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Linear Algebra I - About this course

About this course

These notes are based on the Linear Algebra I & II lectures of the G30 Program at Nagoya University
given in the fall and spring semesters of 2019 - 2023. The concept of this course initially evolved from
the Linear Algebra I & II given by Erik Darpö in the years before, which was based on the book [B].
The course is anticipated for two semesters (Linear Algebra I - fall semester, Linear Algebra II - spring
semester) with 16 lectures of 90 minutes each. This includes a midterm and final exam each semester.
In the year 2020, this course was (due to the pandemic) given online, and therefore, recordings of the
lectures exist. The content and notation in the lecture videos are similar, but not exactly the same,
as in these notes. However, the videos can be used for students who missed a lecture or who want to
recall the content on their own. A possible schedule, together with links to the corresponding sections
& videos, is given as follows:
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I

Week Content Section Lecture video

01 Introduction & Linear systems
Introduction
Chapter 1

Video 1

02 Matrices and vectors Chapter 2 Video 2
03 Sets and functions Chapter 3 Video 3
04 Linear maps Chapter 4 Video 4
05 Linear maps in geometry Chapter 5 Video 5
06 Matrix multiplication Chapter 6 Video 6
07 Midterm Exam Chapter 14
08 The inverse of a linear map Chapter 7 Video 7
09 Subspaces, Kernel & Image Chapter 8 Video 8
10 Subspaces, Kernel & Image II Chapter 8 Video 9

11 Linear independence & Bases I
Chapter 9
Chapter 10

Video 10

12 Bases II & Dimension Chapter 10 part of Video 10

13 Coordinates & Orthogonal bases
Chapter 11
Chapter 12

Video 11

14 Orthogonal bases & The Gram-Schmidt algorithm Chapter 12 Video 12
15 Orthogonal projection, Least square approximation Chapter 13 Video 13
16 Final Exam Chapter 14
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II

Week Content Section Lecture video
01 Recall Linear Algebra I & Overview Introduction Video 1.1
02 Vector spaces Chapter 14 Video 1.2
03 Linear maps Chapter 15 Video 2
04 The matrix of a linear map Chapter 16 Video 3
05 Determinants & Mathematical induction Chapter 17 Video 4
06 Properties of the determinant I Chapter 17 Video 5
07 Midterm exam
08 Properties of the determinant II Chapter 17 Video 6
09 Eigenvalues and eigenvectors I Chapter 18 Video 7
10 Eigenvalues and eigenvectors II Chapter 18 Video 8
11 Eigenvalues and eigenvectors III (Spectral Theorem) Chapter 18 Video 9
12 Applications Chapter 19 Video 10
13 Continuous dynamical systems Chapter 20 Video 11
14 Linear differential equations I Chapter 20 Video 12
15 Linear differential equations II Chapter 20 Video 13
16 Final Exam Video 14 (Review)

A more visually pleasant overview of this course and its timeline is given by the Linear Algebra road
map on the next page.
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Introduction

In the realm of numbers and vectors we wade,
Linear Algebra, where scientific problems are laid.
Automotive, physics, chemistry, and bio too,
All fields that this essential course will accrue.

Linear systems we’ll study, matrices we’ll discern,
Through sets and functions, much knowledge we’ll earn.
Linear maps transform, in spaces they unwind,
Subspaces and kernels, in invertible maps they’re confined.

Independence and bases, dimensions we’ll chart,
Each concept a masterpiece, a mathematical art.
As coordinates shift, new perspectives arise,
With Gram-Schmidt’s process, orthonormal bases materialize.

Projections orthogonal, and least squares approximation,
Tools for data fitting, across each student’s vocation.
”Linear Algebra II,” a deeper journey we embark,
Where vector spaces and linear maps leave their mark.

Determinants and eigenvalues, the story further unfurls,
With linear differential equations, like precious pearls.
This course, a bridge from theory to practical narration,
Equipping students with robust mathematical foundation.

– ChatGPT

Linear Algebra, a fundamental branch of mathematics, offers essential tools and language to articulate
and solve a broad array of problems across diverse scientific disciplines. For those studying automotive
engineering, physics, chemistry, and bio-agriculture, the principles embedded within this field become
invaluable in comprehending and modeling complex systems pertinent to their areas of study.

In this course, we will study vector spaces and linear transformations between these spaces, often
referred to as ”flat spaces” in a geometric sense. In these spaces, the basic operations of addition
and scalar multiplication behave in a ”linear” way, meaning they satisfy properties like distributivity,
commutativity, and associativity. Unlike curved spaces, which are studied in differential geometry, linear
spaces are characterized by the absence of curvature, making them easier to analyze and understand.

The study of linear spaces is crucial for various applications in science and engineering, as they often
serve as good approximations for more complex structures. Whether it is solving systems of equations,
analyzing data sets, or transforming shapes in computer graphics, the principles of linear algebra are
foundational.
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Linear Algebra I - Introduction

For example, in electrical circuits, solving lin-
ear systems of equations is often essential for
applying Kirchhoff’s laws, which govern the
conservation of charge and energy in the cir-
cuit. Kirchhoff’s current law states that the
sum of currents entering a junction must equal
the sum of currents leaving it, while Kirchhoff’s
voltage law states that the sum of the voltages
around any closed loop in a circuit must be
zero. These laws can be translated into a sys-
tem of linear equations where the unknowns
are the currents or voltages in the circuit com-
ponentes. In the diagram on the right, you
see an example of an electrical circuit with un-
known currents I0, . . . , I5. In Example 7, we
show how to calculate these by solving a linear
system.

−
+

24 V

I0 20 Ω

I1

10 Ω

I2

60 Ω

I3

50 Ω

I4

40 Ω I5

After studying linear systems and matrices and vectors, we will talk about linear maps. Often these
maps have some kind of geometric interpretation, and their applications are endless. For example, if
you want to program a 3D-game engine, you need to project 3-dimensional objects onto a 2-dimensional
space (your monitor). This will be done by a linear map. Later in this course we will illustrate this
by explaining how a 3-dimensional cube can be displayed in the plane after choosing a certain viewing
angle and we will give a explanation of the following illustration:

x

y
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B
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1

Linear systems

In linear algebra, linear systems play a crucial role in understanding and solving various real-world
problems. A linear system is a collection of linear equations involving the same variables. These
equations represent relationships between variables and can be used to model various scenarios from
diverse fields such as physics, economics, and engineering.

We will denote the set of real numbers by R. R contains all numbers usually considered in high
school, such as 1,−1, 0, 2, 3, 38 , π,

√
2, e, . . . . There are rigorous definitions of the real numbers, which

would be part of a pure mathematics lecture1. But in this course, we just assume that they exist and
that everyone is familiar with them.

♡ Remark. Even though we will focus on real numbers most of the time in this course, we will also
mention the usual notations for certain subsets of them.

The natural numbers N consists of the number
1, 2, 3, . . . . Allowing 0 and negative numbers leads
to the integers Z = {0,−1, 1, 2,−2, . . . }. The set
of fractions a

b with a ∈ Z, b ∈ N are called ratio-
nal numbers, denoted by Q. But not all num-
bers appearing ”naturally” can be written as frac-
tions. For example, the diagonal of a square of side-
length one is, by Pythagoras, the positive solution
of x2 = 1 + 1 = 2, i.e. x =

√
2. But one can show

that
√
2 is not rational.

N
1

2

3 Z
0

−2
Q

2
3

− 1
7

Rπ

e

√
2

C

i

2− 8i

The ”completion” of rational numbers, which can be think of as filling up the missing gaps, leads then
to the real numbers R mentioned above. The story does not end here, since there is an even bigger
class of numbers which are often of interest. For example, one might be interested in solutions of the
equation x2 = −1, which does not exist if one just allows real numbers. This leads to the notion of
complex numbers C, which are numbers of the form a + bi with a, b ∈ R and i being a new symbol
satisfying i2 = −1.

A linear equation can be written in the form:

a1x1 + a2x2 + · · ·+ anxn = b

where a1, a2, . . . , an ∈ R and b ∈ R are constants, and x1, x2, . . . , xn are variables.

Let us first consider a real-life situation that can be described by a linear system.

Example 1 (Cakes) A chocolate-obsessed patisserie only sells two types of cake: chocolate
tart (henceforth, ’tarts’) and chocolate cake (henceforth, ’cake’). To create one cake, 2 bars of
chocolate, 3 tablespoons of sugar, and four eggs are required. For one tart, 3 bars of chocolate,

1See for example https://en.wikipedia.org/wiki/Construction_of_the_real_numbers for an overview of the ”con-
struction” of real numbers.

7

https://en.wikipedia.org/wiki/Construction_of_the_real_numbers


Linear Algebra I - Linear systems

5 tablespoons of sugar, and 7 eggs are required.
On one particular day, the patisserie used 77 bars of chocolate, 124 tablespoons of sugar, and
137 eggs was used up. We want to find out how many cakes and tarts they made.
If we denote the number of cakes by x1, and the number of tarts by x2, then we can write
three equations relating the number of cakes and tarts with the number of bars of chocolate,
tablespoons of sugar, and eggs used:

2x1 + 3x2 = 77

3x1 + 5x2 = 124

4x1 + 7x2 = 171

To solve such simultaneous equations, one can use either substitution or elimination method. In
this example, let us use the elimination method (which entails ’eliminating’ variables).
First, we multiply the first equation by 2 to obtain:

4x1 + 6x2 = 154

By subtracting this from the third equation, we eliminate the variable x:

4x1 + 7x2 − (4x1 + 6x2) = 171− 154 =⇒ x2 = 17

We can then find the value of x1 by plugging x2 = 17 into the first equation:

2x1 + 3 · 17 = 77 =⇒ x1 =
1

2
(77− 51) = 13

As such, by solving the system of linear equations, we know that on that day, the patisserie made
x1 = 13 cakes and x2 = 17 tarts.

No one reading these notes will probably own a patisserie or will be interested in solving problems as in
the above example. But we will see that linear systems, and in particular the study of their solutions,
arise in various serious real life applications. First let us fix the notation as follows:

Definition 1.1 (i) For real numbers a1, a2, . . . , an, b ∈ R an equation of the form

a1x1 + · · ·+ anxn = b

is called a linear equation.
(ii) A finite collection of linear equations is called a linear system.
(iii) A solution of a linear system is a simultaneous solution for all of its equations.

Goal: Given a linear system we want to find all of its solutions.

While the method used in Example 1 is fine for smaller systems, larger, more complicated systems would
be a nightmare to solve using such crude methods. As such, we must develop a more systematic method
of solving such linear systems. One way is to add multiples of one equation to another one, or multiply
an equation with a non-zero number. By doing this correctly, a new linear system with clearer solutions
may be obtained from the original linear system.

Example 2 (Unique solution) Consider and solve the following linear system

x1 + 3x2 = 1

−2x1 + x2 = 2

2
⇒

x1 + 3x2 = 1

7x2 = 4

1
7

⇒
x1 + 3x2 = 1

x2 =
4
7

−3
⇒

x1 = − 5
7

x2 =
4
7


Is x1 = − 5

7 , x2 = 4
7 a solution to the original linear system? The answer is yes because the
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Linear Algebra I - Linear systems

operations work also in reverse.

x1 = − 5
7

x2 =
4
7

3

⇒
x1 + 3x2 = 1

x2 =
4
7

7

⇒
x1 + 3x2 = 1

7x2 = 4

−2
⇒

x1 + 3x2 = 1

−2x1 + x2 = 2


Therefore,

x1 + 3x2 = 1

−2x1 + x2 = 2

 ⇐⇒
x1 = − 5

7

x2 =
4
7


This linear system has exactly one solution.

Remark. For anyone who is unfamiliar with the notations of implication “⇒” and equivalence “⇔”,
consider two statements denoted by p and q. In mathematics, statements are sentences or equations or
inequalities, which are true or false, no ambivalence. Given the statements p and q, we can form new
statements p⇒ q and p⇔ q.

When p is true, p⇒ q is true if q is true and false if q is false. Otherwise, when p is false, p⇒ q
is true regardless of q. The statement p⇒ q can be read as “the statement p implies the statement q”
or “if p, then q”. The meaning is that the truth of p leads to the truth of q, which makes p ⇒ q true.
For example, if x = 2, then x2 = x · x = 2 · 2 = 4. For that, we can write x = 2 ⇒ x2 = 4 and this
statement is true. For another example, the statement x < 0 ⇒ x3 > 0 is false because if x = −1 < 0,
then x3 = (−1)3 = −1 < 0. We can sometimes see true statements p ⇒ q where p is always false such
as x2 < 0⇒ x = 100. In these cases, we say that they are vacuously true.

The statement p ⇔ q is a combination of p ⇒ q and q ⇒ p. This statement is true when p, q
are both true or both false. Therefore, the truth of p ⇔ q means that p is equivalent to q and vice
versa. It can be read as “The statement p is equivalent to the statement q” or “p if and only if q”. For
example, x = 1 ⇔ x + 1 = 2 is true because if x = 1 then x + 1 = 1 + 1 = 2, and if x + 1 = 2 then
x = (x+ 1)− 1 = 2− 1 = 1. For another example, the statement x = 2⇔ x2 = 4 is false because when
x = −2, we have x2 = (−2)2 = 4 and hence, x2 = 4 does not imply x = 2.

In Examples 1 and 2, the linear system has a unique solution. However, not all linear systems have
unique solutions; some have no solutions (for example, the system x1 = 2, x1 = 3 has no solution), and
some have infinitely many solutions. An example of such a linear system is given below.

Example 3 (Infinitely many solutions) Consider the following linear system:

x1 − 9x2 − 3x3 + x4 = 4

3x1 − 2x2 + x3 − 2x4 = 2

2x1 + 7x2 + 4x3 − 3x4 = −2
25x2 + 9x3 − 2x4 = −4


−3−2

⇔

x1 − 9x2 − 3x3 + x4 = 4

25x2 + 10x3 − 5x4 = −10
25x2 + 10x3 − 5x4 = −10
25x2 + 9x3 − 2x4 = −4


−1−1

⇔

x1 − 9x2 − 3x3 + x4 = 4

25x2 + 10x3 − 5x4 = −10
0 = 0

x3 − 3x4 = 6

10−3

⇔
x1 − 9x2 − 8x4 = −14

25x2 + 25x4 = 50

− x3 + 3x4 = 6

1
25

−1
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Linear Algebra I - Linear systems

⇔
x1 − 9x2 − 8x4 = −14

x2 + x4 = 2
x3 − 3x4 = −6

9 ⇔
x1 + x4 = 4

x2 + x4 = 2
x3 − 3x4 = −6

 ∗

row-reduced echelon form

⇔


x1 = 4− x4
x2 = 2− x4
x3 = −6 + 3x4

The variable x4 is arbitrary.

We set x4 = t for some t ∈ R.

All solutions are given by


x1 = 4− t
x2 = 2− t
x3 = −6 + 3t

x4 = t

for t ∈ R. This means that this linear system has

infinitely many solutions.

In the linear system (∗):

• Each equation contains a variable that occurs in no other equation: (x1, x2, x3), called pivot
variables.

• The other variables (x4) are called free variables.

A linear system of this shape said to be on row-reduced echelon form. In general, this means that
the following three conditions are satisfied:

(i) The first (that is, the leftmost) variable in each equation has coefficient 1.

(ii) If xi is the first variable in one of the equations, then it does not occur in any other equation in
the system.

(iii) If xi is the first variable in one equation, then the equations below it do not contain any of the
variables x1, x2, . . . , xi−1.

As we saw in the above example we only need three different operations to bring any linear system to
row-reduced echelon form:

Definition 1.2 The following operations on a linear system are called elementary row oper-
ations.
(R1) Add a multiple of an equation to another.
(R2) Multiply an equation with a non-zero number.
(R3) Change the order of the equations.

Since all elementary row operations work in reverse (i.e., all elementary row operations can be undone),

Proposition 1.3 Applying an elementary row operation to a linear system does not change the
set of all solutions of said linear system.

To bring an arbitrary linear system onto row-reduced echelon form we can use the following algorithm.

Version 13 (January 25, 2024) - 10 -



Linear Algebra I - Linear systems

Algorithm 1.4 (Gaussian elimination / Row reduction) Given a linear system

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
am1x1 + am2x2 + . . . + amnxn = bm


,

The procedure for bringing this linear system to its row-reduced echelon form is as follows:
I. Downwards:

1) Make the first equation contain the first variable by using (R3).
2) Make the coefficient of this variable equal to 1 by using (R2).
3) Eliminate this variable from all other equations by using (R1).
4) Iterate with the first occurring variable in the remaining equations.

II. Upwards
1) Let xi be the first variable in the last equation. Eliminate xi from all other equations

by using (R1).
2) Go to previous equations and iterate.

One example of the usage of Gaussian elimination to solve a linear system is given below:

Example 4 Consider the linear system below. First, the ’downwards’ part:

− x3 + x4 = 0
x1 + x2 + x3 − x4 = 0
x1 + x2 − x3 = 1


(R3)

⇔
x1 + x2 + x3 − x4 = 0

− x3 + x4 = 0
x1 + x2 − x3 = 1


−1

(R1)

⇔
x1 + x2 + x3 − x4 = 0

− x3 + x4 = 0

− 2x3 + x4 = 1

−1

(R2)

⇔
x1 + x2 + x3 − x4 = 0

x3 − x4 = 0

− 2x3 + x4 = 1

2

(R1)

⇔
x1 + x2 + x3 − x4 = 0

x3 − x4 = 0

− x4 = 1

−1

(R2)

⇔
x1 + x2 + x3 − x4 = 0

x3 − x4 = 0
x4 = −1

11

(R1)

From here on upwards

⇔
x1 + x2 + x3 = −1

x3 = −1
x4 = −1

−1

(R1)

⇔

x1 + x2 = 0

x3 = −1

x4 = −1


pivot variables
free variables

The free variables can be chosen arbitrarily. We set x2 = t with an arbitrary t ∈ R.

