \to V$ be a linear map and $B = (b_1, \ldots, b_n)$ be a basis of V, such that all b_i are eigenvectors of F, i.e. $F(b_i) = d_i b_i$ for some $d_i \in \mathbb{R}$ and $i = 1, \ldots, n$. Then F is diagonalizable and

$$[F]_B = \begin{pmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix}$$

Conversely, if F is diagonalizable then there exists a basis of eigenvectors.

Theorem 5.6. Let $v_1, \ldots, v_m \in V$ be eigenvectors of a linear map $F : V \to V$ with <u>different</u> eigenvalues $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$. Then v_1, \ldots, v_m are linearly independent.

Corollary 5.7. Let $F: V \to V$ be a linear map with eigenvalues $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ and dim V = n.

- i) If F has n distinct eigenvalues, i.e. m = n, then F is diagonalizable.
- ii) If B_1, \ldots, B_m are bases of $E_{\lambda_1}(F), \ldots, E_{\lambda_m}(F)$, then $B_1 \cup \cdots \cup B_m$ are linearly independent.
- iii) The map F is diagonalizable if and only if

$$\sum_{j=1}^{m} \dim E_{\lambda_j}(F) = n$$

Definition 5.8. Let $F: V \to V$ be a linear map and let $\lambda \in \mathbb{R}$ be an eigenvalue of F.

- i) The algebraic multiplicity of λ , denoted by $\operatorname{algmu}_F(\lambda)$, is the multiplicity of λ in the characteristic polynomial f_F .
- *ii)* The geometric multiplicity of λ is given by geomu_F(λ) = dim $E_{\lambda}(F)$.

Theorem 5.9. Let $F: V \to V$ be a linear map and $\lambda \in \mathbb{R}$ be an eigenvalue of F. Then

 $\operatorname{geomu}_F(\lambda) \leq \operatorname{algmu}_F(\lambda)$.

Corollary 5.10. If F is diagonalizable then geomu_F(λ) = algmu_F(λ) for all eigenvalues λ of F.

5.1 The spectral theorem

In this section we will just consider the vector space $V = \mathbb{R}^n$. Recall that the **norm** of a vector $x \in \mathbb{R}^n$ is defined by

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}, \qquad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n.$$

Definition 5.11. An orthogonal map is a linear map $F : \mathbb{R}^n \to \mathbb{R}^n$, such that

$$||F(x)|| = ||x||, \qquad \forall x \in \mathbb{R}^n$$

i.e. the map F does not change the norm of a vector. We call a matrix $A \in \mathbb{R}^{n \times n}$ orthogonal if ||Ax|| = ||x|| for all $x \in \mathbb{R}^n$.

Recall that the **dot product** • for two vectors $x, y \in \mathbb{R}^n$ is defined by

$$x \bullet y = x^T y = x_1 y_1 + \dots + x_n y_n \in \mathbb{R}$$

With this the norm of a vector can also be written as $||x|| = \sqrt{x \bullet x}$.

Version 1 (April 9, 2023) - 11 -

Lemma 5.12. For all $x, y \in \mathbb{R}^n$ we have

$$x \bullet y = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right) .$$

Proposition 5.13. A linear map $F : \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if and only if

$$F(x) \bullet F(y) = x \bullet y$$

for all $x, y \in \mathbb{R}^n$.

Recall: We say that x and y are **orthogonal** if $x \bullet y = 0$. A basis $B = (b_1, \ldots, b_n)$ of \mathbb{R}^n is called an **orthonormal basis** if b_i and b_j for $i \neq j$ are orthogonal and $||b_i|| = 1$ for all i, i.e.

$$b_i \bullet b_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}.$$

Theorem 5.14. Let $F : \mathbb{R}^n \to \mathbb{R}^n$ a linear map and $A = [F]_B$ the matrix of F for $B = (e_1, \ldots, e_n)$. The following statements are equivalent.

- i) F is orthogonal.
- *ii)* A *is orthogonal.*
- *iii)* For all $x, y \in \mathbb{R}^n$ we have $F(x) \bullet F(y) = x \bullet y$.
- iv) A is invertible and $A^{-1} = A^T$.
- v) $(F(e_1), \ldots, F(e_n))$ (the columns of A) is an orthonormal basis of \mathbb{R}^n .
- vi) If (b_1, \ldots, b_n) is an orthonormal basis of \mathbb{R}^n then $(F(b_1), \ldots, F(b_n))$ is also an orthonormal basis.

Corollary 5.15. *i*) $A \in \mathbb{R}^{n \times n}$ is orthogonal if and only if A^T is orthogonal.

- ii) If $A, B \in \mathbb{R}^{n \times n}$ are orthogonal then AB is orthogonal.
- iii) If B_1 and B_2 are two orthonormal bases, then the change of basis matrix $S_{B_1}^{B_2}$ is orthogonal.
- **Definition 5.16.** *i)* An eigenbasis of a linear map $F : \mathbb{R}^n \to \mathbb{R}^n$ *is a basis consisting of eigenvectors of* F.
- ii) Let $U \subset \mathbb{R}^n$ be a subspace. A linear map $F : U \to U$ is called symmetric if we have for all $x, y \in U$

$$x \bullet F(y) = F(x) \bullet y$$
.

Theorem 5.17. (Spectral theorem) Let $U \subset \mathbb{R}^n$ be a subspace and $F : U \to U$ a linear map. Then F is symmetric if and only if there exists an orthonormal eigenbasis of F.

