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Linear Algebra II ¢ Vector spaces

1 Vector spaces

Definition 1.1. A (real) vector space is a set V together with two functions

Addition Scalar multiplication
+: VXV —V CRxV —V
(u,v) — u+v ANv)— A-v=Xv

satisfying the following properties:

e Properties of the addition:
(A.1) Yu,v,w e V: (u+v)+w=u+ (v+w). (Associativity)

(A.2) Vu,veV:u+v=v+u. (Commutativity)

(A.3) IneV,YueV:n+u=u. (Identity/neutral element of addition)
(A4)VueV,veV:ut+v=n. (Inverse elements of addition)

o Compatibility of addition and scalar multiplication:

(C.1) Yu,ve V, AeR: A- (u+v) = u+ .  (Distributivity I)

(C.2) VueV,\,ueR: A+ p) -u=Au+ pu. (Distributivity II)

(C.3) YueV, \,peR: X (pu) = (Ap) - u.

(C4) YVueV:1-u=u.

We write (V,+,-) for the vector space V if we want to emphasize which addition and scalar multipli-
cation we are using.

Proposition 1.2. Let V' be a vector space and u € V.
i) u+n=u.

it) If n, n € V both satisfy (A.3) in Deﬁnitz’on then n = .
(The identity element is unique)

1) If for a fized u € V' the elements v,0 € V both satisfy (A.4), i.e. u+v=u+ 0 =n, then v ="70.
(The inverse of an element u is unique)

w) u+ (=l)u =n.

The identity (also called neutral) element n € V of a vector space is usually (by abuse of notation) also
denoted by 0. Be always aware in the following if 0 means the real number 0 or the identity element
of a vector space. (These are two different things!)
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Linear Algebra II ¢ Vector spaces

Definition 1.3. Let V be a vector space. A subset U C V is a subspace if
i)0eU.

it) Yu,veU: u+vel.

i) vue Uy AeR: dueU.

Proposition 1.4. If U C V is a subspace, then U is also a vector space with the operations inherited
from V.

Definition 1.5. Let V be a vector space and vy,...,v, € V.

i) The span of the elements vy, ..., v, is given by the set of all their linear combinations, i.e.
n
span{vy, ..., v} = {Z)\,;vi EV | A,...,\n € IR{} )
i=1
it) The elements vy,...,v, span (or generate) the space V if span{vy,...,v,} =V.

i11) 'V is finitely generated if there exist vy,...,v, € V with span{vy,...,v,} =V.
(i.e. one just needs finitely many elements to generate the space)

i) The elements v1,...,v, are linearly independent if
MU+ F+ A0, =0 = A= ... =)\, =0.
v) B=(v1,...,v,) is a basis of V if vy,...,v, are linearly independent and spanf{vy,...,v,} =V.
Proposition 1.6. Let V be a vector space and vy, ...,v, € V. The following statements are equivalent.
i) v1,...,0, are linearly dependent.
ii) There exist a 1 < j < n such that v; € span{v1,...,Vj_1,Vj41,.-.,Un}-
iti) There exist a 1 < j < n such that span{vi,...,vj_1,0j41,...,0n} = span{vi,...,vn}.
Lemma 1.7. Ifvy,...,u € V are linearly independent and V = span{wn, ..., wy,}, then I < m.

Theorem 1.8. Let V' be a finitely generated vector space. Then we have the following
i) V has a (finite) basis.

it) All bases of V' have the same number of elements.

1) If vy,...,v; € V are linearly independent then there exist viy1,...,v, € V such that (v1,...,v,)
is a basis of V.

w) If V.= spanf{ws,...,wy,}, then there exist a subset {uy,...,w} C {wi,...,wn}, such that
(u1,...,u;) is a basis of V.
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Linear Algebra II ¢ Linear maps

Definition 1.9. Let V be a finitely generated vector space with basis (v1,...,v,). Then dim(V) =n
is the dimension of V.

Corollary 1.10. Let V be a vector space with dim(V) = n and vy,...,v, € V. Then the following
statements are equivalent.

i) v1,...,0, are linearly independent.

ii) V =span{vy,...,v,}.
1) (v1,...,v,) s a basis of V.

Proposition 1.11. Let V' be finitely generated and U C V a subspace. Then U is also finitely
generated.