All solutions are given by


x1 = −t
x2 = t

x3 = −1
x4 = −1

for t ∈ R.
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Linear Algebra I - Linear systems

So far, all linear systems considered had always one (or infinitely many) solutions. One example of using
Gaussian elimination to prove that a linear system has no solution is given below.

Example 5 (No solution) Consider the linear system below.

x1 + 2x2 + 3x3 = 1
x1 + 3x2 + 4x3 = 3
x1 + 4x2 + 5x3 = 4


−1−1

⇔
x1 + 2x2 + 3x3 = 1

x2 + x3 = 2

2x2 + 2x3 = 3

−2 ⇔
x1 + 2x2 + 3x3 = 1

x2 + x3 = 2

0 = −1


This shows that the original linear system has no solution because it is equivalent to a linear
system containing a contradictory equation (of course, 0 ̸= −1 !).

Another type of problem that can be solved using this method involves a linear system that is parame-
terized (i.e., some part of the linear system is determined by a parameter). Usually, one will be asked to
consider how the solution to the linear system look with different values of the parameter. One typical
problem of this kind is given below:

Example 6 (Parameterized) Consider the following linear system with a parameter a ∈ R:

(a− 1)x1 + 3x2 = 2

x1 − x2 = 1

 .

We want to determine for which real numbers a the linear system has solutions and find all
the solutions in these cases. To find the solutions of this linear system, we try to bring it on
row-reduced echelon form.

(a− 1)x1 + 3x2 = 2

x1 − x2 = 1

 ⇔
x1 − x2 = 1

(a− 1)x1 + 3x2 = 2

−(a − 1)

⇔
x1 − x2 = 1

(a+ 2)x2 = 3− a


Now we would like to divide by 2 + a, but this is not possible if a = −2 (division by zero).
Therefore, we assume that a ̸= −2 and consider the a = −2 case separately.

• Case a ̸= −2:

x1 − x2 = 1

(a+ 2)x2 = 3− a

1
2+a

⇔
x1 − x2 = 1

x2 = 3−a
2+a

1
⇔

x1 = 5
2+a

x2 = 3−a
2+a


For the case a ̸= −2 there is exactly one solution given by

{
x1 = 5

2+a

x2 = 3−a
2+a

.

• Case a = −2:
x1 − x2 = 1

(a+ 2)x2 = 3− a

 ⇔
x1 − x2 = 1

0 = 5

{
There are no solutions in the case a = −2.

Example 7 (Circuit analysis) Given the following circuit, we want to determine all currents
through resistors.
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By Kirchhoff’s laws, we can derive the fol-
lowing linear system:

I1 − I2 + I5 = 0

I3 − I4 − I5 = 0

20I1 + 10I2 = 24

−20I1 + 60I3 + 40I5 = 0

−10I2 + 50I4 − 40I5 = 0

. −
+

24 V

I0 20 Ω

I1

10 Ω

I2

60 Ω

I3

50 Ω

I4

40 Ω I5

I1 − I2 + I5 = 0

I3 − I4 − I5 = 0

20I1 + 10I2 = 24

−20I1 + 60I3 + 40I5 = 0

− 10I2 + 50I4 − 40I5 = 0



−2020

⇔

I1 − I2 + I5 = 0

I3 − I4 − I5 = 0

30I2 − 20I5 = 24

− 20I2 + 60I3 + 60I5 = 0

− 10I2 + 50I4 − 40I5 = 0


1
30 ⇔

I1 − I2 + I5 = 0

I3 − I4 − I5 = 0

I2 − 2
3I5 =

4
5

− 20I2 + 60I3 + 60I5 = 0

− 10I2 + 50I4 − 40I5 = 0



⇔

I1 − I2 + I5 = 0

I2 − 2
3I5 =

4
5

I3 − I4 − I5 = 0

− 20I2 + 60I3 + 60I5 = 0

− 10I2 + 50I4 − 40I5 = 0


2010

⇔

I1 − I2 + I5 = 0

I2 − 2
3I5 =

4
5

I3 − I4 − I5 = 0

60I3 +
140
3 I5 = 16

50I4 −
140
3 I5 = 8


−60 ⇔

I1 − I2 + I5 = 0

I2 − 2
3I5 =

4
5

I3 − I4 − I5 = 0

60I4 +
320
3 I5 = 16

50I4 −
140
3 I5 = 8


1
60

⇔

I1 − I2 + I5 = 0

I2 − 2
3I5 =

4
5

I3 − I4 − I5 = 0

I4 +
16
9 I5 =

4
15

50I4 −
140
3 I5 = 8

−50

⇔

I1 − I2 + I5 = 0

I2 − 2
3I5 =

4
5

I3 − I4 − I5 = 0

I4 +
16
9 I5 =

4
15

− 1220
9 I5 = − 16

3

− 9
1220
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⇔

I1 − I2 + I5 = 0

I2 − 2
3I5 =

4
5

I3 − I4 − I5 = 0

I4 +
16
9 I5 =

4
15

I5 =
12
305

− 16
912

3−1

⇔

I1 − I2 = − 12
305

I2 =
252
305

I3 − I4 =
12
305

I4 =
12
61

I5 =
12
305

1

1

⇔

I1 =
48
61

I2 =
252
305

I3 =
72
305

I4 =
12
61

I5 =
12
305


In addition, we can determine the current coming directly from the source.

I0 = I1 + I3 = I2 + I4 =
312

305
A.

Exercises

Exercise 1. Which of the following linear systems are on row-reduced echelon form? For
those that are not, find an equivalent system (i.e. one which has the same solutions) that is on
row-reduced echelon form. For each system, find all solutions.

(i)

 x1 + 4x2 + 7x3 = 1
2x1 + 5x2 + 8x3 = 2
3x1 + 6x2 + 10x3 = 1

(ii) x1 + 2x2 + 3x3 + 4x4 = 2022

(iii)

{
x1 + x2 + x3 + 2x4 = 0

x2 + x4 = 0

(iv)

{
x1 + 2x2 = 3

4x1 + 8x2 = 16

(v)

 x1 = 6
x2 = 9
x3 = 1

Exercise 2. Decide for which real numbers a ∈ R the following linear system has solutions.
Give all the solutions in these cases. (a− 1)2x1 + x2 + ax3 = 0

x1 + x2 = 0
2x1 + 2x2 + x3 = a

.

Exercise 3. Let a, b ∈ R be two arbitrary real numbers. Consider the following linear system:{
x1 + x2 = 2
ax1 + 2x2 = b
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Find all the solutions to this linear system depending on a and b.
(Hint: You need to consider different special cases of a and b separately)

Exercise 4. Decide for which real numbers a ∈ R the following linear system has solutions.
Give all the solutions in these cases. 2x1 + 12x2 + 7x3 = 12a+ 7

2x1 + 4x2 + 2x3 = 12a
x1 + 10x2 + 6x3 = 7a+ 8

.

Exercise 5. A ramen store in Sakae offers three types of ramen: Miso ramen (price for one
portion: 700¥), Taiwan ramen (800¥), and Tonkotsu ramen (850¥). For one portion of Miso
ramen one needs 3 tablespoons (tbsp) of salt, one clove of garlic and no chili. One portion of
Taiwan ramen needs 2 tbsp. of salt, 2 cloves of garlic and 4 tbsp. of chili. For one portion of
Tonkotsu ramen 2 tbsp. of salt, 3 cloves of garlic and one tbsp. of chili is needed.a In one day
the store uses 142 tbsp. of salt, 146 cloves of garlic, and 152 tbsp. of chili.
How much money (in ¥) did the store earn on this day? Describe this problem by using a linear
system and then solve it.

aThese amounts are made up and should probably not be used to make tasty ramen.

Exercise 6. (8 Points) A Japanese restaurant in
やごと

八事(Yagoto, a neighbourhood in Nagoya) is
holding an Ebi Festival, and thus is only selling three types of dishes: Ebi Sushi (¥370), Ebi
Tempura Don (¥590), and Ebi Fry Bentō (¥830).
One serving of Ebi Sushi requires 3 ounces of shrimp, 1 cup of rice, and 3 tablespoon of shouyu.
5 ounces of shrimp, 4 cups of rice, and 5

2 tablespoons of shouyu are needed for one portion of
Ebi Tempura Don. For one serving of Ebi Fry Bento, 8 ounces of shrimp, 3 cups of rice, and 1

2
tablespoons of shouyu are needed. In one certain day, the store expended 1000 ounces of shrimp,
500 cups of rice, and 500 tablespoons of shouyu.
The market prices are: ¥50 per ounce of shrimp, ¥30 per cup of rice, and ¥5 per tablespoon of
shouyu. Given all these information, how much profit did the restaurant make on this certain
day? Describe this problem by using a linear system, bring the linear system on row-reduced
echelon form and solve it.
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Matrices & Vectors

In the previous chapter, we studied linear systems and learned how to solve them using elementary
operations. However, as the number of variables and equations increases, these methods become in-
creasingly cumbersome. To overcome this difficulty, we introduce vectors and matrices in this chapter,
which allow us to write linear systems in a more concise and elegant manner. Vectors and matrices are
fundamental tools in linear algebra, and we will explore their properties and operations in detail.

Definition 2.1
(i) A m×n-matrix is given by an array (m rows, n columns) of numbers aij ∈ R

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 = (aij)1≤i≤m
1≤j≤n

.

Notation: We often just write A = (aij) if the size of A, i.e. m and n, are known from
context.
By Rm×n we denote the set all of all m×n-matrices.

(ii) A (column-) vector of size n is a n×1-matrix

v =

v1...
vn


and the set of all vectors of size n is denoted by Rn = Rn×1.

Example 8 For n = 2 we can visualize vectors in the plane.

v =

(
1
2

)
u =

(
2
−1

)

v

u

u+ v

We can also add vectors e.g. u+ v =

(
1
2

)
+

(
2
−1

)
=

(
3
1

)
.

In general the sum of matrices is defined by just adding each entry.

16
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Definition 2.2 For matrices A = (aij), B = (bij) ∈ Rm×n and a real number λ ∈ R we define

A+B = (aij + bij) ∈ Rm×n (Sum of two matrices) ,

λA = (λaij) ∈ Rm×n (Scalar multiplication) .

In the case λ = −1 we write (−1)A = −A and A−B means A+ (−1)B.

The matrices A and B need to be of the same size, otherwise the sum A+ B is not defined. A special
case of the addition of matrices is given by the addition of vectors. For u, v ∈ Rn and λ ∈ R we have

u =

u1...
un

 , v =

v1...
vn

 , u+ v =

u1 + v1
...

un + vn

 , λv =

λv1...
λvn

 .

Definition 2.3 The product of a matrix A = (aij) ∈ Rm×n and a vector v ∈ Rn is defined by

Av =

a11 . . . a1n
...

. . .
...

am1 . . . amn


v1...
vn

 =


a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · ·+ amnvn

 ∈ Rm .

We have: (m×n-matrix) · (vector of size n) = (vector of size m).

Example 9 Here is the product of a 3× 2 matrix and a vector in R2:1 4
2 5
3 6

 · (−1
3

)
=

1 · (−1) + 4 · 3
2 · (−1) + 5 · 3
3 · (−1) + 6 · 3

 =

11
13
15

 ,

where we get a vector in R3.

This product of a matrix and a vector satisfies the following rules.

Proposition 2.4 We have for A ∈ Rm×n, x, y ∈ Rn and λ ∈ R
(i) A(x+ y) = Ax+Ay,
(ii) A(λx) = λ(Ax).

Proof. This is Exercise 7.

Example 10 Let A =

(
1 2 3
1 1 4

)
, b =

(
1
2

)
. Find all x =

x1x2
x3

 ∈ R3 with Ax = b.

Ax =

(
1 2 3
1 1 4

)x1x2
x3

 =

(
x1 + 2x2 + 3x3
x1 + x2 + 4x3

)
=

(
1
2

)
= b ⇔

x1 + 2x2 + 3x3 = 1
x1 + x2 + 4x3 = 2

 .

This is a linear system. We also call Ax = b a linear system because it gives us a linear system.

Solving:

x1 + 2x2 + 3x3 = 1
x1 + x2 + 4x3 = 2

−1
⇔

x1 + 2x2 + 3x3 = 1

− x2 + x3 = 1

2
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⇔
x1 + 5x3 = 3

− x2 + x3 = 1

−1
⇔

x1 + 5x3 = 3

x2 − x3 = −1


pivot variables

free variable

Solution:


x1 = 3− 5t

x2 = −1 + t

x3 = t

for t ∈ R. Using the vector notation, this can be written as:

x =

x1x2
x3

 =

3− 5t
−1 + t
t

 =

 3
−1
0

+ t

−51
1

 .

Plotting the above solution for all pos-
sible values of t gives a line in R3.

t = 0 : x =

 3
−1
0


t = 1 : x =

 3
−1
0

+

−51
1

 =

−20
1


−2

3
−1

1

t = 0

t = 1

x1

x2

x3

We can also use the matrix notation when solving a linear system to avoid having to write the symbols
xi of variables all the time as follows.

Definition 2.5 For a matrix A = (aij) ∈ Rm×n and a vector b ∈ Rm the matrix

(A | b) =

a11 . . . a1n b1
...

. . .
...

...
am1 . . . amn bm

 ∈ Rm×(n+1)

is called the augmented matrix of the linear system Ax = b.

The augmented matrix (A | b) is just the matrix A where we append the vector b as a column. The line
| is a useful notation to distinguish between the left- and right-hand side of the corresponding linear
system but it has no mathematical meaning. We will view (A | b) as a usual matrix with m rows and
n+ 1 columns.

Definition 2.6 The following operations on a matrix are called elementary row operations.
(R1) Add a multiple of one row to another row.
(R2) Multiply a row with a non-zero number.
(R3) Interchange two rows.

Applying a row operation to a linear system (Definition 1.2) corresponds to the same row operation
(Definition 2.6) on the corresponding augmented matrix of this linear system.

Definition 2.7 Two matrices A and B are called row equivalent, if B can be obtained from
A by elementary row operations. In this case we write

A ∼ B .
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Notice that if A ∼ B, then also B ∼ A, i.e. A can be obtained from B by elementary row operations.
In Example 10, we can use matrix notation for solving the linear system:

(A | b) = 1 2 3 1

1 1 4 2

( )
−1

∼ 1 2 3 1

0 −1 1 1

( )
2

∼ 1 0 5 3

0 −1 1 1

( )
−1

∼ 1 0 5 3

0 1 −1 −1

( )
.

Each row operation creates two equivalent linear systems, which results in the following proposition.

Proposition 2.8 Let A,B ∈ Rm×n and b, c ∈ Rm. If (A | b) ∼ (B | c) then the linear systems
Ax = b and Bx = c have the same solutions.

The final result after applying row operations which helps us directly obtain the solution of a linear
system is defined as follows.

Definition 2.9 A matrix A = (aij) ∈ Rm×n is on row-reduced echelon form if
(i) The first non-zero element on each row (if any) is equal to 1.
(ii) If there is a leading 1 in a row, then all rows above contain a leading 1 further to the left.
(iii) If aij is the first non-zero element in row i, then there are no other non-zero elements in

the j-th column.
The first non-zero element in a row of a matrix in row-reduced echelon form is called pivot
element.

In Example 10, we obtain the row-reduced echelon form as follows:

(A | b) = 1 2 3 1

1 1 4 2

( )
∼ 1 0 5 3

0 1 −1 −1

( )
.

Is the row-reduced echelon form unique for every matrix? The following theorem will help us answer
this question.

Theorem 2.10 Every matrix A is row equivalent to a unique matrix B on row-reduced echelon
form and we write

B = rref(A) .

Proof. We prove this theorem by induction on the number of columns of A (see Chapter 17 or https:
//en.wikipedia.org/wiki/Mathematical_induction if you are not familiar with this concept). If A
has only one column, then there are only two different row-reduced echelon forms:

1
0
...
0

 = e1 or

0
...
0

 = 0.

Indeed, A cannot be row equivalent to both of these forms because there is no sequence of row operations
leading one form to another (the zero vector is only row equivalent to itself). Hence, we already proved
the base step (1 column).

Now, let n > 1 and assume that every matrix with n − 1 columns is equivalent to a unique matrix on
row-reduced echelon form (RREF). Furthermore, assume A has m rows and n columns. Suppose that
A is row equivalent to B and C, which are both on RREF. Let A1, B1, and C1 be matrices formed by
the first n− 1 columns of A, B, and C respectively. Since B1 and C1 are both row equivalent to A1 and
on RREF, they are equal by the induction hypothesis. Suppose for a contradiction that B ̸= C. Then,
there exists an index j such that bjn ̸= cjn.

From Proposition 2.8, the linear systems Ax = 0, Bx = 0, and Cx = 0 all have the same solutions. Let
v ∈ Rn be any solution to Ax = 0. Then, we have Bv = 0 and Cv = 0, and therefore (B − C)v = 0.
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Since the first n− 1 columns of B − C are zeroes (due to B1 = C1), we get the jth row of the system:
(bjn − cjn)vn = 0, so vn = 0. Hence, every solution to Ax = 0 has zero at the last entry.

The matrix B1 on RREF has some nonzero rows and then some zero rows. Say there are k zero rows.
We can then write B1 in the form (

D
0k×(n−1)

)
,

where D ∈ R(m−k)×(n−1) with no zero rows and 0k×(n−1) is the k × (n− 1) zero matrix. Then, B and
C have the form

B =

(
D b

0k×(n−1) t

)
, C =

(
D c

0k×(n−1) u

)
,

where b, c ∈ Rm−k and t, u ∈ Rk. Suppose that t = 0. The first m − k rows of B all have left-most
elements equal to 1. For 1 ≤ i ≤ m − k, let such element in row i of B occur in column ci. Also, let

b =

 b1
...

bm−k

. Then, the linear system Bx = 0 has a solution with the cthi element equal to bi, the last

element equal to −1, and zeroes elsewhere. This contradicts to that every solution to Ax = 0 has zero
at the last entry. Thus, t ̸= 0.