Corollary 5.18. A matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$, such that

$$S^T A S = \begin{pmatrix} d_1 & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix},$$

for some $d_1, \ldots, d_n \in \mathbb{R}$.

Lemma 5.19. Every symmetric linear map $F: U \to U$ has an eigenvalue.

6 Linear differential equations

Let $x : \mathbb{R} \to \mathbb{R}^n$ be a function written as

$$x(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix} \,,$$

where the entries $x_1, ..., x_n$ are differentiable functions in $C^{(1)}(\mathbb{R}, \mathbb{R})$. By $x'(t) = \frac{d}{dt}x(t)$ we denote

$$x'(t) = \begin{pmatrix} x'_1(t) \\ \vdots \\ x'_n(t) \end{pmatrix} \,.$$

For a matrix $A \in \mathbb{R}^{n \times n}$ the equation

$$x'(t) = Ax(t)$$

is called a **continuous (linear) dynamical system**.

One dimensional (n = 1) continuous dynamical systems have the following solutions:

Proposition 6.1. Let $a \in \mathbb{R}$. The only solutions to

$$x'(t) = a x(t)$$

in $C^{(1)}(\mathbb{R},\mathbb{R})$ are given by $x(t) = c e^{at}$ for $c \in \mathbb{R}$.

Recall that the space $C^{\infty}(\mathbb{R},\mathbb{R})$, the space of **smooth functions**, denotes the space of all functions $f:\mathbb{R}\to\mathbb{R}$ for which derivatives of all orders exist. This means that for any $n\geq 0$ and $f\in C^{\infty}(\mathbb{R},\mathbb{R})$, the *n*-th derivative $f^{(n)}\in C^{\infty}(\mathbb{R},\mathbb{R})$ exists. The space $C^{\infty}(\mathbb{R},\mathbb{R})$ is a vector space.

Definition 6.2. *i)* A differential operator of order n *is a map* $T : C^{\infty}(\mathbb{R}, \mathbb{R}) \to C^{\infty}(\mathbb{R}, \mathbb{R})$ of the form

$$T(f) = a_0 f + a_1 f' + a_2 f^{(2)} + \dots + a_n f^{(n)}$$

for some $a_0, a_1, \ldots, a_n \in \mathbb{R}$ with $a_n \neq 0$.

(More precisely this is a "linear differential operator of order n with constant coefficients".)

- ii) A linear differential equation is an equation of the form T(f) = g, where T is a differential operator and $g \in \mathbb{C}^{\infty}(\mathbb{R}, \mathbb{R})$.
- *iii)* A linear differential equation is called **homogeneous** if g = 0, *i.e.* if T(f) = 0.

Lemma 6.3. Let $F : V \to W$ be a linear map between two vector spaces V and W. Assume that F(v) = w for a fixed $v \in V$ and $w \in W$. Then the following two statements are equivalent:

- i) F(x) = w.
- ii) x = v + u for some $u \in \ker(F)$.

Theorem 6.4. Let $T: C^{\infty}(\mathbb{R}, \mathbb{R}) \to C^{\infty}(\mathbb{R}, \mathbb{R})$ be a differential operator of order n. Then we have

 $\dim(\ker(T)) = n.$

Definition 6.5. Let $T(f) = a_0 f + a_1 f' + \dots + a_n f^{(n)}$ be a differential operator of order n. The characteristic polynomial of T is defined by

$$p_T(x) = \sum_{i=0}^n a_i x^i = a_0 + a_1 x + \dots + a_n x^n.$$

In the following, T always denotes a differential operator.

Proposition 6.6. *i)* The function $e^{\lambda t}$ is an eigenvector of T with eigenvalue $p_T(\lambda)$.

ii) We have $e^{\lambda t} \in \ker(T)$ if and only if $p_T(\lambda) = 0$.

Corollary 6.7. Let T be a differential operator of order n.

- i) If $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ are distinct, then $e^{\lambda_1 t}, \ldots, e^{\lambda_n t}$ are linearly independent.
- ii) If p_T has n distinct zeroes $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ then $(e^{\lambda_1 t}, \ldots, e^{\lambda_n t})$ is a basis of ker(T).

Lemma 6.8. For two differential operators T_1 and T_2 we have $T_1 \circ T_2 = T_2 \circ T_1$.

Theorem 6.9. Let T be a differential operator with characteristic polynomial

$$p_T(x) = (x - \lambda_1)^{m_1} \cdots (x - \lambda_r)^m$$

where $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$ with $\lambda_i \neq \lambda_j$ for $i \neq j$.

Then $B = B_1 \cup \cdots \cup B_r$ is a basis of ker(T), where we have for $1 \le j \le r$

$$B_j = (e^{\lambda_j t}, te^{\lambda_j t}, \dots, t^{m_j - 1}e^{\lambda_j t}).$$

Theorem 6.10. Let T be a differential operator. If $p_T(x)$ contains a factor $((x-a)^2+b^2)^m$, then

$$\{e^{at}\cos(bt), e^{at}\sin(bt), te^{at}\cos(bt), te^{at}\sin(bt), \dots, t^{m-1}e^{at}\cos(bt), t^{m-1}e^{at}\sin(bt)\}$$

are 2m linearly independent elements in ker(T).

Lemma 6.11. Let $F : U \to V$ and $G : V \to W$ be surjective linear maps between vector spaces U, V, W, such that ker(F) and ker(G) are finitely generated. Then we have

$$\dim(\ker(G \circ F)) = \dim(\ker(F)) + \dim(\ker(G)).$$

Version 1 (April 9, 2023)

- 14 -