Proposition 1.12. Let B = (vy,...,v,) be a basis of V. Then for all u € V there exist unique
Ay .., Ap €ER, such that

n
u = E )\ivi~
i=1

Definition 1.13. Let B = (vy,...,v,) be a basis of V.
i) The A1,..., A ER in Proposition are called the coordinates of u € V' in the basis B.

ii) The vector [u]lg € R™ given by

[ulp =1
An
is called the coordinate vector of u with respect to the basis B.
2 Linear maps
Definition 2.1. Let V,W be vector spaces. A linear map is a function F : V. — W satisfying
i) F(u+v) = F(u)+ F(v) for allu,v € V.
it) F(A-u)=X-F(u) forallue V,A eR.
Definition 2.2. Let F: V — W be a linear map.

i) The kernel of F' is given by

ker(F)={ueV |F(u)=0}CV.

it) The image of F is given by

m(F)={fweW |FueV:w=Fu)}CcW.
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Linear Algebra II ¢ Linear maps

With the same arguments as in the R™-case we see that ker(F') is a subspace of V and im(F) is a

subspace of W. If im(F) is finitely generated, we define the rank of F by rk(F') = dim(im(F)).

Theorem 2.3 (kernel-image theorem). Let V' be finitely generated and let F' : V. — W be a linear
map to an arbitrary vector space W. Then

dim V = dim(ker(F)) + dim(im(F)).

Definition 2.4. i) (Recall) A function f: X — Y is invertible if there exist a function g:Y — X
such that fog =idy and go f =idx. f is invertible iff f is bijective, i.e. injective and surjective.

it) An invertible linear map F : V — W is called an isomorphism.

ii1) Two vector spaces V. and W are called isomorphic (Notation: V = W) if there exists an iso-
morphism F :V — W.

Theorem 2.5. i) A linear map F : V. — W is an isomorphism iff ker(F) = {0} (F is injective)
and im(F) = W (F is surjective).

it) Let ' : V. — W be an isomorphism and (by,...,b,) a basis of V. Then (F(b1),...,F(by)) is a
basis of W.

iit) Let V,W be finitely generated and V=W then dim(V) = dim(W).

w) Let V,W be finitely generated and dim(V) = dim(W). Then for a linear map F : V. — W the
following three statements are equivalent

(a) F is an isomorphism.

(b) ker(F) = {0}.
(¢) im(F) =W.

Proposition 2.6. Let V be finitely generated with basis B = (by,...,by), i.e. dim(V) = n.
Then the coordinate map

cg: R" — Vv,
A n
/\n i=1
is an isomorphism. The inverse is given by cp'(u) = [ulp foru € V.
Corollary 2.7. Let V,W be finitely generated. Then the following two statements are equivalent
i) VW
ii) dim(V) = dim(W).
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Linear Algebra Il ¢ The matrix of a linear map

3 The matrix of a linear map

In the following V and W are finitely generated vector spaces.

Definition 3.1. Let By = (v1,...,vy,) be a basis of V, By = (w1, ..., wy) be a basis of W and let
F:V — W be a linear map. The matrix of F' with respect to By and By is defined by

[F]g“j’ = [01_3‘1” oFocp,].

Here cgiv o Focp, is the linear map from R™ to R™ for which the corresponding matriz was defined
before. We have the following diagram

cBy, By
R" —— R™
CJ_BW oFocBV
We have
. ‘ e ‘
[Flgy = | [F()]lpw - [F(vn)lBy
At
In other words: The j-th column of [F]gy is given by the vector | : |, where F(v;) = >, Aw;.
Am

Definition 3.2. Let By = (v1,...,v,) and By = (u1,...,uy,) be bases of V. The change-of-basis
matrix from B; to By is the matriz

Sp2 = lidv]3 = [cp, ocp] = [vilB, -+ [valB,
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Linear Algebra Il ¢ Determinants

4 Determinants

Definition 4.1. A pattern in an n X n-matriz is a choice of entries, such that precisely one entry
from each row and each column is chosen.

Definition 4.2. i) A bijective map o : {1,...,n} — {1,...,n} is called a permutation of {1,...,n}.
it) Sy denotes the set of all permutations of {1,...,n}.
Patterns in an n x n-matrix corresponds exactly to the permutations of {1,...,n}. For each o € S,
we have the pattern
P={(1,0(1)),(2,0(2),...,(n,0(n))},
where (4, j) denotes the choice of the i-th row and the j-th column.

Definition 4.3. i) The number of inversion of a permutation o € S,,, denoted by inv(o), is the
number of pairs (i,0(i)), (j,0(j)) with i < j and (i) > o(j).

it) The sign of a permutation o € S,, is defined by

sign(o) = (—1)™()

Definition 4.4. The determinant of a n x n-matriz A = (a; ;) € R"*" is defined by

n

det(A) = > sign(o) [ [ aio0) -

o€ESy =1

4.1 Properties of determinants

Lemma 4.5. For all o € S,, we have inv(c) = inv(c™1).