Since B is on RREF, t = e1 and b = 0. The same argument applies to C, so u = e1 and c = 0. Hence,
B = C, which is a contradiction to the assumption that B ̸= C. Therefore, B = C, which completes
the induction step.

For a general matrix A ∈ Rm×n and b ∈ Rm the row-reduced echelon form (B | c) of the augmented
matrix (A | b) has the following shape

rref(A | b) = (B | c) =

0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗

1 ∗ · · · ∗ 0 ∗ · · · ∗
.
.
.

.

.

.

1 ∗ · · · ∗
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0
.
.
.

1 ∗ · · · ∗

λ





c′

m

n λ ∈ {0, 1}

We can read off solutions for linear system Ax = b after finding rref(A | b) as follows:

(A | b) ∼ (B | c) = rref(A | b), for A,B ∈ Rm×n, and b, c ∈ Rm

1) If the last column contains a pivot element (λ = 1): No solutions (since 0 ̸= 1).
Else (λ = 0):

2) If every column of B contains a pivot element then we have the unique solution x = c′.

3) Some columns of B do not contain pivot elements: Infinitely many solutions.

From the above discussion, we see that the number of pivot elements and their location are important,
which leads us to introduce the following definition.

Definition 2.11 Let A ∈ Rm×n be a matrix. The rank rk(A) of A is the number of pivot
elements in rref(A).

Following the discussion of three situations arising when we analyze the row-reduced echelon form of a
matrix, we summarize them by using the notion of rank in the following proposition.
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Proposition 2.12 Let A ∈ Rm×n and b ∈ Rm. The solution of Ax = b depend on rk(A | b) and
rk(A) as follows:
(i) If rk(A | b) > rk(A) then Ax = b has no solutions.
(ii) If rk(A | b) = rk(A) = n then Ax = b has a unique solution.
(iii) If rk(A | b) = rk(A) < n then Ax = b has infinitely many solutions.

Proof. (i) If rk(A | b) > rk(A), then the last column of rref(A | b) contains a pivot element. Hence,
the linear system Ax = b has no solution.

(ii) If rk(A | b) = rk(A) = n, then the last column of rref(A | b) does not contain a pivot element and
every column of rref(A) contains a pivot element. Thus, the linear system Ax = b has a unique
solution given by x = c′.

(iii) If rk(A | b) = rk(A) < n, then the last column of rref(A | b) does not contain a pivot element but
some columns of rref(A) do not contain pivot elements. Therefore, the linear system Ax = b has
infinitely many solutions.

Exercises

Exercise 7. Show that for all A ∈ Rm×n, x, y ∈ Rn and λ ∈ R we have
(i) A(x+ y) = Ax+Ay,
(ii) A(λx) = λ(Ax).

(Without using Proposition 2.4).

Exercise 8. We define the following matrices and vectors:

A =

(
1 2 3
4 5 6

)
, B =

(
0 1
−1 0

)
, C =

−1 0
2 4
0 −3

 , D =

(
0 8 0
1 2 −1

)
, E =

(
3
5 − 4

5
4
5

3
5

)
,

t =

(
1
2

)
, u =

 1
−1
2

 , v =

(
3
−4

)
, w =

−12
2

 .

(i) Decide which of the following expressions are defined. Evaluate them if possible.

At, Au, wA, 2A, A+B, A+ C, A+D,
3

4
Bt, Bu, B +B, Dw,

Cv, t+ u, tu, −v, u+ w, t− u, 1

2
w, C + w, Et, Ev E (Ev) .

(ii) Draw the following vectors in R2

t, , v, −2t, t− 1

2
v, v + t, t+ v, Et, Ev, E (Ev) , Bt, Bv .

Can you guess what happens in general to a vector in R2 when you multiply it with B or
E? Try to give a geometric interpretation. (without a proof)

Exercise 9. Let a, b, c, d ∈ R and A =

(
a b
c d

)
.

(i) Show that rk(A) = 2 if and only if ad− bc ̸= 0.
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(ii) We define the following subset of R2

L = {x ∈ R2 | x = Av for some v ∈ R2}.

How does L look like if rk(A) = 1? How does it look like if rk(A) = 2?

Exercise 10. Give examples of matrices A,B,C ∈ R3×3, which are all not on row-reduced
echelon form, such that rk(A) = 1, rk(B) = 2, rk(C) = 3.

Exercise 11. Let A ∈ R3×3 be a matrix.
(i) Show that if rk(A) = 3 then there exists just one vector x ∈ R3 with Ax = 0.
(ii) Show that if rk(A) ≤ 2 then there exist infinitely many vectors x ∈ R3 with Ax = 0.

Exercise 12. Let p(x) = a0+a1x+a2x
2+a3x

3 be a polynomial of degree 3 with real coefficients
a0, a1, a2, a3 ∈ R. For this polynomial p we define the vector vp by

vp =


a0
a1
a2
a3

 ∈ R4 .

Find a matrix D ∈ R4×4, such that vp′ = Dvp, where p
′ denotes the derivative of the polynomial

p with respect to x. What is the rank of D?
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Sets & Functions

A set is a collection of distinct objects, grouped together as a single entity. It is precisely, but not
necessarily explicitly, defined. The objects that belong to a set are called its elements. If a set has
finitely many elements we call it a finite set and otherwise infinite set. We have already seen examples
of infinite sets: R, Rn, Rm×n.

Example 11
1) {2, 4, π} is a finite set.
2) N = {1, 2, 3, 4, . . .} is the set of natural numbers.
3) Q is the set of rational numbers.
4) ∅ = {} is the empty set, which has no element.

Given a set A, we write ”a ∈ A” if a is an element of A and ”a /∈ A” if a is not an element of A.
A set A is a subset of another set B when every element of A belongs to B. That is, if a ∈ A, then
a ∈ B. In this case, we write A ⊂ B. The empty set ∅ is subset of any other set.

Example 12
1) 2 ∈ N, 1

2 /∈ N, π ∈ R, π /∈ Q.
2) ∅ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C.
3) {1, 2, 3} ⊂ N.

From a set A, we can define a subset of A that contains all elements of A satisfying a condition and we
write it in the format {a ∈ A | condition}.

Example 13
1) {m ∈ N | m is even} is the set of all even numbers.
2) Let H be the set of all humans. NU = {h ∈ H | h is a student at Nagoya University} ⊂ H.
3) {x ∈ Rn | Ax = b} is the set of all solutions of Ax = b.

We can create new sets from given sets by operations on sets. Given two sets A and B, we define the
following operations (that produce new sets):

(i) Union: A ∪B is the set of all objects that are elements of A or B or both.

A ∪B = {x | x ∈ A or x ∈ B}

(ii) Intersection: A ∩B is the set of all objects that are elements of both A and B.

A ∩B = {x | x ∈ A and x ∈ B}
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(iii) Difference: A \B is the set of all objects that are elements of A but not B.

A \B = {x ∈ A | x /∈ B}

A B

A ∪B

A B

A ∩B

A B

A\B

Figure 3.1: Visualization of the union, intersection and difference of two sets A and B.

Example 14 For the sets A = {−1, 2, 3} and B = N = {1, 2, 3, . . . }, we have
1) A ∪B = {−1, 1, 2, 3, . . .},
2) A ∩B = {2, 3},
3) A \B = {−1}.

In order to introduce later the notion of linear maps in Chapter 4, which will be an important concept
in linear algebra, now we want to examine the notion of function in general.

Definition 3.1 Let X and Y be two sets.
(i) A function f : X → Y is a rule, assigning to each element x ∈ X an element f(x) ∈ Y .

This is also denoted by

f : X −→ Y

x 7−→ f(x) .

(ii) For f : X → Y , the set X is called the domain of f and Y is called the codomain of f .

A function is also sometimes called a map. These two names (for the exact same mathematical object)
are used interchangeably in literature.

Definition 3.2 For a function f : X → Y , the image of f is defined by

im(f) = {y ∈ Y | ∃x ∈ X : y = f(x)} .

Another notation is im(f) = f(X). The image is a subset of the codomain, i.e., im(f) ⊂ Y .

A fundamental operation for functions that allows us to create a new function from one function or
several functions is as follows.

Definition 3.3 Composition of functions: For two functions f : X → Y and g : Y → Z, the
composition g ◦ f of f and g is defined by

g ◦ f : X −→ Z

x 7−→ (g ◦ f)(x) = g(f(x)) .

X Y Z
f

g◦f

g

The following notions are characteristics of certain special types of functions.
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Definition 3.4 A function f : X → Y is called
(i) injective if f(x1) ̸= f(x2) whenever x1 ̸= x2. (x1, x2 ∈ X)
(ii) surjective if im(f) = Y .
(iii) bijective if it is both injective and surjective.

Given a set X, we define the identity function on X as follows:

idX : X −→ X,

x 7−→ x .

If f : X → Y is bijective or, equivalently, for every y ∈ Y there exists a unique x ∈ X with f(x) = y,
then we can define g : Y → X by g(y) = x for f(x) = y. In that case, we have

(g ◦ f)(x) = g(f(x)) = g(y) = x ∀x ∈ X ⇒ g ◦ f = idX ,

(f ◦ g)(y) = f(g(y)) = f(x) = y ∀y ∈ Y ⇒ f ◦ g = idY .

For any function f , when there exists a function g which satisfies the above two conditions, we say that
f is invertible and g is the inverse of f . Usually, we denote the inverse as g = f−1. Hence, a bijective
function is also invertible and vice versa.

Example 15
1) Let H be the set of all humans. NU = {h ∈ H | h is a student at Nagoya University} ⊂ H.

f1 : NU −→ N,
s 7−→ Student ID of student s.

f1 is injective because there are no two students with the same ID.
f1 is not surjective because not every natural number is the student ID of a student.

2) Now consider the sine function with domain and codomain R:

f2 : R −→ R,
x 7−→ sin(x) .

−2π −π π 2π
−1

1

im(f2) = [−1, 1] = {x ∈ R | −1 ≤ x ≤ 1}.
f2 is not surjective because 2 ∈ R but 2 /∈ im(f2).
f2 is not injective because f2(0) = f2(2π) = 0 but 0 ̸= 2π.

3) If we consider the sine function where we restrict the domain and codomain the situation
changes:

f3 :
[
−π
2
,
π

2
q
]
−→ [−1, 1],

x 7−→ sin(x).

im(f3) = [−1, 1] ⇒ f3 is surjective.
f3 is also injective because, for each
y ∈ [−1, 1], there exists exactly one
x ∈

[
−π

2 ,
π
2

]
with f3(x) = y.

−π
2

π
2

−1

1

Hence, f3 is bijective with the inverse

f−1
3 = arcsin : [−1, 1] −→

[
−π
2
,
π

2

]
.
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−1 1

−π
2

π
2

4) Consider the following function:

f4 : R −→ R.
x 7−→ x2 + 1,

im(f4) = [1,∞) = {x ∈ R | x ≥ 1} ≠ R.
f4(−x) = x2 = f4(x) ∀x ∈ R.
Hence, f4 is neither injective nor surjective.

−2 −1 1 2

2

4

5) Consider the following function:

f5 : R2 −→ R2,(
x1
x2

)
7−→

(
x1 + 2x2
2x1 + 4x2

)
=

(
1 2
2 4

)(
x1
x2

)
= Ax,

where A =

(
1 2
2 4

)
and x =

(
x1
x2

)
. To calculate the image of f5 we need to find all b =(

b1
b2

)
∈ R2 such that there exists a x =

(
x1
x2

)
∈ R2 with f5(x) = Ax = b, which means that

for each b ∈ R2 we need to solve the linear system Ax = b.

(A | b) = 1 2 b1

2 4 b2

 −2
∼ 1 2 b1

0 0 b2 − 2b1

 .
Hence, Ax = b has solutions when b2 = 2b1. Thus, im(f5) =

{(
b1
b2

)
∈ R2

∣∣∣∣ b2 = 2b1

}
̸= R2.

Therefore, f5 is not surjective.

If b2 = 2b1, we have the solution

{
x1 = b1 − 2t

x2 = t
, for t ∈ R.

For b1 = 1: {
x1 = 1− 2t

x2 = t
and f5

(
1− 2t
t

)
=

(
1
2

)
∀t ∈ R.

Hence, f5 is not injective since f5

(
−1
1

)
= f5

(
1
0

)
=

(
1
2

)
but

(
−1
1

)
̸=
(
1
0

)
.

Version 13 (January 25, 2024) - 26 -



Linear Algebra I - Sets & Functions

−1 1

−1

1

x1

x2

f5−−−−−→
−1 1

−1

1

2
im(f5)

b1

b2

6) Consider the following function:

f6 : R2 −→ R2,(
x1
x2

)
7−→

(
x1 + 2x2
3x1 + 4x2

)
=

(
1 3
2 4

)(
x1
x2

)
= Ax,

where A =

(
1 2
3 4

)
and x =

(
x1
x2

)
. In order to find

im(f6) = {y ∈ R2 | ∃x ∈ R2 : f6(x) = y} = {y ∈ R2 | Ax = y has a solution x ∈ R2},

we need to understand the solutions of Ax = y.

(A | y) = 1 2 y1

3 4 y2

( )
−3

∼ 1 2 y1

0 −2 y2 − 3y1

 
− 1

2

∼
1 2 y1

0 1
3
2y1 −

1
2y2

 
−2

∼
1 0 −2y1 + y2

0 1
3
2y1 −

1
2y2

 
This shows that the linear system Ax = y has a unique solution

x =

(
x1
x2

)
=

(
−2y1 + y2
3
2y1 −

1
2y2

)

for every y =

(
y1
y2

)
∈ R2. Hence, im(f6) = R2 and f6 is bijective. In addition, the inverse

f−1
6 : R2 → R2 of f6 is defined as follows:

f−1
6 =

(
−2x1 + x2
3
2x1 −

1
2x2

)
=

(
−2 1
3
2 − 1

2

)(
x1
x2

)
= Bx,

where B =

(
−2 1
3
2 − 1

2

)
.

Later we will see that B = A−1 is the inverse of A (Chapter 7).
7) Consider the following function:

f7 : R2 −→ R3(
x1
x2

)
7−→

 x1
x1 + x2
x2 − x1


We want to calculate im(f7) = {y ∈ R3 | ∃x ∈ R2 : f7(x) = y}. For this, we first rewrite

f7(x) = f7

(
x1
x2

)
=

 x1
x1 + x2
x2 − x1

 =

 1 0
1 1
−1 1

(x1
x2

)
= Ax,
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where A =

 1 0
1 1
−1 1

. Hence, im(f7) = {y ∈ R2 | Ax = y has a solution x ∈ R2}. Therefore,

we want to understand the solutions of Ax = y.

(A | y) =
1 0 y1

1 1 y2

−1 1 y3




−11

∼
1 0 y1

0 1 y2 − y1
0 1 y3 + y1


−1 ∼

1 0 y1

0 1 y2 − y1
0 0 2y1 − y2 + y3




This shows that Ax = y has a solution if and only if 2y1 − y2 + y3 = 0.

Thus, im(f7) =


y1y2
y3

 ∈ R3

∣∣∣∣∣∣ 2y1 − y2 + y3 = 0

 and f7 is not surjective since im(f7) ̸= R3.

For y ∈ im(f7), the system Ax = y has a unique solution because there are no free variables.
Therefore, f7 is injective (but not surjective).

Exercises

Exercise 13. Let X be a finite set. Show that a function f : X → X is injective if and only if
it is surjective.

Exercise 14. Let N0 = {0, 1, 2, 3, . . . } and Z = {0, 1,−1, 2,−2, . . . } denote the set of natural
numbers (together with zero) and the integers. Decide if the following function is injective and/or
surjective:

g : N0 −→ Z

n 7−→

{
n
2 if n is even

−n+1
2 if n is odd

.

Exercise 15. Which of the following functions are injective and/or surjective?

f1 : R −→ R
x 7−→ ex ,

f2 : R2 −→ R3(
x1
x2

)
7−→

 x1 + 2x2
2x1 + 4x2
x1 − x2

 ,

f3 : R −→ R
x 7−→ 3x+ 2 ,

f4 : R2 −→ R2(
x1
x2

)
7−→

(
x1 + 2x2
x1x2

)
.
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4

Linear maps

In this chapter, we discuss linear maps, which serve as a fundamental concept in linear algebra. Up
until now, we have explored the properties of vectors in Rn and their various operations. Linear maps,
also known as linear transformations, are special functions that map one vector space to another while
preserving the underlying structure and operations (vector addition and scalar multiplication) of the
original space. As we have not yet formally introduced the notion of vector spaces (Chapter 15), it is
essential to understand that these abstract mathematical structures provide a broader and more general
framework for linear maps.

Let’s consider a simple example of a linear map using matrix multiplication. Suppose we have an
arbitrary m× n matrix A and a vector x ∈ Rn. The linear map F represented by the matrix A can be
defined as the function F (x) = Ax, which maps a vector x in Rn to a vector in Rm. This linear map
satisfies by Proposition 2.4 the property F (x+y) = A(x+y) = Ax+Ay = F (x)+F (y) for any x, y ∈ Rn

and F (λx) = A(λx) = λAx = λF (x) for x ∈ Rn and λ ∈ R. This property will be the definition of a
linear map and we will see, that all linear maps indeed come from a matrix in the above way.

As we explore the properties and applications of linear maps, you will see that such transformations
play a significant role in various areas of mathematics and real-world applications, including computer
graphics, data analysis, and engineering.

Definition 4.1 A function F : Rn → Rm is a linear map if for all u, v ∈ Rn, λ ∈ R we have
(i) F (u+ v) = F (u) + F (v),
(ii) F (λu) = λF (u).

Example 16
1) For any matrix A ∈ Rm×n, the function

F : Rn −→ Rm

x 7−→ Ax

is a linear map. This follows from Proposition 2.4 as follows: for any u, v ∈ Rn and λ ∈ R
(i) F (u+ v) = A(u+ v) = Au+Av = F (u) + F (v),
(ii) F (λu) = A(λu) = λ(Au) = λF (u).

Special case: When n = m and A =

1 0
. . .

