Homework 5: Eigenvalues & Eigenvectors II

Deadline: 3rd July (23:55 JST), 2022

Exercise 1. (2+2+2=6 Points) Let $F: V \to V$ be a linear map with eigenvalues $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$ and $\dim V = n$. Show the following statements by using Theorem 5.6 (without using Corollary 5.7 and 5.10)

- i) If B_1, \ldots, B_m are bases of $E_{\lambda_1}(F), \ldots, E_{\lambda_m}(F)$, then $B_1 \cup \cdots \cup B_m$ are linearly independent. (Here we mean by $B_1 \cup \cdots \cup B_m$ the collection of all vectors in the bases B_1, \ldots, B_m .)
- ii) The map F is diagonalizable if and only if

$$\sum_{j=1}^{m} \dim E_{\lambda_j}(F) = n \,.$$

iii) If F is diagonalizable then $\operatorname{geomu}_F(\lambda) = \operatorname{algmu}_F(\lambda)$ for all eigenvalues λ of F.

Exercise 2. (3+3 = 6 Points)

- i) Let $U \subset \mathbb{R}^n$ be a subspace and let $P_U : \mathbb{R}^n \to \mathbb{R}^n$ be the orthogonal projection to U. Show that P_U is diagonalizable. What are the eigenvalues of P_U ? (See Linear Algebra I Section 12 & 13 for the definition of P_U)
- ii) Let $\operatorname{rot}_{\alpha} : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation by an angle $\alpha \in [0, 2\pi]$. For which α is $\operatorname{rot}_{\alpha}$ diagonalizable?

Exercise 3. (2+3+1=6 Points) Consider the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \,.$$

- i) Calculate all eigenvalues of A.
- ii) Determine orthonormal bases for all eigenspaces of A.(Recall the Gram-Schmidt algorithm from Linear Algebra I for this)
- iii) Find an orthogonal matrix $S \in \mathbb{R}^{3 \times 3}$, such that $S^T A S$ is a diagonal matrix.

Exercise 4. (2+2+2=6 Points) Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map with $A = [F]_B$, where $B = (e_1, \ldots, e_n)$. Show the following three implications (without using Theorem 5.14 and Corollary 5.15)

- i) If $(F(e_1), \ldots, F(e_n))$ is an orthonormal basis then A is invertible and $A^{-1} = A^T$.
- ii) If $A^{-1} = A^T$ then $F(x) \bullet F(y) = x \bullet y$ for all $x, y \in \mathbb{R}^n$.
- iii) If B_1, B_2 are orthonormal bases, then the change-of-basis matrix $S_{B_1}^{B_2}$ is orthogonal.