Proposition 4.6. For any A € R™*"™ we have det(A) = det(AT).

For A = (a; ;) € R"*™ define for a vector € R” and 1 <[ < n the matrix A(/;z) as the matrix where
the [-th row of A gets replaced by =z, i.e.

ai,1 arz - Q1p
aj—1,1 A—12 0 Q_1p T1
Alliz) =1 =1 To e Tp e R x=1| : | eR".
j+1,1 A41,2 0 Q41n Tp
Qn,1 Gn,2 T Gn,n
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Linear Algebra Il ¢ Determinants

Proposition 4.7. For any A = (a; ;) € R"*™ and 1 <1 < n the map
FA,l :R" — R
x — det(A(l; x))
18 a linear map, i.e. the determinant is linear in each row,
Proposition 4.8. For A € R*"*™ let B € R™*"™ be a matriz obtained from the matriz A by swapping
two rows. Then we have

det(A) = — det(B).

Corollary 4.9. If a matrizx A € R™™™ contains two equal rows or columns, then det(A) = 0.

Recall from Linear Algebra I that there are three types of row operations for a matrix A € R®*™,
(1<i,j<n.i#j,\A€ER).

(R1) Add A-times the j-th row to the i-th row.
(R2) For A # 0 multiply the i-th row with A.
(R3) Swap the j-th row with the i-th row.

Two matrices A, B € R"*"™ are called row equivalent, if one can obtain B from A by using the row
operations (R1), (R2) and (R3). Notation: A ~ B.

Proposition 4.10. Let A, B € R"*",
i) If B is obtained from A by using (R1), then det(B) = det(A).
it) If B is obtained from A by using (R2), then det(B) = Adet(A).
iii) If B is obtained from A by using (R3), then det(B) = — det(A).

Theorem 4.11. A matriz A € R™*™ is invertible if and only if det(A) # 0.

Theorem 4.12. i) For all A, B € R"*"™ we have det(AB) = det(A) det(B).

ii) If A is invertible, then det(A™!) = #(A).

Corollary 4.13. Let V be a finitely generated vector space, F': V — V a linear map and By, By two
bases of V.. Then

det ([F]p,) = det ([F]s,) ,
where [F|p = [F|B denotes the matriz of F with respect to the basis B (Definition .

Definition 4.14. Let V be a finitely generated vector space, F' : V. — V a linear map and B any basis
of V. We define the determinant of the linear map F by

det(F) = det ([F]B) -

Version 1 (April 9, 2023) -8 -



Linear Algebra II ¢ Eigenvalues and eigenvectors

Definition 4.15. For A € R with A # 0 and 1 < 4,5 < n we define the elementary matrices
R?’],R;\,Rid‘ c Rnxn by

1

AJ A _
RM = , R} = by ;o Rij =

(3

1

Here the X in Rf"j is in the i-th row and j-th column, in R} it is in the i-th row, and in R; ; the 0 are
on the diagonal in the i-th row and j-th column.

Proposition 4.16. Let A € R"*™,
Z) R?’jA is the matriz obtained from A by row operation (RI) (Add \-times the j-th row to the i-th row)
ii) R}A is the matriz obtained from A by row operation (R2). (Multiply the i-th row with \)

i) R; ‘A is the matriz obtained from A by row operation (R3). (Swap the j-th row with the i-th row
i ) D

Corollary 4.17. Let A € R™*™.
i) The matriz A is invertible if and only if it is a product of elementary matrices.

it) If C is an elementary matriz then det(C A) = det(C) det(A).

For a matrix A € R™"™ and 1 < i,j < n we denote by 4;; € R=1x(n=1) the matrix which is
obtained from A by removing the i-th row and the j-th column.
Theorem 4.18 (Laplace expansion). For a matriz A = (a; ;) € R"*™ and 1 <4,j < n we have

n

det(A) =D (=1)"a; det(A; )

=1

(—1)j+lal7j det(AgJ) .

I
M§

=1

5 Eigenvalues and eigenvectors

In this section V always denotes a vector space.
Definition 5.1. Let F': V — V be a linear map.

i) A X € R is called an eigenvalue of F, if there exist a vector v € V with v # 0, such that

Fv) =M. (5.1)

it) A wvector v € V with v # 0, satisfying (5.1)), is called an eigenvector of F with eigenvalue A.
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Linear Algebra II ¢ Eigenvalues and eigenvectors

Notice that v = 0 always satisfies (5.1]) for any A € R, since F' is a linear map. This is one of many
reasons why v = 0 is not called an eigenvector of F.