0 1

 def
= In, called identity matrix, we have

F (x) = x, ∀x ∈ Rn. In this case, F = idRn .
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2) The function

f : R2 −→ R2(
x1
x2

)
7−→

(
x1x2
x1

)

is not a linear map. For λ = 2 and u =

(
1
1

)
,

f(λu) = f

(
2

(
1
1

))
= f

(
2
2

)
=

(
2 · 2
2

)
=

(
4
2

)
,

λf(u) = 2f

(
1
1

)
= 2

(
1 · 1
1

)
=

(
2
2

)
.

Therefore, f(λu) ̸= λf(u) for the case λ = 2.

In fact we will see now that any linear map is given by a function like in Example 16 1).

Theorem 4.2 Let F : Rn → Rm be a linear map. Then there exists a unique matrix [F ] ∈ Rm×n,
such that for all x ∈ Rn we have

F (x) = [F ]x .

Here the left-hand side is the evaluation of the function F at x and the right-hand side is the multipli-
cation of the matrix [F ] with the vector x.

Proof. For 1 ≤ j ≤ n, we consider vectors ej ∈ Rn such that

ej =



0
...
0
1
0
...
0


← the jth entry

Every x =


x1
x2
...
xn

 ∈ Rn can be uniquely written as x = x1e1 + x2e2 + . . .+ xnen.

Since F is linear, we have

F (x) = F (x1e1 + x2e2 + . . .+ xnen)
(i)
= F (x1e1) + F (x2e2 + . . .+ xnen) = . . . = F (x1e1) + F (x2e2) + . . .+ F (xnen)
(ii)
= x1F (e1) + x2F (e2) + . . .+ xnF (en)

Now set [F ] =

 | | |
F (e1) F (e2) · · · F (en)
| | |

 ∈ Rm×n. With this, we have

[F ]x = [F ]

x1...
xn

 = x1F (e1) + x2F (e2) + . . .+ xnF (en),

And therefore, F (x) = [F ]x.
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Definition 4.3 The matrix [F ] in Theorem 4.2 is called the matrix of F.

Remark. If F is a linear map and we know the values F (ej) (1 ≤ j ≤ n), then we know the value of
F (x) for any x.

Example 17

1) If F : R2 → R2 is a linear map with F

(
1
0

)
=

(
1
2

)
and F

(
0
1

)
=

(
3
4

)
, then

F

(
−1
3

)
= F

(
−1
(
1
0

)
+ 3

(
0
1

))
= −F

(
1
0

)
+ 3F

(
0
1

)
= −

(
1
2

)
+ 3

(
3
4

)
=

(
8
10

)
.

In general,

F

(
x1
x2

)
= F

(
x1

(
1
0

)
+ x2

(
0
1

))
= x1F

(
1
0

)
+x2F

(
0
1

)
= x1

(
1
2

)
+x2

(
3
4

)
=

(
1 3
2 4

)(
x1
x2

)
.

The matrix of F is [F ] =

(
1 3
2 4

)
.

2) This works in more general cases. Assume that F : R2 → R3 is a linear map with

F

(
1
0

)
=

 1
1
−1

 , F

(
1
1

)
=

0
1
2

 .

What is F

(
x1
x2

)
for any x1, x2? We have

(
x1
x2

)
= x2

(
1
1

)
+ (x1 − x2)

(
1
0

)
.

Hence,

F

(
x1
x2

)
= F

(
x2

(
1
1

)
+ (x1 − x2)

(
1
0

))
= x2F

(
1
1

)
+ (x1 − x2)F

(
1
0

)

= x2

0
1
2

+ (x1 − x2)

 1
1
−1

 =

 x1 − x2
x1

−x1 + 3x2

 =

 1 −1
1 0
−1 3

(x1
x2

)
.

The matrix of F is [F ] =

 1 −1
1 0
−1 3

.

Remark. From the above examples, we see that, in order to know the value of a linear map F at any x,
it suffices to know the value F (v1), . . ., F (vn) where v1, . . ., vn are vectors such that we can write for
any x as

x = α1v1 + . . .+ αnvn,

for some α1, . . . , αn ∈ R.

How to check if a given function F : Rn → Rm is linear or not?

• To show that F is linear, one can either show that:

– There exists a matrix A ∈ Rm×n with F (x) = Ax (and hence, A = [F ]), or
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– For all u, v ∈ Rn, λ ∈ R that F (u+ v) = F (u) + F (v) and F (λu) = λF (u).

• To show that F is not linear, it suffices to give one example of u, v ∈ Rn with F (u + v) ̸=
F (u) + F (v), or one example of u ∈ Rn, λ ∈ R with F (λu) ̸= λF (u).

Example 18 The function

f : R −→ R
x 7−→ ex

is not linear because the one explicit example with u = v = 0 gives:

f(u+ v) = f(0 + 0) = f(0) = e0 = 1,

f(u) + f(v) = f(0) + f(0) = e0 + e0 = 2.

Therefore, f(u+ v) ̸= f(u) + f(v) for the case u = v = 0.

What you should not do, when proving that this function is not linear, is to write ”It is eu+v ̸=
eu+ev and therefore f is not linear”. Even though eu+v ̸= eu+ev is true for almost all u, v ∈ R,
there are cases where it is not true. For example, for u = 1 and v = 0.4586 . . .,

eu+v = 4.3002 . . . = eu + ev.

Exercises

Exercise 16. Which of the following functions are linear maps?

f1 : R −→ R
x 7−→ ex ,

f2 : R2 −→ R3(
x1
x2

)
7−→

 x1 + 2x2
2x1 + 4x2
x1 − x2

 ,

f3 : R −→ R
x 7−→ 3x+ 2 ,

f4 : R2 −→ R2(
x1
x2

)
7−→

(
x1 + 2x2
x1x2

)
.

Exercise 17. We define the following four functions:

f1 : R2 −→ R2(
x1
x2

)
7−→

(
2x1 + x2
x1x2

)
,

f2 : R −→ R

x 7−→ 2x

x2 + 4
,

f3 : R −→ R2

x 7−→
(
3 cos(x)
2 sin(x)

)
,

f4 : R2 −→ R3(
x1
x2

)
7−→

2x1 − x2
x1 − 3x2
x1 − x2

 .

(i) Calculate the image of each function, i.e. describe im(fj) for j = 1, 2, 3, 4 as explicit as
possible. If you can not find a mathematical description try to describe the elements of the
image in words.

(ii) Decide for each function if it is injective and/or surjective and/or bijective.
(iii) Decide which of the above functions are linear maps.
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Justify your answers in (ii) and (iii).

Exercise 18. Show that there exist a unique linear map G : R2 → R3 with the property

G

(
1
−1

)
=

 1
1
−1

 , G

(
1
2

)
=

0
1
2

 .

What is the value of G(x) for an arbitrary x =

(
x1
x2

)
∈ R2? Determine the matrix of G.

Exercise 19. Let F : R3 → R2 be a linear map. Show that F can not be injective.

Exercise 20. Let F : Rn → Rm be a linear map. Show that the following two statements are
equivalent:
(i) F is injective.

(ii) The only solution to F (x) = 0 is x =

0
...
0

.

To show that both statements are equivalent, you need to show that (i) implies (ii) and (ii)
implies (i).
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Linear maps in geometry

In the previous chapter, we introduced the concept of linear maps, which form the foundation of linear
algebra and are essential tools for studying geometry. In this chapter, we will delve deeper into the
topic of linear maps and discuss certain classes of them which have a geometric interpretation.

Example 19 Consider the function

F : R2 −→ R2.(
x1
x2

)
7−→

(
−x2
x1

)
This function is indeed a linear map because

F

(
x1
x2

)
=

(
−x2
x1

)
=

(
0 −1
1 0

)(
x1
x2

)
.

x =

(
x1
x2

)

F (x) =

(
−x2
x1

)

α

α

β

β

γ |x2|

|x1|

|x1|

|x2|

We have {
α+ β + γ = 180◦

α+ β = 90◦
⇒ γ = 90◦.

Hence, F rotates x by 90◦ counterclockwise.

In Example 19, we say that x and F (x) are ”orthogonal” (meaning perpendicular) to each other. How
to check if x, y ∈ R2 are orthogonal in general? What about x, y ∈ Rn?
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Definition 5.1 Let u =

u1...
un

 , v =

v1...
vn

 ∈ Rn.

(i) The dot product of u and v is defined by

u • v = u1v1 + · · ·+ unvn .

(ii) u and v are orthogonal (to each other) if u • v = 0.
(iii) The norm of u is defined by

∥u∥ =
√
u • u =

√
u21 + · · ·+ u2n .

Remark. (i) The dot product (also called scalar product or inner product) allows us to speak about
length and angle in Rn. For n = 2 and n = 3, the norm of a vector is equal to its length by
Pythagorean theorem:

u =

(
u1
u2

)

u1

u2

|u2|

|u1|

∥u∥

∥u∥ =
√
u21 + u22

u =

u1

u2

u3



u1

u2

u3

|u2||u1|

|u3|

√
u2
1 + u2

2

∥u∥

∥u∥ =
√
u21 + u22 + u23

Also, one can show that, for any non-zero vectors u and v,
v

u

α

u • v = ∥u∥ ∥v∥ cos(α)

⇔ cos(α) =
u • v
∥u∥ ∥v∥

.

For n > 3, this gives the definition of an angle between u and v.

(ii) Write uT =
(
u1 u2 · · · un

)
∈ R1×n (T stands for ”transpose”, for which we will give a proper

definition later) , then

u • v = uT v =
(
u1 u2 · · · un

)

v1
v2
...
vn

 = u1v1 + · · ·+ unvn,

where uT v is the product of the matrix uT and the vector v.

Proposition 5.2 The dot product satisfies the following properties for all u, v, w ∈ Rn and
λ ∈ R:
(i) u • v = v • u,
(ii) u • (v + w) = u • v + u • w,
(iii) u • (λv) = λ(u • v).
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Proof. (i) u • v = u1v1 + · · ·+ unvn = v1u1 + · · ·+ vnun = v • u.

(ii) u • (v + w) = u1(v1 + w1) + · · ·+ un(vn + wn)

= (u1v1 + u1w1) + · · ·+ (unvn + unwn)

= (u1v1 + · · ·+ unvn) + (u1w1 + · · ·+ unwn)

= u • v + u • w.

(iii) u • (λv) = u1(λv1) + · · ·+ un(λvn) = λ(u1v1 + · · ·+ unvn) = λ(u • v).

In the following, we will give examples of linear maps which have geometric interpretations.

1. Scaling

Let λ > 0 and define the linear map

hλ : Rn −→ Rn.

x 7−→ λx

This map is indeed linear because it has the matrix

[hλ] =

λ 0
. . .

0 λ

 = λ

1 0
. . .

0 1

 = λIn,

where In is the n×n identity matrix, the matrix of the identity map idRn . When we apply the map hλ
to a vector, we scale the norm (length) of this vector by a factor λ.

2. Orthogonal projection

Let u ∈ Rn with u ̸=

0
...
0

 = 0. We want to define a map Pu : Rn → Rn that sends a vector x ∈ Rn to

another vector x∥ such that x = x⊥ + x∥, where

x∥ = λu for some unknown λ ∈ R,
x⊥ • u = 0.

u

x⊥

x∥ = Pu(x)

x

0
To find λ, we do the following calculation

u • x = u • (x⊥ + x∥) = u • x⊥ + u • x∥ = 0 + u • (λu) = λ(u • u).

Hence, λ =
u • x
u • u

. Observe that im(Pu) = {x ∈ Rn | ∃λ ∈ R : x = λu} = {λu ∈ Rn | λ ∈ R}.

Definition 5.3 Let u ∈ Rn with u ̸= 0. We define the orthogonal projection Pu onto the
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line spanned by u as

Pu : Rn −→ Rn

x 7−→ u • x
u • u

u .

It is in our interest that the orthogonal projection is indeed a linear map.

Proposition 5.4 Pu : Rn → Rn is a linear map.

Proof. For x, y ∈ Rn, λ ∈ R, using Proposition 5.2, we have

Pu(x+ y) =
u • (x+ y)

u • u
u =

u • x+ u • y
u • u

u

=
u • x
u • u

u+
u • y
u • u

u = Pu(x) + Pu(y),

Pu(λx) =
u • (λx)
u • u

u =
λ(u • x)
u • u

u = λPu(x).

As a result, Pu is a linear map.

Example 20 For n = 2, consider u =

(
1
1

)
and x =

(
x1
x2

)
. We have

u • u = 1 · 1 + 1 · 1 = 2,

u • x = 1 · x1 + 1 · x2 = x1 + x2.

Then,

Pu(x) =
u • x
u • u

u =
x1 + x2

2

(
1
1

)

=
x1+x2

2

x1+x2

2


 =

1
2

1
2

1
2

1
2



(
x1
x2

)
= [Pu]x,

where [Pu] =
1
2

1
2

1
2

1
2


.
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1 2

1

2

3

u =

(
1
1

)

im(Pu)

Pu

(
1
3

)
=

(
2
2

)

(
1
3

)

x1

x2

For example, we have

Pu

(
1
3

)
=

1
2

1
2

1
2

1
2



(
1
3

)
=

(
2
2

)
.

In the case n = 1, the dot product is just the multiplication of real numbers, and we have

Pu : R −→ R.

x 7−→ ux

uu
u = x

Hence, Pu = idR in the case n = 1. For n > 1, Pu : Rn → Rn is not injective and not surjective (check
it yourself), and

im(Pu) = {λu | λ ∈ R}.

3. Reflections

Now we want to define a map ρu : Rn → Rn, which reflects x ∈ Rn along the line spanned by u.

u

x⊥

Pu(x)

2Pu(x)

−x

ρu(x)

x

0
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To do that, we proceed as follows:

ρu(x) = x− 2x⊥ = x− 2(x− Pu(x))

= 2Pu(x)− x

= 2
u • x
u • u

u− x

Definition 5.5 Let u ∈ Rn with u ̸= 0. We define the reflection ρu along the line spanned by
u as

ρu : Rn −→ Rn

x 7−→ 2
u • x
u • u

u− x .

Again, this map is also a linear map.

Proposition 5.6 ρu : Rn −→ Rn is a linear map.

Proof. This is Exercise 21

Example 21 For u =

(
1
1

)
, the ρu is the reflection along the diagonal. What is the matrix of

ρu? We have

[ρu] =

 | |
ρu(e1) ρu(e2)
| |

 ,

where

ρu(e1) = 2
u • e1
u • u

u− e1 =

(
2 · 1 · 1 + 1 · 0

1 · 1 + 1 · 1

)(
1
1

)
−
(
1
0

)
=

(
0
1

)
,

ρu(e2) = 2
u • e2
u • u

u− e2 =

(
2 · 1 · 0 + 1 · 1

1 · 1 + 1 · 1

)(
1
1

)
−
(
0
1

)
=

(
1
0

)
.

Hence, [ρu] =

(
0 1
1 0

)
.

For any n ≥ 1 and any u ∈ Rn \ {0}, the map ρu is bijective with ρ−1
u = ρu because ρu ◦ ρu = idRn (this

is supported with our common sense).
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4. Rotations in R2

We want to define a map rotφ : R2 → R2 that describes a counterclockwise rotation with angle φ ∈ R.

φ

x =

(
x1
x2

)

y =

(
−x2
x1

)
= rotπ

2
(x)

rotφ(x)

cos(φ)x

sin(φ)y

To do that, we proceed as follows:

rotφ(x) = cos(φ)x+ sin(φ)y

= cos(φ)

(
x1
x2

)
+ sin(φ)

(
−x2
x1

)
=

(
cos(φ)x1 − sin(φ)x2
cos(φ)x2 + sin(φ)x1

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)(
x1
x2

)
= [rotφ]x,

where [rotφ] =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
.

Definition 5.7 For φ ∈ R the counterclockwise rotation by an angle φ (in R2) is given by

rotφ : R2 −→ R2

x 7−→
(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
x .

We have rotφ1 ◦ rotφ2 = rotφ1+φ2 , i.e. rotφ is invertible with inverse rot−φ because

rotφ ◦ rot−φ = rot0 = idR2 .
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Exercises

Exercise 21. Let u =

u1...
un

 ∈ Rn be with u ̸= 0.

(i) Show that the reflection ρu : Rn −→ Rn is a linear map.
(ii) Show that the matrix of the projection Pu : Rn −→ Rn is given by

[Pu] =
1

u • u
uuT ∈ Rn×n ,

where uT = (u1 u2 . . . un) ∈ R1×n. Use this to give an expression for [ρu].

Exercise 22. Show that for all u ∈ Rn with u ̸= 0 the projection Pu and the reflection ρu
satisfy for all x ∈ Rn the following two properties:
(i) Pu(Pu(x)) = Pu(x).
(ii) ρu(ρu(x)) = x.
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Composition of linear maps &
Matrix multiplication

Linear maps are functions so we can compose them

Rn Rm Rl.F

G◦F=GF

G

If F, G are linear maps, then does GF inherit the linearity property from them? The answer is yes by
the following theorem.

Theorem 6.1 If F : Rn → Rm and G : Rm → Rl are linear, then GF : Rn → Rl is linear.

Proof. Since F and G are linear, we have for x, y ∈ Rn,

GF (x+ y) = G
(
F (x+ y)

)
= G

(
F (x) + F (y)

)
= G

(
F (x)

)
+G

(
F (y)

)
= GF (x) +GF (y).

Also, we have for λ ∈ R, x ∈ Rn,

GF (λx) = G
(
F (λx)

)
= G

(
λF (x)

)
= λG

(
F (x)

)
= λGF (x).

Therefore, GF is also a linear map.

A natural question follows: What is the matrix of GF?

Example 22 We consider the following linear maps

F : R2 −→ R2,

x 7−→
(
1 2
3 −1

)
x,

G : R2 −→ R3,

x 7−→

1 −1
0 1
1 0

x.

We have the matrices of the map F and G as follows:

[F ] =

(
1 2
3 −1

)
, [G] =

1 −1
0 1
1 0

 .
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We want to calculate the matrix of GF : R2 → R3. We have

[GF ] =

 | |
GF (e1) GF (e2)
| |

 ,

where

GF (e1) = G
(
F (e1)

)
= G

(
F

(
1
0

))
= G

(
1
3

)
= [G]

(
1
3

)
=

−23
1

 ,

GF (e2) = G
(
F (e2)

)
= G

(
F

(
0
1

))
= G

(
2
−1

)
= [G]

(
2
−1

)
=

 3
−1
2

 .

Hence,

[GF ] =

 | |
GF (e1) GF (e2)
| |

 =


| |

[G] 1
3

()
[G]

2
−1

( )
| |

 =

−2 3
3 −1
1 2

 .

We see that in order to find [GF ], we multiply [G] with each of the columns of [F ] to get each of the
corresponding columns of [GF ], which motivates us to define the matrix multiplication as follows.

Definition 6.2 Let A ∈ Rl×m and B ∈ Rm×n, where B has the columns v1, . . . , vn ∈ Rm, i.e.

B =

v1 . . . vn

 .

Then the product of A and B is the l × n-matrix with columns Av1, . . . , Avn ∈ Rl, i.e.

A ·B =

Av1 . . . Avn

 ∈ Rl×n .

Example 23 1) A =

1 −1
0 1
1 0

, B =

(
1 2
3 −1

)
then

A ·B =


| |

A 1
3

()
A

2
−1

( )
| |

 =

−2 3
3 −1
1 2

 .

Compare this with Example 22, where [G] = A, [F ] = B and [GF ] = A ·B.

2) Consider the following matrix multiplication:0 3 0
1 −1 1
1 2 0

1 0
1 1
1 2

 =

3 3
1 1
3 2

 .

3) Consider the following matrix multiplication:(
1 −2
−1 3

)(
3 2
1 1

)
=

(
1 0
0 1

)
.
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In the next lecture, we will learn that

(
3 2
1 1

)
is the inverse of

(
1 −2
−1 3

)
.

We already know that each matrix corresponds to a linear map. The following theorem confirms that
the matrix multiplication is indeed equivalent to the composition of the corresponding linear maps.

Theorem 6.3 Let F : Rn → Rm and G : Rm → Rl be linear maps. Then the matrix of GF is
given by the product of the matrices of G and F , i.e.

[GF ] = [G] · [F ] .

Proof. We have [F ] =

 | |
F (e1) · · · F (en)
| |

 and

[G] · [F ] =

 | |
[G]F (e1) · · · [G]F (en)
| |


=

 | |
G
(
F (e1)

)
· · · G

(
F (en)

)
| |


=

 | |
GF (e1) · · · GF (en)
| |


= [GF ].

Hence, we have proved the theorem.

Example 24 1) Given the linear map

F : R2 −→ R2,(
x1
x2

)
7−→

(
2x1 − x2
x1 + 3x2

)
=

(
2 −1
1 3

)(
x1
x2

)
,

what is the matrix of F ◦ F?
• By hand:

F ◦ F (x) = F
(
F (x)

)
= F

(
2x1 − x2
x1 + 3x2

)
=

(
2(2x1 − x2)− (x1 + 3x2)
(2x1 − x2) + 3(x1 + 3x2)

)
=

(
3x1 − 5x2
5x1 + 8x2

)
=

(
3 −5
5 8

)(
x1
x2

)

⇒ [FF ] =

(
3 −5
5 8

)
.

• Using Theorem 6.3:

[FF ] = [F ] · [F ] =
(
2 −1
1 3

)(
2 −1
1 3

)
=

(
3 −5
5 8

)
.

2) In the last lecture, we define the rotation by angle φ as the linear map

rotφ : R2 −→ R2,

x 7−→
(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
x.
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The composition rotφ1
◦ rotφ2

has the meaning as the rotation by φ2 and then by φ1. We
also mention in the last lecture that

rotφ1
◦ rotφ2

= rotφ1+φ2
. (∗)

Using Theorem 6.3, we have

[rotφ1
◦ rotφ2

] = [rotφ1
] · [rotφ2

]

=

(
cos(φ1) − sin(φ1)
sin(φ1) cos(φ1)

)(
cos(φ2) − sin(φ2)
sin(φ2) cos(φ2)

)
=

(
cos(φ1) cos(φ2)− sin(φ1) sin(φ2) − cos(φ1) sin(φ2)− sin(φ1) cos(φ2)
sin(φ1) cos(φ2) + cos(φ1) sin(φ2) − sin(φ1) sin(φ2) + cos(φ1) cos(φ2)

)
.

In addition, [rotφ1+φ2 ] =

(
cos(φ1 + φ2) − sin(φ1 + φ2)
sin(φ1 + φ2) cos(φ1 + φ2)

)
. By using (∗) , we obtain the

angle sum identities:

cos(φ1 + φ2) = cos(φ1) cos(φ2)− sin(φ1) sin(φ2),

sin(φ1 + φ2) = sin(φ1) cos(φ2) + cos(φ1) sin(φ2).

The matrix multiplication has the following properties.

Proposition 6.4 For all A ∈ Rl×m, B,D ∈ Rm×n, C ∈ Rn×p and λ ∈ R we have
(i) A · Im = Il ·A = A, where Im denotes the m×m-identity matrix.
(ii) (A ·B) · C = A · (B · C).
(iii) A · (B +D) = A ·B +A ·D.
(iv) (B +D) · C = B · C +D · C.
(v) λ(A ·B) = (λA) ·B = A · (λB).

Proof. Check by yourself. Similar to Proposition 2.4.

Remark. If A, B ∈ Rn×n then in general we have A ·B ̸= B ·A. For example,(
0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
but

(
0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
.

Example 25 In the last lecture, for u ̸= 0, ρu denotes the reflection along the line spanned by

u. Consider u1 =

(
0
1

)
and u2 =

(
1
1

)
, and their corresponding reflections with their matrices:
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[ρu1 ] =

(
−1 0
0 1

)
,

[ρu2
] =

(
0 1
1 0

)
.

u1 =

(
0
1

)
u2 =

(
1
1

)

ρu1

(
2
0

) (
2
0

)

(ρu1 ◦ ρu2)

(
2
0

)
= ρu2

(
2
0

)

(ρu2
◦ ρu1

)

(
2
0

)
We have

ρu1

(
ρu2

(
2
0

))
= ρu1

(
0
2

)
=

(
0
2

)
ρu2

(
ρu1

(
2
0

))
= ρu2

(
−2
0

)
=

(
0
−2

)

Hence, ρu1

(
ρu2

(
2
0

))
̸= ρu2

(
ρu1

(
2
0

))
. Generally, ρu1

(
ρu2

(x)
)
̸= ρu2

(
ρu1

(x)
)
for any vector

x ∈ R2 because

[ρu1
◦ ρu2

] = [ρu1
] · [ρu2

] =

(
−1 0
0 1

)(
0 1
1 0

)
=

(
0 −1
1 0

)
[ρu2 ◦ ρu1 ] = [ρu2 ] · [ρu1 ] =

(
0 1
1 0

)(
−1 0
0 1

)
=

(
0 1
−1 0

)
⇒ [ρu1

◦ ρu2
] ̸= [ρu2

◦ ρu1
].

Therefore, reflecting first along u2 and then u1 is different to first reflecting along u1 and then
u2.

Remark. Notice that sometimes (really rare) we have A ·B = B ·A. For example,(
2 0
0 1

)(
1 0
0 2

)
=

(
2 0
0 2

)
=

(
1 0
0 2

)(
2 0
0 1

)
.

Example 26 (Rotations in R3) There are two interpretations of rotation maps. Take the two-
dimensional rotation rotφ with φ ∈ R for example. For any vector x ∈ R2, the vector rotφ(x)
can be interpreted in two ways. In Chapter 5, we let the coordinate system be unchanged so
rotφ(x) is a new vector in the same coordinate system. In this case, the map rotφ is called a
active transformation.
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φ

x

rotφ(x)

x1

x2

On the other hand, the vector x can be kept unchanged and the coordinate system is rotated
instead. As a result, the components of rotφ(x) are the coordinates of x in this new coordinate
system. In this case, rotφ is called a passive transformation.

x1

x2

x

x′1

x′2

−φ

Hence, for any φ > 0, the map rotφ corresponds to a counterclockwise rotation by the angle φ
when applied to the vector x. On the other hand, it also corresponds to a clockwise rotation by
the angle φ when applied to the coordinate system. The same duality of roles often occurs with
many transformations in physics.
For the following discussion of rotations in three dimension, we will interpret those rotations
as passive transformations. The simplest three-dimensional rotations are rotations around any
coordinate axes. For example, consider the following rotation.

x x′

y

y′

z, z′

φ

Consider a vector v =

xy
z

 ∈ R3. This rotation is similar to a rotation in R2 except that there
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is one more component which is left unchanged. Hence, the new coordinates are as follows.

x′ = cos(φ)x+ sin(φ)y

y′ = − sin(φ)x+ cos(φ)y

z′ = z

The new coordinates can be written as v′ = Rz(−φ)v, where the matrix Rz(θ) is defined for any
θ ∈ R as

Rz(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 .

Similarly, we can define the two matrices Rx(θ) and Ry(θ) from the rotations around x- and
y-axes as follows:

Rx(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 .

Recall that every rotations rotφ in R2 is specified by the angle φ. In R3, we need three parameters
to describe any rotations. There are many sets of parameters that can be used but the most
common and useful ones are Euler angles or Eulerian angles. The idea behind this is that
every rotations can be decomposed into three successive rotations each of which is about one
of the axes, with the condition that no two successive rotations can be about the same axis.
Hence, there are totally 12 possible conventions in defining the Euler angles (in a right-handed
coordinate system). We want to introduce 3 convenctions which are widely used in physics and
engineering.
The first convention here is used widely in celestial mechanics, applied mechanics, and frequently
in molecular and solid-state physics.

x ξ

y

η

z, ζ

φ

x ξ′

y

η′

z

ζ ′

φ

θ

x

x′ y

y′

z

z′

φ
ψ

θ
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Consider any v =

xy
z

 ∈ R3. We get angles u =

ξη
ζ

 , u′ =

ξ′η′
ζ ′

 , v′ =

x′y′
z′

 ∈ R3 after

each rotations as follows: u = Rz(−φ)v, u′ = Rx(−θ)u, and v′ = Rz(−ψ)u′. Hence, we get the
rotated vector v′ from v as follows:

v′ = Rz(−ψ)u′ = Rz(−ψ)Rx(−θ)u = Rz(−ψ)Rx(−θ)Rz(−φ)v.

As a result, we get the matrix R(φ, θ, ψ) describing any general three-dimensional rotations as
follows:

R(φ, θ, ψ)

=Rz(−ψ)Rx(−θ)Rz(−φ)

=

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


=

 cos(ψ) cos(φ)− cos(θ) sin(φ) sin(ψ) cos(ψ) sin(φ) + cos(θ) cos(φ) sin(ψ) sin(ψ) sin(θ)
− sin(ψ) cos(φ)− cos(θ) sin(φ) cos(ψ) − sin(ψ) sin(φ) + cos(θ) cos(φ) cos(ψ) cos(ψ) sin(θ)

sin(θ) sin(φ) − sin(θ) cos(φ) cos(θ)

 .

The second convention is used widely in quantum mechanics, nuclear physics, and particle
physics.

x ξ

y

η

z, ζ

φ

x

ξ′

y

η′

z

ζ ′

φ

θ

x

x′

y

y′

z

z′

φ

ψ

θ
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Similarly, we get

R(φ, θ, ψ)

=Rz(−ψ)Ry(−θ)Rz(−φ)

=

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


=

− sin(ψ) sin(φ) + cos(θ) cos(φ) cos(ψ) sin(ψ) cos(φ) + cos(θ) sin(φ) cos(ψ) − cos(ψ) sin(θ)
− cos(ψ) sin(φ)− cos(θ) cos(φ) sin(ψ) cos(ψ) cos(φ)− cos(θ) sin(φ) sin(ψ) sin(ψ) sin(θ)

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)

 .

The last convention, also called Tait-Bryan angles, is widely used in engineering applications
relating to the orientation of moving vehicles such as aircraft and satellites.

x ξ

y

η

z, ζ

φ

x

ξ′

y

η′

z

ζ ′

φ

θ

x

x′

y

y′

z

z′

φ

ψ

θ

In a similar fashion, we get

R(φ, θ, ψ)

=Rx(−ψ)Ry(−θ)Rz(−φ)

=

1 0 0
0 cos(ψ) sin(ψ)
0 − sin(ψ) cos(ψ)

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


=

 cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)
sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ) sin(ψ) sin(θ) sin(φ) + cos(ψ) cos(φ) cos(θ) sin(ψ)
cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ) cos(ψ) sin(θ) sin(φ)− sin(ψ) cos(φ) cos(θ) cos(ψ)


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In this case, the three parameters have their names: the angle φ of the rotation about the
vertical axis (z- or ζ-axis) is the heading or yaw angle; the angle θ of the rotation around a
perpendicular axis (y- or η-axis) fixed in the vehicle and normal to the figure axis (x- or ξ-axis)
is the pitch or attitude angle; the angle ψ of the rotation about the figure axis of the vehicle is
the roll or bank angle.
Furthermore, there is another useful set of parameters called the Cayley-Klein parameters.
This set comprises 4 parameters that are better than the Euler angles to use in numerical
computation due to the large number of trigonometric functions involved when using the Euler
angles. Besides, the four-parameter sets are also useful in branches of physics, wherever rotations
or rotational symmetry are involved. However, we will not introduce it here because complex
numbers are involved. For more details, see [G].

Exercises

Exercise 23. Let u =

(
2
1

)
, d =

(
1
1

)
and x =

(
5
0

)
.

(i) Calculate the matrices [Pu] and [ρu] in this special case.
(ii) Calculate the following vectors and draw them in one picture together with u, d and x

Pu(x), ρu(x), (Pu ◦ Pd)(x), rotπ
2
(x),

(Pu ◦ rotπ
2
)(x), (rotπ

2
◦Pu)(x), (Pd ◦ rotπ

2
◦Pu)(x) .
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7

The inverse of a linear map

In Chapter 3, we learned that a function f : X → Y is invertible if there exists a function g : Y → X
such that for every x ∈ X and y ∈ Y , g(f(x)) = x and f(g(y)) = y. Then, g = f−1 and it is called the
inverse of f .

We also saw that invertibility is equivalent to bijectivity. A function f is bijective if for every y ∈ Y ,
there uniquely exists x ∈ X such that y = f(x). Equivalently, a function is bijective when it is injective
and surjective.

In this chapter, we want to answer the following questions:

(a) When is a linear map invertible?

(b) Is the inverse also linear?

(c) How to calculate the inverse?

Example 27 Consider the linear map

F : R2 −→ R2,

x 7−→
(
1 3
2 4

)
x .

Is F invertible?

Take y =

(
y1
y2

)
∈ R2 and check if F (x) = y has a unique solution.

1 3 y1

2 4 y2

( )
−2

∼ 1 3 y1

0 −2 y2 − 2y1

 
− 1

2

∼
1 3 y1

0 1 y1 − 1
2y2

 
−3

∼
1 0 −2y1 + 3

2y2

0 1 y1 − 1
2y2




We get the unique solution(
x1
x2

)
=

(
−2y1 + 3

2y2
y1 − 1

2y2

)
=

(
−2 3

2
1 − 1

2

)(
y1
y2

)
.
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Hence, F is invertible and its inverse is

F−1 : R2 −→ R2,

y 7−→
(
−2 3

2
1 − 1

2

)
y.

The rank of a linear map F : Rn → Rm is defined by the rank of its matrix, i.e. rk(F ) := rk([F ]).
The following theorem answers the question about when a linear map is invertible.

Theorem 7.1 A linear map F : Rn → Rm is invertible if and only if m = n = rk(F ).

Remark. This theorem is in the format “Statement 1 if and only if Statement 2”, which means that
both the statements are either true or false. In addition, it also means both “Statement 1 implies
Statement 2” and “Statement 2 implies Statement 1”. To prove this theorem, we need to prove both
the implications.

Proof. F is invertible ⇐⇒ [F ]x = y has a unique solution for all y ∈ Rm.

(
[F ] | y

)
m

n + 1

∼ . . . ∼
(
B | z

)
= rref

(
[F ] | y

)
,

where B = rref
(
[F ]
)
and z ∈ Rm can be an arbitrary vector depending on y.

In one direction, suppose F is invertible. We want to show that n = m = rk(F ) = rk
(
[F ]
)
.

If rk(F ) < m, then

(
B | z

)
=

∗

0


z m

Hence, no solution for some z (and thus, some y). Therefore, rk(F ) = m.
If rk(F ) < n, then

(
B | z

)
=

1 ∗
. . . ∗

1 ∗

0 1
.
.
.

. . .

0




z

n

In this case, there are columns without pivot elements so there is no unique solution (infinitely many
solutions). Therefore, rk(F ) = n.

Conversely, if m = n = rk(F ), then B =

1 0
. . .

0 1

 = In. Hence, [F ]x = y has a unique solution for

all y ∈ Rm; therefore, F is invertible.

Next, the following proposition confirms that the inverse of a linear map is also linear.
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Proposition 7.2 If a linear map F : Rn → Rn is invertible, then its inverse F−1 is also linear.

Proof. Let u, v ∈ Rn. Set x = F−1(u) and y = F−1(v), i.e. F (x) = u and F (y) = v.
Then

F−1(u) + F−1(v) = x+ y = id(x+ y) = F−1F (x+ y)

= F−1
(
F (x) + F (y)

)
(because F is linear)

= F−1(u+ v).

In addition, for λ ∈ R,

λF−1(u) = λx = F−1F (λx) = F−1
(
λF (x)

)
= F−1(λu).

Hence, F−1 is linear.

Since each linear map corresponds to a matrix, we can define the inverse of a matrix corresponding to
a invertible linear map as follows.

Definition 7.3 If A ∈ Rn×n is the matrix of an invertible linear map F : Rn → Rn (i.e.
A = [F ]), then we define the inverse of A by A−1 :=

[
F−1

]
.