In the following, we always assume that V is a finitely generated vector space.
Definition 5.2. Let F: V — V be a linear map let idy : V — V be the identity map on V.
i) The polynomial fr(\) = det(F — Aidy) s called the characteristic polynomial of F.
ii) Let A € R be an eigenvalue of F. Then the space
E\(F) = ker(F — Aidy)
={veV]|F() =M}
1s called the eigenspace of F' with respect to the eigenvalue .

The eigenspace Fy(F') contains therefore all eigenvectors of F' with eigenvalue A and the zero vector.

Definition 5.3. i) Let dimV =n. A linear map F : V — V is called diagonalizable if there exist
a basis B of V', such that

for some dy,...,d, € R.
it) A matriz A € R™" is called diagonalizable if there exists an invertible matriz S € R™*™ with
dy 0
S1AS =
0 dy,
for some dq,...,d, € R.
Lemma 5.4. Let B be a basis of V and let F : 'V — V be a linear map. Then the following two
statements are equivalent
i) The linear map F is diagonalizable.
it) The matriz [F|p is diagonalizable.

Lemma 5.5. Let F': V — V be a linear map and B = (by,...,by) be a basis of V', such that all b; are
eigenvectors of F, i.e. F(b;) = d;b; for somed; € R andi=1,...,n. Then F is diagonalizable and

dq 0
[Flp =
0 dy,

Conversely, if F is diagonalizable then there exists a basis of eigenvectors.
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Linear Algebra II ¢ Eigenvalues and eigenvectors

Theorem 5.6. Let vy,...,v, € V be eigenvectors of a linear map F : V — V with different eigen-
values A, ..., Ay € R. Then vy,..., v, are linearly independent.

Corollary 5.7. Let F': V — V be a linear map with eigenvalues Ay, ..., Ay, € R and dim'V = n.
i) If F' has n distinct eigenvalues, i.e. m = n, then F is diagonalizable.

1) If By,..., By, are bases of Ex,(F),...,Ey_(F), then By U---U B, are linearly independent.
) If By, ..., L) ; y indep

m

iti) The map F is diagonalizable if and only if

Definition 5.8. Let F : V. — V be a linear map and let A € R be an eigenvalue of F.

i) The algebraic multiplicity of X\, denoted by algmuy (), is the multiplicity of X in the charac-
teristic polynomial fr.

ii) The geometric multiplicity of A is given by geomug(\) = dim E)(F).

Theorem 5.9. Let F : V — V be a linear map and A € R be an eigenvalue of F'. Then

geomuy () < algmugp ().

Corollary 5.10. If F is diagonalizable then geomup(A) = algmug () for all eigenvalues A of F.

5.1 The spectral theorem

In this section we will just consider the vector space V' = R"™. Recall that the norm of a vector z € R"”
is defined by

[z = \/2F + -+ a2, z=|: | err.

Tn

Definition 5.11. An orthogonal map is a linear map F : R" — R"™, such that
|1F(z)|| = [lzll,  VzeR",

i.e. the map F does not change the norm of a vector. We call a matriz A € R™™ ™ orthogonal if
|Az|| = ||z|| for all z € R™.

Recall that the dot product e for two vectors z,y € R™ is defined by
zey=a"y=my + -+ .y, €R.

With this the norm of a vector can also be written as ||z|| = /z e z.
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Linear Algebra II ¢ Eigenvalues and eigenvectors

Lemma 5.12. For all x,y € R™ we have

1
voy = (llz+yl* = ll=|* — llyll*)

Proposition 5.13. A linear map F : R™ — R" is orthogonal if and only if
F(z)eF(y)=zey
for all x,y € R™.

Recall: We say that « and y are orthogonal if z e y = 0. A basis B = (by,...,b,) of R™ is called an

orthonormal basis if b; and b; for i # j are orthogonal and ||b;|| =1 for all ¢, i.e.
0 L
b;eb; = { ) Z # J .
1, 1=

Theorem 5.14. Let F : R™ — R"™ a linear map and A = [F|p the matriz of F for B = (e1,...,ey).
The following statements are equivalent.

i) F is orthogonal.

it) A is orthogonal.
ii1) For all z,y € R™ we have F(z) @ F(y) =z o y.

i) A is invertible and A=t = AT,

v) (F(e1),...,F(en)) (the columns of A) is an orthonormal basis of R™.

vi) If (b1,...,by) is an orthonormal basis of R™ then (F(b1),..., F(by)) is also an orthonormal basis.