Naturally, we can ask when a matrix is invertible, which is answered by the following theorem.

Theorem 7.4 The inverse of A ∈ Rn×n exists (A is invertible) if and only if rref(A) = In.

Proof. This theorem follows from the proof of Theorem 7.1.

The inverses of matrices have the following properties.

Proposition 7.5 If A,B ∈ Rn×n are invertible we have
(i) AA−1 = A−1A = In,
(ii) (BA)−1 = A−1B−1.

Proof. Suppose A and B are matrices of linear maps F : Rn → Rn and G : Rn → Rn, respectively.

(i) Using Theorem 6.3, we have

AA−1 = [F ] ·
[
F−1

]
=
[
F ◦ F−1

]
= [idRn ] = In,

A−1A =
[
F−1

]
· [F ] =

[
F−1 ◦ F

]
= [idRn ] = In.

Hence, AA−1 = A−1A = In.

(ii) We have BA = [G] · [F ] = [G ◦ F ] and (G ◦ F )−1 = F−1 ◦G−1. Therefore,

(BA)−1 =
[
(G ◦ F )−1

]
=
[
F−1 ◦G−1

]
=
[
F−1

]
·
[
G−1

]
= A−1B−1.

In Example 27, we determined the inverse of A =

(
1 3
2 4

)
by solving the linear system Ax = y. In

general, if we want to determine the inverse of A ∈ Rn×n, we can use the following algorithm (a variant
of Gaussian elimination).
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Algorithm 7.6 (Gauss-Jordan elimination) Given a matrix A ∈ Rn×n, use the Gaussian
elimination to bring the augmented matrix (A | In) to the row-reduced echelon form (B | C).
There are 2 scenarios:

• If B ̸= In, then A is not invertible.
• If B = In, then A is invertible and C = A−1. That is, we get

(A | In) ∼ . . . ∼
(
In | A−1

)
= rref(A | In).

Example 28 Determine the inverse of A =

(
1 3
2 4

)
.

(A | I2) =
1 3 1 0

2 4 0 1

( )
−2

∼ 1 3 1 0

0 −2 −2 1

( )
− 1

2

∼
1 3 1 0

0 1 1 − 1
2

 
−3

∼
1 0 −2 3

2

0 1 1 − 1
2


 =

(
I2 | A−1

)
.

We can check that

AA−1 =

(
1 3
2 4

)(
−2 3

2
1 − 1

2

)
=

(
1 0
0 1

)
= A−1A.

(Definition 7.7 and Theorem 7.8 are just a remark and they are not so important for the rest of this
course. They will appear again in detail in Linear Algebra II)

Definition 7.7 For λ ∈ R with λ ̸= 0 and 1 ≤ i, j ≤ n we define the elementary matrices
Rλ,j

i , Rλ
i , Ri,j ∈ Rn×n by

Rλ,j
i =



1

. . .
1

. . .
λ 1

. . .
1

, Rλ
i =


1

. . .
1
λ

1

. . .
1

, Ri,j =



1

. . .
0 1

. . .
1 0

. . .
1

 .

Here the λ in Rλ,j
i is in the i-th row and j-th column, in Rλ

i it is in the i-th row, and in Ri,j the
0 are on the diagonal in the i-th row and j-th column.

Multiplying with an elementary matrix from the left corresponds to the elementary row operations
(Definition 2.6)

(R1) Multiyplying with Rλ,j
i : Add λ-times row j to row i.

(R2) Multiyplying with Rλ
i : Multiply row j by λ. (λ ̸= 0)

(R3) Multiyplying with Ri,j : Change row i and j.

Taking a look at Example 28 again, we have

A =
1 3

2 4

( )
−2

∼ 1 3

0 −2

( )
− 1

2

∼ 1 3

0 1

( )
−3

∼ 1 0

0 1

( )
= I2,
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where each step corresponds to the multiplication with an elementary matrix:

R−2,1
2

(
1 3
2 4

)
=

(
1 0
−2 1

)(
1 3
2 4

)
=

(
1 3
0 −2

)
,

R
−1/2
2

(
1 3
0 −2

)
=

(
1 0
0 − 1

2

)(
1 3
0 −2

)
=

(
1 3
0 1

)
,

R−3,2
1

(
1 3
0 1

)
=

(
1 −3
0 1

)(
1 3
0 1

)
=

(
1 0
0 1

)
.

As a result, we get

R−3,2
1 R

−1/2
2 R−2,1

2 A = I2

⇔ A =
(
R−3,2

1 R
−1/2
2 R−2,1

2

)−1

=
(
R−2,1

2

)−1 (
R

−1/2
2

)−1 (
R−3,2

1

)−1

= R2,1
2 R

1/2
2 R3,2

1 ,

where we use the fact that all row operations are reversible, which means that all corresponding ele-
mentary matrices are invertible. The last result shows that the invertible matrix A can be written as a

product of elementary matrices R2,1
2 , R

1/2
2 , R3,2

1 . This result holds in general.

Theorem 7.8 Every invertible matrix is a product of elementary matrices.

Exercises

Exercise 24. Decide if the following two linear maps are invertible. Determine their inverses if
they exist.

F : R3 −→ R3 , G : R3 −→ R3 ,x1x2
x3

 7−→
 2x2 + 2x3
x1 − 4x2 + 6x3

x2 + x3

 ,

x1x2
x3

 7−→
10x1 + x2 − 26x3

x1 − 2x3
−x1 + x3

 .
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Subspaces, Kernel & Image

In the previous sections, we considered subsets of Rn which arose from the study of linear maps. For
example, given a linear map F : Rn → Rm, we could find its image im(F ) ⊂ Rm. In the case m = 3, we
saw that the image could be everything (R3), a plane, a line, or just contains only one point 0 ∈ R3.

These sets are examples of subspaces, in which if you take any two vectors from a subspace, their sum
and any scalar multiple of them also remain within the same subspace. The definition of subspaces is
given as follows.

Definition 8.1 A subset U ⊂ Rn is a subspace of Rn if
(i) 0 ∈ U ,
(ii) for all u, v ∈ U we have u+ v ∈ U ,
(iii) for all u ∈ U and λ ∈ R we have λu ∈ U .

Example 29 1) U = {0} and U = Rn are always subspaces of Rn for all n ≥ 1.
2) General subspaces of Rn for n = 1, 2, 3 are given as follows.

n = 1: {0}, R.
n = 2: {0}, R2,

{λv ∈ R2 | λ ∈ R} for any v ∈ R2, v ̸= 0.
n = 3: {0}, R3,

{λv ∈ R3 | λ ∈ R} for any v ∈ R3, v ̸= 0,
{λ1v + λ2u ∈ R3 | λ1, λ2 ∈ R} for any u, v ∈ R3, u, v ̸= 0.

3) U =


x1x2
x3

 ∈ R3

∣∣∣∣∣∣ x1 + x2 − 3x3 = 4

 ⊂ R3 is not a subspace because 0 /∈ U .

4) U =


x1x2
x3

 ∈ R3

∣∣∣∣∣∣ −1 ≤ x1 ≤ 1

 ⊂ R3 is also not a subspace because we have

1
0
0

 ∈ U
but 2

1
0
0

 /∈ U .

A lot of subspaces come from linear maps (actually all of them). We will see that the image of a linear
map is a subspace. Another subspace coming from a linear map is its kernel.
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Definition 8.2 For a linear map F : Rn → Rm the kernel of F is defined by

ker(F ) = {x ∈ Rn | F (x) = 0} .

In other words, the kernel of a linear map F is the set of all solutions to the linear system [F ]x = 0.
The following figure illustrates the kernel and the image of a linear map.

RmRn

im(F )ker(F )

F

0

0

Proposition 8.3 For any linear map F : Rn → Rm we have the following:
(i) The kernel ker(F ) is a subspace of Rn.
(ii) The image im(F ) is a subspace of Rm.

Proof. To show that a subset U is a subspace, we need to check the 3 conditions from Definition 8.1.

(i) ker(F ) is a subspace of Rn because it satisfies the following conditions.

(a) 0 ∈ ker(F ) because F (0) = [F ]0 = 0.

(b) For any u, v ∈ ker(F ), we have F (u+ v) = F (u) + F (v) = 0+ 0 = 0.
Therefore, u+ v ∈ ker(F ).

(c) For any u ∈ ker(F ) and λ ∈ R, we have F (λu) = λF (u) = λ · 0 = 0. Thus, λu ∈ ker(F ).

(ii) im(F ) is a subspace of Rm because it satisfies the following conditions.

(a) We have 0 ∈ im(F ) since F (0) = 0.

(b) Let u, v ∈ im(F ). In other words, u = F (x) and v = F (y) for some x, y ∈ Rn.
Then we have u+ v = F (x) + F (y) = F (x+ y). Because x+ y ∈ Rn, we have u+ v ∈ im(F ).

(c) Let u ∈ im(F ), u = F (x) for some x ∈ Rn, and λ ∈ R.
We have λu = λF (x) = F (λx), which implies that λu ∈ im(F ).

Remark. Actually, every subspace can be written as the kernel and the image of some linear maps.
However, we cannot prove this yet.
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Example 30 1) Let u ∈ Rn and u ̸= 0. Consider the orthogonal projection Pu : Rn → Rn.

The kernel of Pu is given by all vector v ∈ Rn

such that u • v = 0 because u ̸= 0 and

Pu(v) =
u • v
u • u

u = 0 ⇔ u • v
u • u

= 0 ⇔ u•v = 0.

Hence, ker(Pu) = {v ∈ Rn | u • v = 0}.
For n = 2, ker(Pu) is a line.
For n = 3, ker(Pu) is a plane.

u

v

Pu(v) = 0

ker(Pu)

Pu(x)

x

0

2) Consider the linear map

F : R2 −→ R3

x 7−→

1 1
2 1
0 1

x

Kernel: We have x ∈ ker(F ) ⇔ F (x) = 0. Therefore, we need to find solutions to the linear
system [F ]x = 0.

(
[F ] | 0

)
=

1 1 0

2 1 0

0 1 0




−2

∼
1 1 0

0 −1 0

0 1 0


1 ∼

1 1 0

0 −1 0

0 0 0


1−1 ∼

1 0 0

0 1 0

0 0 0




Hence, x =

(
0
0

)
= 0 and therefore, ker(F ) = {0}.

Image: To calculate the image of F , we need to check for which y ∈ R3 there exist at least one

x ∈ R2 with F (x) = y.

(
[F ] | y

)
=

1 1 y1

2 1 y2

0 1 y3




−2

∼
1 1 y1

0 −1 y2 − y1
0 1 y3


1

∼
1 1 y1

0 −1 −2y1 + y2

0 0 −2y1 + y2 + y3


1−1 ∼

1 0 −y1 + y2

0 1 2y1 − y2
0 0 −2y1 + y2 + y3




Thus, im(F ) =


y1y2
y3

 ∈ R3

∣∣∣∣∣∣ y3 = 2y1 − y2

. Notice that this calculation can also be

used to calculate the kernel by setting y1 = y2 = y3 = 0. Besides, for any y ∈ im(F ), we
can set y1 = λ1, y2 = λ2, and write

y =

y1y2
y3

 =

 λ1
λ2

2λ1 − λ2

 = λ1

1
0
2

+ λ2

 0
1
−1

 .

Therefore, im(F ) =

λ1
1
0
2

+ λ2

 0
1
−1

 ∈ R3

∣∣∣∣∣∣ λ1, λ2 ∈ R

.

3) Consider the linear map

G : R4 −→ R2

x 7−→
(
1 2 0 1
1 1 1 1

)
x
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Kernel: We solve the linear system [G]x = 0.

(
[G] | 0

)
=

1 2 0 1 0

1 1 1 1 0

( )
−1

∼ 1 2 0 1 0

0 −1 1 0 0

( )
2−1

∼ 1 0 2 1 0

0 1 −1 0 0

( )

Hence, the solution is


x1 = −2t1 − t2
x2 = t1

x3 = t1

x4 = t2

, for t1, t2 ∈ R.

Another way of writing this solution is

x = t1


−2
1
1
0

+ t2


−1
0
0
1

 for t1, t2 ∈ R.

Therefore, ker(G) =

t1

−2
1
1
0

+ t2


−1
0
0
1

 ∈ R4

∣∣∣∣∣∣∣∣ t1, t2 ∈ R

.

Image: We check for which y ∈ R2 that the linear system [G]x = y has solutions.

(
[G] | y

)
=

1 2 0 1 y1

1 1 1 1 y2

( )
−1

∼ 1 2 0 1 y1

0 −1 1 0 y2 − y1

( )
2−1

∼ 1 0 2 1 3y1 − 2y2

0 1 −1 0 y1 − y2

 .
Since rk

(
[G] | y

)
= rk

(
[G]
)
for any y ∈ R2, the linear system [G]x = y has solutions for

any y ∈ R2. Hence, im(G) = R2.

In Example 30, we see that the sets containing all sums of multiples of some vectors appear frequently
when we try to determine the kernel and the image of a linear map.

Definition 8.4 (i) A linear combination of vectors v1, . . . , vn ∈ Rm is a vector of the form

u = λ1v1 + λ2v2 + · · ·+ λnvn ∈ Rm

for some numbers λ1, . . . , λn ∈ R.
(ii) The span of v1, . . . , vn ∈ Rm is the set of all linear combinations

span{v1, . . . , vn} = {λ1v1 + · · ·+ λnvn ∈ Rm | λ1, . . . , λn ∈ R} .

Example 31 1)

1
2
3

 is a linear combination of

0
1
0

 and

1
0
3

 since

1
2
3

 = 2

0
1
0

+

1
0
3

.

2) Every vector x =

x1...
xn

 ∈ Rn is a linear combination of e1, . . ., en because

x = x1e1 + . . .+ xnen.

Therefore, Rn = span{e1, . . . , en}.
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3) From Example 30, we have

im(F ) = span


1
0
2

 ,

 0
1
−1

 ,

ker(G) = span



−2
1
1
0

 ,


−1
0
0
1


 .

Remark. Given a linear map

F : Rn −→ Rm,

x 7−→ Ax,

with A =

 | |
v1 · · · vn
| |

, we can always write im(F ) = span{v1, . . . , vn}.

Proposition 8.5 For v1, . . . , vn ∈ Rm we have the following.
(i) span{v1, . . . , vn} is a subspace of Rm.
(ii) If U ⊂ Rm is a subspace and v1, . . . , vn ∈ U then span{v1, . . . , vn} ⊂ U .

Proof. The proof is left as Exercise 25.

Recall that a linear map F : Rn → Rm is surjective if and only if im(F ) = Rm. A similar statement
exists for injective functions as follows.

Proposition 8.6 A linear map F : Rn → Rm is injective if and only if ker(F ) = {0}.

Proof. The proof is left as Exercise 20.

We also know that F is injective if each column of rref([F ]) contains a pivot element, i.e., rk(F ) = n.
Similarly, we know that F is surjective if each row of rref([F ]) contains a pivot element, i.e., rk(F ) = m.
Summarizing everything, we get the following theorem.

Theorem 8.7 Let F : Rn → Rm be a linear map.
(i) We have the following equivalent statements for F being injective:

F is injective ⇐⇒ ker(F ) = {0} ⇐⇒ rk([F ]) = n .

(ii) We have the following equivalent statements for F being surjective:

F is surjective ⇐⇒ im(F ) = Rm ⇐⇒ rk([F ]) = m.

(iii) If m = n then the following statements are equivalent:

F is bijective ⇐⇒ F is injective ⇐⇒ F is surjective .
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Exercises

Exercise 25. Show the following without using Proposition 8.5:
(i) For v1, . . . , vn ∈ Rm the set span{v1, . . . , vn} is a subspace of Rm.
(ii) If U ⊂ Rm is a subspace and v1, . . . , vn ∈ U then span{v1, . . . , vn} ⊂ U .

Exercise 26. Which of the following subsets are subspaces? Justify your answers.

U1 =
{
x ∈ R3 | x1 + x2 + x3 = 0

}
,

U2 =
{
x ∈ R3 | x1 · x2 · x3 = 0

}
,

U3 = {x ∈ Rn | Ax = Bx} , where A,B ∈ Rm×n,

U4 =
{
x ∈ R2 | x1 ≤ x2

}
.

Exercise 27.
(i) Which of the following subsets are subspaces? Justify your answers.

U1 =
{
x ∈ R3 | x1 − x2 = x3

}
,

U2 =
{
x ∈ R2 | x21 − x22 = 0

}
,

U3 = {x ∈ Rn | Ax = −2x} , where A ∈ Rn×n is a fixed matrix,

U4 = {x ∈ Rn | x • v = 0} , for a fixed v ∈ Rn.

(ii) For each subset U in (i) which is a subspace, find numbers a, b ≥ 1 and a linear map
F : Ra → Rb such that ker(F ) = U .

Exercise 28.
(i) Which of the following subsets are subspaces? Justify your answers.

U1 =
{
x ∈ R3 | ∥x∥ ≤ 1

}
,

U2 =
{
x ∈ R3 | 2x1 − x2 = x3

}
,

U3 =
{
x ∈ R3 | x21 − x1 = 0

}
,

U4 =
{
x ∈ R4 | Pu(x) = 0

}
, where u =


1
0
2
−1

 .

(ii) For the subspaces U in (i): Find vectors v1, . . . , vl such that U = span{v1, . . . , vl}.
(Challenge for (ii): Try to choose the v1, . . . , vl such that they are pairwise orthogonal and all of
them have norm 1. Such a basis is called orthonormal basis and we will study them in Chapter
12)

Exercise 29. Consider the following subspace

W = ker(Pu) =
{
x ∈ R3 | Pu(x) = 0

}
, where u =

 2
−1
0

 .

(i) Determine vectors v1, . . . , vm ∈ R3 with W = span{v1, . . . , vm}.
(ii) Find a linear map H : R3 −→ R3 with im(H) =W .
(iii) Calculate ker(H) and ker(Pu ◦H).
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Exercise 30.
(i) Let U, V ⊂ Rm be subspaces. Decide whether the union U ∪ V is also a subspace or not.
(ii) Let U, V ⊂ Rm be subspaces. Decide whether the intersection U ∩ V is also a subspace or

not.

Exercise 31.
(i) Decide if the following two linear maps are invertible. Determine their inverses if they exist.

F : R3 −→ R3 , G : R3 −→ R3 ,x1x2
x3

 7−→
 2x1 − x2
−4x1 + x2 − x3
6x1 − 2x2 + x3

 ,

x1x2
x3

 7−→
 −x1 + x3
−4x1 + x2 − x3
6x1 − 2x2 + x3

 .

(ii) Determine ker(F ) and ker(G).

Exercise 32. Find an example of a subset U ⊂ R2 which is not a subspace, but which
(i) includes 0 and which is closed under addition.
(ii) includes 0 and which is closed under scalar multiplication.

In other words: Find examples of subsets, which just satisfy 2 of the 3 conditions for subspaces.
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In Example 30, we considered the linear map

G : R4 −→ R2

x 7−→
(
1 2 0 1
1 1 1 1

)
x

and determined its image

im(G) = R2 = span

{(
1
0

)
,

(
0
1

)}
.

But we also learned that

im(G) = span of columns of [G]

= span

{(
1
1

)
,

(
2
1

)
,

(
0
1

)
,

(
1
1

)}
.

This shows that

span

{(
1
0

)
,

(
0
1

)}
= span

{(
1
1

)
,

(
2
1

)
,

(
0
1

)
,

(
1
1

)}
.

From the left-hand side, we just need 2 vectors to span im(G). Meanwhile, on the right-hand side, there
are too many vectors, so we want to remove some extra vectors. In general, given a subspace as a span
of some vectors, we may wonder about the minimum number of vectors and which vectors we need to
keep to describe this subspace. In order to answer that question, we first need the following lemma.

Lemma 9.1 Let v1, . . . , vl ∈ Rm. If vl ∈ span{v1, . . . , vl−1} then

span{v1, . . . , vl} = span{v1, . . . , vl−1} .

Proof. Set V = span{v1, . . . , vl} and W = span{v1, . . . , vl−1}. Clearly, we have W ⊂ V , so we want to
show V ⊂W . If v ∈ span{v1, . . . , vl} = V , then there exist λ1, . . . , λl ∈ R with

v = λ1v1 + . . .+ λlvl. (∗)

Since vl ∈ span{v1, . . . , vl−1}, there also exist α1, . . . , αl−1 ∈ R with

vl = α1v1 + . . .+ αl−1vl−1. (∗∗)
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Combining (∗) and (∗∗), we have

v = λ1v1 + . . .+ λl−1vl−1 + λl(α1v1 + . . .+ αl−1vl−1)

= (λ1 + λlα1)v1 + . . .+ (λl−1 + λlαl−1)vl−1

And therefore v ∈ span{v1, . . . , vl−1} =W , i.e. V ⊂W . As a result, V =W .

Example 32 For the linear map G in Example 30, we get

im(G) = span

{(
1
1

)
,

(
2
1

)
,

(
0
1

)
,

(
1
1

)}
.

We can show directly that im(G) = R2 by using Lemma 9.1 without solving the linear system

[G]x = y. Since

(
2
1

)
= 2

(
1
1

)
−
(
0
1

)
∈ span

{(
1
1

)
,

(
0
1

)}
and also

(
1
1

)
∈ span

{(
1
1

)
,

(
0
1

)}
,

by Lemma 9.1, we get

im(G) = span

{(
1
1

)
,

(
0
1

)}
.

Since

(
1
0

)
=

(
1
1

)
−
(
0
1

)
, we get (again by Lemma 9.1)

im(G) = span

{(
1
0

)
,

(
1
1

)
,

(
0
1

)}
.

Since

(
1
1

)
=

(
1
0

)
+

(
0
1

)
, we get (again by Lemma 9.1)

im(G) = span

{(
1
0

)
,

(
0
1

)}
= R2.

As a result,

span

{(
1
1

)
,

(
2
1

)
,

(
0
1

)
,

(
1
1

)}
= span

{(
1
0

)
,

(
0
1

)}
.

General question: When is it possible to remove elements from span{v1, . . . , vl} without changing it?

Definition 9.2 (i) Vectors v1, . . . , vl ∈ Rm are called linearly independent if the equation

λ1v1 + · · ·+ λlvl = 0 (9.0.1)

with λ1, . . . , λl ∈ R just has the unique solution λ1 = · · · = λl = 0.
(ii) If there exist another solution of (9.0.1), i.e. where at least for one j = 1, . . . , l we have

λj ̸= 0, then the vectors v1, . . . , vl are called linearly dependent.

Example 33 Are the vectors v1 =

1
1
2

, v2 =

 1
−1
1

, and v3 =

−15
1

 linearly independent?

The equation λ1v1 + λ2v2 + λ3v3 = 0 is equivalent to | | |
v1 v2 v3
| | |

λ1λ2
λ3

 =

1 1 −1
1 −1 5
2 1 1

λ1λ2
λ3

 =

0
0
0

 .

To solve this linear system, we need to find the row-reduced echelon form of the augmented
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matrix:

1 1 −1 0

1 −1 5 0

2 1 1 0




−1−2

∼
1 1 −1 0

0 −2 6 0

0 −1 3 0




−21−1

∼
1 0 2 0

0 0 0 0

0 1 −3 0




∼
1 0 2 0

0 1 −3 0

0 0 0 0


.

Hence, the solution is


λ1 = −2t
λ2 = 3t

λ3 = t

, for t ∈ R. Therefore, v1, v2, v3 are linearly dependent since

there are non-zero solutions.
For t = 1, we get λ1 = −2, λ2 = 3, λ3 = 1. Thus, we get

−2v1 + 3v2 + v3 = −2

1
1
2

+ 3

 1
−1
1

+

−15
1

 = 0

⇒ v3 = 2v1 − 3v2.

Therefore, v3 ∈ span{v1, v2} and by Lemma 9.1 span{v1, v2, v3} = span{v1, v2}. On the other
hand, v1 and v2 are linearly independent since | | 0

v1 v2 0
| | 0

 =

1 1 0
1 −1 0
2 1 0

 ∼
1 0 0
0 1 0
0 0 0

 ,

which shows that 0 is the only solution and hence, λ1v1 + λ2v2 = 0 ⇐⇒ λ1 = λ2 = 0. As a
result, we cannot remove v1 or v2 without changing the span.

We can summarize in the following theorem what we have just done in Example 33.

Theorem 9.3 Let v1, . . . , vl ∈ Rm. The following statements are equivalent:
(i) v1, . . . , vl are linearly dependent.
(ii) There exists a j = 1, . . . , l, such that vj is a linear combination of the other vectors.
(iii) There exists a j = 1, . . . , l with

span{v1, . . . , vj−1, vj+1, . . . , vl} = span{v1, . . . , vl} .

Proof. The statement (ii) ⇒ (iii) is Lemma 9.1. Now we prove the statement (iii) ⇒ (ii) as follows:

vj ∈ span{v1, . . . , vl}
(iii)
= span{v1, . . . , vj−1, vj+1, . . . , vl} ⇒ vj ∈ span{v1, . . . ,��ZZvj , . . . , vl}.

Next, for proving the statement (ii) ⇒ (i), suppose vj = λ1v1 + . . .+ λj−1vj−1 + λj+1vj+1 + . . .+ λlvl.
Then,

0 = λ1v1 + . . .+ λj−1vj−1 − 1 · vj + λj+1vj+1 + . . .+ λlvl.

Hence, v1, . . . , vl are linearly dependent.

Finally, for proving the statement (i) ⇒ (ii), suppose λ1v1 + . . .+ λlvl = 0 with λj ̸= 0. Then,

vj =

(
λ1
λj

)
v1 + . . .+

(
λj−1

λj

)
vj−1 +

(
λj+1

λj

)
vj+1 + . . .+

(
λl
λj

)
vl.
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Thus, vj ∈ span{v1, . . . , vj−1, vj+1, . . . , vl}.

The following lemma shows that in a subspace, we cannot have more linearly independent vectors than
the vectors spanning the subspace.

Lemma 9.4 Let V ⊂ Rn be a subspace, v1, . . . , vl ∈ V linearly independent and V =
span{w1, . . . , wm} for some w1, . . . , wm ∈ Rn. Then we have l ≤ m.

Proof. The proof is left as Exercise 33.

The following lemma shows how to make a set of linearly independent vectors bigger.

Lemma 9.5 If v1, . . . , vl ∈ Rn are linearly independent and w ∈ Rn with w /∈ span{v1, . . . , vl}
then v1, . . . , vl, w are linearly independent.

Proof. Assume that λ1v1 + . . .+ λlvl + µw = 0. If µ ̸= 0, then

w =

(
−λ1
µ

)
v1 + . . .+

(
−λl
µ

)
vl ∈ span{v1, . . . , vl},

which contradicts to the assumption. Hence, µ = 0, which gives λ1v1 + . . .+ λlvl = 0.

Then, λ1 = . . . = λl = 0 because v1, . . . , vl are linearly independent. Thus, v1, . . . , vl, and w are linearly
independent.

Exercises

Exercise 33. Let V ⊂ Rn be a subspace, v1, . . . , vl ∈ V linearly independent and V =
span{w1, . . . , wm} for some w1, . . . , wm ∈ Rn. Show that we have l ≤ m. (Without using
Lemma 9.4)
In other words: Show that a subspace spanned by m vectors can not contain more than m
linearly independent vectors.
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Bases & dimensions

We saw that if v1, . . . , vl ∈ Rn are linearly dependent, then there exist a 1 ≤ j ≤ l such that

span{v1, . . . , vl} = span{v1, . . . , vj−1, vj+1, . . . , vl}.

Therefore, we will be just interested in the case when v1, . . . , vl are linearly independent.

Definition 10.1 Let V ⊂ Rn be a subspace. Vectors v1, . . . , vl ∈ V form a basis of V if
(i) V = span{v1, . . . , vl},
(ii) v1, . . . , vl are linearly independent.

In this case we also say that {v1, . . . , vl} is a basis of V .

Later we will also be interested in the order of the vj and write a basis as a tuple (v1, . . . , vl).

Example 34 1) {e1, e2},
{
e1,

(
1
1

)}
,

{
e2,

(
1
1

)}
are three different bases of R2.

2) Consider U = span


1
1
2

 ,

 1
−1
1

 ,

−15
1

 = span{v1, v2, v3}. We want to find a basis for

the subspace U . We have seen in Example 33:
(a) v1, v2, v3 are linearly dependent because −2v1 + 3v2 + v3 = 0.
(b) v3 ∈ span{v1, v2} and hence, U = span{v1, v2} by Lemma 9.1.
(c) v1 and v2 are linearly independent.
Therefore, {v1, v2} is a basis of U .

3) For any n ≥ 1, {e1, . . . , en} is a basis of Rn. This basis is called the standard basis.

We will see that a basis of a subspace is a convenient tool for us to study the subspace because we can
represent every vector of the subspace in terms of vectors in the basis. By working with bases, we can
focus on understanding a smaller set of vectors rather than dealing with the entire space, enabling us to
analyze, manipulate, and comprehend subspaces with greater ease. Fortunately, the following theorem
shows that bases always exist.

Theorem 10.2 For any subspace V ⊂ Rn we have the following:
(i) V has a basis.
(ii) All bases of V have the same number of elements.
(iii) If v1, . . . , vl ∈ V are linearly independent then there exist ul+1, . . . , ut ∈ V , such that

{v1, . . . , vl, ul+1, . . . , ut} is a basis of V .
(iv) If V = span{w1, . . . , wm} then there exists a subset {u1, . . . , ut} ⊂ {w1, . . . , wm} such that

{u1, . . . , ut} is a basis of V .
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Proof. (ii) Let {v1, . . . , vl} and {w1, . . . , wm} be bases of V . Then, we have by Lemma 9.4,

v1, . . . , vl ∈ V are linearly independent and V = span{w1, . . . , wm} ⇒ l ≤ m,

w1, . . . , wm ∈ V are linearly independent and V = span{v1, . . . , vl} ⇒ m ≤ l.

Therefore, we have l = m.

(iv) 1. If w1, . . . , wm are linearly independent, then {u1, . . . , ut} = {w1, . . . , wm} is a basis of V .

2. Otherwise, if {w1, . . . , wm} are linearly dependent, then By Theorem 9.3 there exist a j =
1, . . . ,m with span{w1, . . . , wj−1, wj+1, . . . , wm} = span{w1, . . . , wm} = V .

Now repeat 1. and 2. with span{w1, . . . , wj−1, wj+1, . . . , wm}, i.e. remove vectors like wj until
when the remaining vectors are linearly independent. Eventually, we will get a basis {u1, . . . , ut}
of V .

(iii) Assume that v1, . . . , vl ∈ V are linearly independent.

1. If span{v1, . . . , vl} = V , then {v1, . . . , vl} is a basis of V .

2. Otherwise, if span{v1, . . . , vl} ≠ V , then there exists u ∈ V with u /∈ span{v1, . . . , vl}. In that
case, we set ul+1 = u. By Lemma 9.5, v1, . . . , vl, ul+1 are linearly independent.

Repeat 1. and 2. for {v1, . . . , vl, ul+1} until when V = span{v1, . . . , vl, ul+1, . . . , ut}.

(i) If V = {0} then ∅ = {} is a basis because span(∅) = {0} by convention. Otherwise, we can
construct a basis using (iii).

Definition 10.3 Let V ⊂ Rn be a subspace. The dimension of V, denoted by dim(V ), is the
number of elements in a basis of V .

Example 35 1) dim(Rn) = n because {e1, . . . , en} is a basis of Rn.

2) The dimension of U = span


1
1
2

 ,

 1
−1
1

 ,

−15
1

 = span{v1, v2, v3} is dim(U) = 2

because {v1, v2} is a basis.

Corollary 10.4 Let V ⊂ Rn be a subspace with dim(V ) = m and v1, . . . , vm ∈ V . Then the
following statements are equivalent:
(i) v1, . . . , vm are linearly independent.
(ii) V = span{v1, . . . , vm}.
(iii) {v1, . . . , vm} is a basis of V .

Proof. (i) ⇒ (ii): If V ̸= span{v1, . . . , vm}, then by Theorem 10.2 (iii), there exists a basis with
more than m elements, which contradicts to the assumption that dim(V ) = m. Hence, V =
span{v1, . . . , vm}.

(ii) ⇒ (i): If v1, . . . , vm are linearly dependent, then by Theorem 9.3 and Theorem 10.2 (iv), there
exists a basis with less than m elements, which contradicts to the assumption that dim(V ) = m.
Thus, v1, . . . , vm are linearly independent.
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(i) + (ii) ⇐⇒ (iii) by definition 10.1.

Example 36 Determine bases for ker(F ) and im(F ) of the following linear map:

F : R4 −→ R3,

x 7−→

1 −2 1 2
2 −4 1 3
0 0 1 1

x.

Kernel: We need to find rref([F ] | 0) to solve the linear system [F ]x = 0. Because the column
corresponding to 0 does not change after row operations, we just need to find rref([F ]).

1 −2 1 2

2 −4 1 3

0 0 1 1




−2

∼
1 −2 1 2

0 0 −1 −1
0 0 1 1


−1−1−1 ∼

1 −2 0 1

0 0 1 1

0 0 0 0


 = rref([F ]).

Hence,

x =


x1
x2
x3
x4

 ∈ ker(F ) ⇐⇒ [F ]x = 0 ⇐⇒


x1 = 2t1 − t2
x2 = t1

x3 = −t2
x4 = t2

, for t1, t2 ∈ R

⇐⇒ x = t1


2
1
0
0

+ t2


−1
0
−1
1

 = t1v1 + t2v2, for t1, t2 ∈ R,

where v1 =


2
1
0
0

 and v2 =


−1
0
−1
1

. Therefore, ker(F ) = span{v1, v2}.

Next, we need to check whether v1 and v2 are linearly independent or not.

0 = t1v1 + t2v2 =


2t1 − t2
t1
−t2
t2

 =⇒ t1 = t2 = 0.

Thus, v1 and v2 are linearly independent and {v1, v2} is a basis of ker(F ).

Image: We have [F ] = span


1
2
0

 ,

−2−4
0

 ,

1
1
1

 ,

2
3
1

 = span{u1, u2, u3, u4}.

λ1u1 + λ2u2 + λ3u3 + λ4u4 = 0 ⇐⇒ [F ]


λ1
λ2
λ3
λ4

 = 0 ⇐⇒


λ1
λ2
λ3
λ4

 ∈ ker(F ).

Based on the result we got above,

λ1u1 + λ2u2 + λ3u3 + λ4u4 = 0 =⇒


λ1
λ2
λ3
λ4

 = t1


2
1
0
0

+ t2


−1
0
−1
1

 , for t1, t2 ∈ R.
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When t1 = 1 and t2 = 0, we have

2u1 + u2 = 0 ⇐⇒ u2 = −2u1 =⇒ u2 ∈ span{u1, u3}.

When t1 = 0 and t2 = 1,

−u1 − u3 + u4 = 0 ⇐⇒ u4 = −u1 + u3 =⇒ u3 ∈ span{u1, u3}.

Hence, im(F ) = span{u1, u3}. In addition, u1 and u3 are linear independent because when
λ1u1 + λ3u3 = 0: | | 0

u1 u3 0
| | 0

 =

1 1 0
2 1 0
0 1 0

 ∼
1 0 0
0 1 0
0 0 0

 =⇒ λ1 = λ3 = 0.

Thus, {u1, u3} is a basis of im(F ).

From Example 36, we can summarize the general calculation of bases for ker(F ) and im(F ) as follows:

Consider a linear map

F : Rn −→ Rm,

x 7−→ Ax.

• Let rref(A) have pivot elements in columns c1, . . . , cr. Then, the columns c1, . . . , cr in the original
matrix A form a basis of im(F ). Hence, the dimension of im(F ) is equal to the number of pivot
elements in rref(A) or equal to rk(F ).

dim(im(F )) = the number of pivot elements in rref(A).