Corollary 5.15. i) A € R"¥" is orthogonal if and only if AT is orthogonal.
it) If A, B € R™"™™ are orthogonal then AB is orthogonal.
it1) If By and By are two orthonormal bases, then the change of basis matriz ng is orthogonal.
Definition 5.16. i) An eigenbasis of a linear map F : R™ — R" is a basis consisting of eigenvec-
tors of F.

it) Let U C R™ be a subspace. A linear map F : U — U is called symmetric if we have for all
x,ye U

zeF(y) = F(z)ey.

Theorem 5.17. (Spectral theorem) Let U C R™ be a subspace and F : U — U a linear map. Then F
is symmetric if and only if there exists an orthonormal eigenbasis of F.
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Linear Algebra II ¢ Linear differential equations

Corollary 5.18. A matrix A € R™*"™ is symmetric if and only if there exists an orthogonal matrix
S € R™"™, such that

dy 0
STAS = ,

for some dq,...,d, € R.

Lemma 5.19. Every symmetric linear map F : U — U has an eigenvalue.

6 Linear differential equations

Let z : R — R” be a function written as

1 (1)
e = |,
zn(t)
where the entries z1, ..., z,, are differentiable functions in C(")(R,R). By 2/(t) = %z(t) we denote
()
()=
7, (t)

For a matrix A € R™*" the equation
2/ (t) = Ax(t)

is called a continuous (linear) dynamical system.
One dimensional (n = 1) continuous dynamical systems have the following solutions:

Proposition 6.1. Let a € R. The only solutions to
2/ (t) = ax(t)
in C(R,R) are given by z(t) = ce™ for c € R.

Recall that the space C*°(R,R), the space of smooth functions, denotes the space of all functions
f : R — R for which derivatives of all orders exist. This means that for any n > 0 and f € C*°(R,R),
the n-th derivative f(™) € C>°(R,R) exists. The space C*®(R,R) is a vector space.

Definition 6.2. i) A differential operator of order n is a map T : C*(R,R) — C*(R,R) of
the form

T(f) = aof +arf +asf® + - 4 a, fM

for some ag,ay,...,a, € R with a, # 0.

(More precisely this is a “linear differential operator of order n with constant coefficients”.)
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Linear Algebra II ¢ Linear differential equations

it) A linear differential equation is an equation of the form T(f) = g, where T is a differential
operator and g € C* (R, R).

iii) A linear differential equation is called homogeneous if g =0, i.e. if T(f) = 0.

Lemma 6.3. Let F': V. — W be a linear map between two vector spaces V. and W. Assume that
F(v) =w for a fited v €V and w € W. Then the following two statements are equivalent:

i) F(z) =w.

ii) © = v+ u for some u € ker(F).
Theorem 6.4. Let T : C*(R,R) — C*(R,R) be a differential operator of order n. Then we have
dim(ker(T)) =n.

Definition 6.5. Let T(f) = aof + arf' + --- + anf" be a differential operator of order n. The
characteristic polynomial of T is defined by

n
pr(z) = Zaixi =aqo+ax+---+ax”.
i=0
In the following, T' always denotes a differential operator.

Proposition 6.6. i) The function e’ is an eigenvector of T with eigenvalue pr()).

ii) We have e* € ker(T) if and only if pr()\) = 0.

Corollary 6.7. Let T be a differential operator of order n.
i) If \i,..., A\n € R are distinct, then e, ... e** are linearly independent.

i) If pr has n distinct zeroes A1, ..., A, € R then (eM?,... en?) is a basis of ker(T).
Lemma 6.8. For two differential operators Ty and To we have Ty o Ty = T5 0T
Theorem 6.9. Let T be a differential operator with characteristic polynomial

pr(z) = (z — A)™ - (@ = A)™

where Ai,..., A\ € R with \; # A\ fori#j.
Then B =By U---U B, is a basis of ker(T"), where we have for 1 < j <r

B; = (eMit terit . pmiTleAity
Theorem 6.10. Let T be a differential operator. If pr(x) contains a factor ((z — a)? + b*)™, then
{e cos(bt), e sin(bt), te cos(bt), te® sin(bt), ..., t™ Le cos(bt), t™ e sin(bt)}
are 2m linearly independent elements in ker(T).

Lemma 6.11. Let F : U — V and G : V. — W be surjective linear maps between vector spaces
U, V,W, such that ker(F) and ker(G) are finitely generated. Then we have

dim(ker(G o F')) = dim(ker(F)) + dim(ker(G)) .
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