• The vectors obtained in the ”standard parametrization” (i.e. for each free variable xi there is a
parameter tj) of the solutions to F (x) = 0 form a basis of ker(F ). Thus, the dimension of ker(F )
is equal to the number of free variables.

dim(ker(F )) = the number of free variables.

As a consequence, we get the following theorem:

Theorem 10.5 For a linear map F : Rn → Rm we have

n = dim(ker(F )) + dim(im(F )) .

Proof. The statement follows from the following facts:

n = the number of columns of [F ],

dim(ker(F )) = the number of columns without pivot elements.

dim(im(F )) = the number of columns with pivot elements.

Exercises
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Exercise 34. Determine a basis of the following subspace

U = span


1
2
3

 ,

3
3
8

 ,

1
3
2

 .

Exercise 35. Determine bases for the kernel and the image of the following linear map

F : R5 −→ R3

x 7−→

 2 −6 −1 5 3
−1 3 2 −4 −3
1 −3 −1 3 4

x .

Exercise 36. Let U, V ⊂ Rn be two subspaces. We define their sum by

U + V := {x ∈ Rn | there exist u ∈ U, v ∈ V with x = u+ v} .

(i) Show that U + V is a subspace of Rn.
(ii) Show that we have

dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V ) .

Exercise 37. For t ∈ R we define

v1 =

1
1
2

 , v2 =

2
2
t

 , v3 =

 t
4

(t− 2)2


and set V = span{v1, v2, v3}. For each t ∈ R determine a basis of V and calculate its dimension.

Exercise 38. The following exercise is intended to show the basic idea of 3D computer graphics,
by showing how to get a 2-dimensional picture (to be shown on a 2-dimensional monitor) from
an 3-dimensional object.
(i) We define the corners of a cube with side length 18 in R3 by the following set of 8 points:

W =


w1

w2

w3

 ∈ R3 | w1, w2, w3 ∈ {0, 18}

 .

Make a drawing of a cube with side length 18 in R3, i.e. draw the 8 points in the set W
and connect two points if they differ just by one entry.

(This just means that you draw a cube like you would usually draw it. ”Differ by one
entry” just means that these points are on the same edge of the cube.)

(ii) Show that D = (d1, d2, d3) is a basis of R3, where

d1 =

2
1
0

 , d2 =

−11
3

 , d3 =

 3
−6
3

 .

(iii) Write each x ∈W as a linear combination in the basis D, i.e. for each x find λ1, λ2, λ3 ∈ R
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with

x = λ1d1 + λ2d2 + λ3d3 .

(iv) For each x ∈ W draw the points (λ1, λ2) in R2. Connect two points if the corresponding
elements in W just differ by one entry.

Explanation: What you should get in iv) is a drawing of the 3-dimensional cube in 2 dimensions.
The basis D somehow describes from which direction you look at the cube. If you replaced the
D by the standard basis (e1, e2, e3), you would get a picture of the cube from the top (i.e., just
a square). The λ3, which you did not use for the drawing, describes the distance in the viewing
direction.
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Coordinates

From now on we will consider ordered bases, which means that we will write (b1, . . . , bn) (a tuple) for a
basis instead of {b1, . . . , bn} (a set). The difference is, that we care about the order now. For example,
the two sets {b1, b2} = {b2, b1} are the same, but (b1, b2) ̸= (b2, b1).

Definition 11.1 Let B = (b1, . . . , bm) be a basis of a subspace V ⊂ Rn. We define the coordi-
nate map by

cB : Rm −→ Rnλ1
...
λm

 7−→ λ1b1 + · · ·+ λmbm .

Clearly, the map cB is a linear map. In addition, it is also a bijection, as stated in the following theorem.

Theorem 11.2 Let B = (b1, . . . , bm) be a basis of a subspace V ⊂ Rn.
(i) The coordinate map cB : Rm −→ V is bijective.
(ii) For all x ∈ V there exist unique λ1, . . . , λm ∈ R such that

x = λ1b1 + · · ·+ λmbm .

Proof. (i) The map cB : Rm −→ V is surjective since im(cB) = span{b1, . . . , bm} = V .

Additionally,

λ =

λ1
...
λm

 ∈ ker(cB) ⇐⇒ cB(λ) = λ1b1 + . . .+ λmbm = 0 =⇒ λ = 0,

where the implication comes from the assumption that b1, . . . , bm are linearly independent. Hence,
ker(cB) = {0} and, by Theorem 8.7, cB is injective.

As a result, the map cB is bijective.

(ii) This is just a reformulation of (i).

74



Linear Algebra I - Coordinates

As a consequence of Theorem 11.2, we can define coordinates and coordinate vector of any vectors
in a subspace V as follows.

Definition 11.3 Let B = (b1, . . . , bm) be a basis of a subspace V ⊂ Rn and x ∈ V with

x = λ1b1 + · · ·+ λmbm .

(i) The numbers λ1, . . . , λm ∈ R are the coordinates of x (in the basis B).
(ii) The coordinate vector of x (with respect to B) is given by

[x]B = c−1
B (x) =

λ1
...
λm

 .

Example 37 1) B = (e1, . . . , en) is a basis of Rn. For all x ∈ Rn, we have [x]B = x.

2) Consider b1 =

 1
0
−1

 and b2 =

1
2
3

. Clearly, b1 and b2 are linearly independent; therefore,

B = (b1, b2) is a basis of V = span{b1, b2}. Is it true that x =

3
4
5

 ∈ V ? What is [x]B?

In order to answer those questions, we need to solve λ1b1 + λ2b2 = x. | | |
b1 b2 x
| | |

 =

1 1 3

0 2 4

−1 3 5




1

∼
1 1 3

0 2 4

0 4 8


−21

2 ∼
1 1 3

0 1 2

0 0 0


−1 ∼

1 0 1

0 1 2

0 0 0




Hence, x = 1 · b1 + 2 · b2 =⇒ [x]B =

(
1
2

)
.

e1

e2

[x]B
R2

cB−−−−−−−−−→
V

b1

b2

x

R3

Coordinate vectors have the following properties.

Proposition 11.4 Let B = (b1, . . . , bm) be a basis of a subspace V ⊂ Rn. Then we have for all
x, y ∈ V and µ ∈ R
(i) [x+ y]B = [x]B + [y]B,
(ii) [µx]B = µ[x]B,
(iii) [0]B = 0.

Proof. Firstly, we have [x]B = c−1
B (x). In addition, c−1

B is linear since cB is linear (Proposition 7.2).

Hence, all the properties follow from the linearity of c−1
B .
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Since cB is a linear map, we can consider its matrix as follows.

Definition 11.5 Let B = (b1, . . . , bn) be a basis of Rn. The change-of-basis matrix associated
with B is

SB = [cB ] =

 | |
b1 . . . bn
| |

 .

Remark. (a) SB is invertible for any basis B of Rn since SB ∈ Rn×n and the linear system SBλ = 0 or
λ1b1 + . . .+ λnbn = 0 has a unique solution x = 0.

(b) For any x ∈ Rn,
SB [x]B = cB

(
[x]B

)
= cB

(
c−1
B (x)

)
= x.

The following definition may be a little complicated and confusing at first reading, but it will be useful
later for the study of linear maps.

Definition 11.6 Let F : Rn → Rm be a linear map, B1 be a basis of Rn and B2 be a basis of
Rm. The matrix of F with respect to B1 and B2 is the matrix

[F ]B2

B1
:= [c−1

B2
◦ F ◦ cB1 ] .

In the case n = m and B1 = B2 we just write [F ]B1
:= [F ]B1

B1
.

Rn Rm

Rn Rm

F

c−1
B2

cB1

c−1
B2

◦F ◦cB1

With this definition, we get the following proposition, which gives more insight into the definition of a
matrix with respect to some bases.

Proposition 11.7 Let F : Rn → Rm be a linear map, B1 be a basis of Rn and B2 be a basis of
Rm.
(i) We have

[F ]B2

B1
= S−1

B2
[F ]SB1 .

(ii) If B1 = (b1, . . . , bn) then

[F ]B2

B1
=

 | |
[F (b1)]B2 . . . [F (bn)]B2

| |

 .

Proof. (i) [F ]B2

B1
= [c−1

B2
◦ F ◦ cB1

] = [c−1
B2

][F ][cB1
] = S−1

B2
[F ]SB1

.

(ii) The ith column of [F ]B2

B1
is

[F ]B2

B1
ei = c−1

B2
◦ F ◦ cB1

(ei) = c−1
B2

(
F
(
cB1

(ei)
))

= c−1
B2

(
F (bi)

)
= [F (bi)]B2

.

Version 13 (January 25, 2024) - 76 -



Linear Algebra I - Coordinates

In many cases, we can write down [F ]B with respect to some bases B much easier than [F ]. After that,
we can use Proposition 11.7 to obtain [F ].

Example 38
1) Consider B1 = (e1, . . . , en) in Rn and B2 = (e1, . . . , em) in Rm.

Then, [cB1
] = In and [cB2

] = Im. For any linear map F : Rn → Rm, it is always true that

[F ]B2

B1
= [F ].

2) Consider the orthogonal projection Pu : R2 → R2 with u =

(
−3
2

)
.

We have

ker(Pu) = {x ∈ R2 | u • x = 0}

= span

{(
2
3

)}
= span{v},

im(Pu) = span{u}.

u

im(Pu)

v

ker(Pu)

We also have

λ1u+λ2v = 0 ⇒

{
u • (λ1u+ λ2v) = 0

v • (λ1u+ λ2v) = 0
⇒

{
λ1(u • u) = 0

λ2(v • v) = 0
⇒ λ1 = λ2 = 0.

Hence, u and v are linearly independent, so B = (u, v) is a basis of R2. Notice: this technique
will be used again in the next chapter.

We have Pu(u) = u and Pu(v) = 0, so

[Pu]B = [Pu]
B
B =

 | |
[Pu(u)]B [Pu(v)]B
| |

 =

(
1 0
0 0

)
.

Change-of-basis matrix is

SB =

 | |
u v
| |

 =

(
−3 2
2 3

)
and its inverse is

S−1
B =

1

13

(
−3 2
2 3

)
.

By Proposition 11.7 we have [Pu]B = [Pu]
B
B = S−1

B [Pu]SB . Hence,

[Pu] = SB [Pu]BS
−1
B =

(
−3 2
2 3

)(
1 0
0 0

)
1

13

(
−3 2
2 3

)
=

1

13

(
9 −6
−6 4

)
.

3) Let F : R3 → R3 be the reflection through the plane

U = span


1
1
0

 ,

0
1
1

 = span{u1, u2}.

We want to determine the matrix [F ]. Ideas for how to solve this problem are as follows.
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(a) Find a “good” basis B where we can write down [F ]B directly.
(b) For this, try to find v ∈ R3 which is orthogonal to u1, u2, and set B = (u1, u2, v). Notice

that u1 and u2 are linearly independent (check it!).

F (x)

u1

u2

v

x

To find v =

v1v2
v3

 ∈ R3 such that v • u1 = v • u2 = 0, we need to solve
v1 +v2 = 0

v2 + v3 = 0

{
.

1 1 0 0

0 1 1 0

( )
−1

∼ 1 0 −1 0

0 1 1 0

( )

Hence, all solutions are given by t ·

 1
−1
1

 for t ∈ R. We choose t = 1, i.e. set v =

 1
−1
1

.

We also have

λ1u1 + λ2u2 + λ3v = 0 ⇒

{
λ1u1 + λ2u2 + λ3v = 0

v • (λ1u1 + λ2u2 + λ3v) = 0
⇒

{
λ1u1 + λ2u2 + λ3v = 0

λ3(v • v) = 0

⇒

{
λ1u1 + λ2u2 = 0

λ3 = 0
⇒ λ1 = λ2 = λ3 = 0.

Thus, u1, u2, v are linearly independent, so B = (u1, u2, v) is a basis of R3.
We have

F (u1) = u1 ⇒ [F (u1)]B =

1
0
0


F (u2) = u2 ⇒ [F (u2)]B =

0
1
0


F (v) = −v ⇒ [F (v)]B =

 0
0
−1



⇒ [F ]B =

 | | |
[F (u1)]B [F (u2)]B [F (v)]B
| | |

 =

1 0 0
0 1 0
0 0 −1

 .

In addition, the change-of-basis matrix is

SB =

1 0 1
1 1 −1
0 1 1


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and its inverse is

S−1
B =

1

3

 2 1 1
−1 1 2
1 −1 1

 .

Therefore,

[F ] = SB [F ]BS
−1
B =

1 0 1
1 1 −1
0 1 1

1 0 0
0 1 0
0 0 −1

 1

3

 2 1 1
−1 1 2
1 −1 1

 =
1

3

 1 2 −2
2 1 2
−2 2 1

 .

Exercises

Exercise 39. Let U = span{u1, u2, u3, u4} ∈ R4, where

u1 =


1
2
1
1

 , u2 =


1
1
0
0

 , u3 =


1
3
2
2

 , u4 =


1
1
1
0

 .

(i) Determine a basis B = (b1, . . . , bm) of U .
(ii) Calculate the coordinate vectors [uj ]B ∈ Rm for j = 1, 2, 3, 4.

(iii) For which values of a ∈ R does the vector x =


3

3 + a
3 + a
2 + 2a

 belong to U? For such a determine

the coordinate vector [x]B .
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Orthonormal bases &
Gram-Schmidt algorithm

In this chapter, we will discuss a special type of basis for a subspace. Before introducing any concepts
in this chapter, let us recall some notations that were introduced in Definition 5.1 of Chapter 5:

(i) If u =

u1...
un

 , v =

v1...
vn

 ∈ Rn, then the dot product of u and v is defined by

u • v = u1v1 + · · ·+ unvn .

(ii) u, v ∈ Rn are called orthogonal if u • v = 0.

(iii) The norm of u ∈ Rn is defined by ∥u∥ =
√
u • u.

In addition, the norm and the dot product have some useful properties as stated in the following
proposition.

Proposition 12.1 Let x, y ∈ Rn and λ ∈ R.
(i) ∥λx∥ = |λ| · ∥x∥.
(ii) |x • y| ≤ ∥x∥ · ∥y∥ (Cauchy-Schwartz inequality).

The equality ” = ” occurs when x, y are linearly dependent.
(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (Triangle inequality).

The equality ” = ” also occurs for this inequality when x, y are linearly dependent.

Proof. Using the properties of the dot product from Proposition 5.2, we have

(i) ∥λx∥ =
√

(λx) • (λx) =
√
λ2(x • x) = |λ|

√
x • x = |λ| · ∥x∥ .

(ii) For any µ ∈ R, we have

(x+ µy) • (x+ µy) ≥ 0 ⇔ x • x+ (µy) • x+ x • (µy) + (µy) • (µy) ≥ 0

⇔ ∥x∥2 + 2(x • (µy)) + ∥µy∥2 ≥ 0

⇔ ∥x∥2 + 2µ(x • y) + µ2 ∥y∥2 ≥ 0.
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If y = 0, then the statement is trivial because |x •0| = ∥x∥ · ∥0∥ = 0. Therefore, we assume y ̸= 0.

Choosing µ = −(x • y)/ ∥y∥2, we have

∥x∥2 − 2
x • y
∥y∥2

(x • y) + (x • y)2

∥y∥4
∥y∥2 ≥ 0 ⇔ ∥x∥2 ∥y∥2 ≥ (x • y)2 ⇔ ∥x∥ · ∥y∥ ≥ |x • y|.

(iii) We have

∥x+ y∥2 = (x+ y) • (x+ y) = ∥x∥2 + 2(x • y) + ∥y∥2 .

Using the Cauchy-Schwartz inequality, we get

∥x+ y∥2 ≤ ∥x∥2 + 2 ∥x∥ · ∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2

⇔ ∥x+ y∥ ≤ ∥x∥+ ∥y∥ ,

where the equivalence comes from the fact that ∥x+ y∥ and ∥x∥+ ∥y∥ are both non-negative.

Definition 12.2 (i) A vector u ∈ Rn is called a unit vector if ∥u∥ = 1. (i.e. u • u = 1)
(ii) Every vector u ∈ Rn with u ̸= 0 can be normalized by

û =
1

∥u∥
u .

The vector û is a unit vector and shows in the same direction as u.
(iii) Vectors u1, . . . , ul ∈ Rn are called orthonormal if for 1 ≤ i, j ≤ l,

ui • uj =

{
1 , if i = j

0 , if i ̸= j
.

Equipped with these definitions, we can define the main object of this chapter as follows.

Definition 12.3 A basis B = (b1, . . . , bm) of a subspace U is called an orthonormal basis
(ONB) of U if b1, . . . , bm are orthonormal.

Example 39 For the subspace U = Rn, the standard basis B = (e1, . . . , en) is an orthonormal
basis.

The following proposition demonstrates some useful properties of orthonormal bases.

Proposition 12.4 (i) If v1, . . . , vm ∈ Rn are orthonormal (ON), then they are linearly inde-
pendent.

(ii) Let B = (v1, . . . , vm) be an ONB of V ⊂ Rn and u ∈ V . Then

[u]B =

u • v1
...

u • vm

 ∈ Rm ,

i.e. u =
∑m

i=1(u • vi)vi.
(iii) If B = (v1, . . . , vm) is an ONB of V ⊂ Rn and u,w ∈ V , then

u • w = [u]B • [w]B .

Proof. (i) Assume that v1, . . . , vm are ON and λ1v1 + . . .+ λmvm = 0. For any 1 ≤ j ≤ m, we have

vj • (λ1v1 + . . .+ λmvm) = 0 = λ1(vj • v1) + . . .+ λm(vj • vm) = λj .
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Hence, λ1 = . . . = λm = 0, which shows that v1, . . . , vm are linearly independent.

(ii) Since u ∈ V , we can write u = λ1v1 + . . .+ λmvm. Doing the same calculations as in (i), we get

For 1 ≤ j ≤ m, u • vj = λj ⇒ u = (u • v1)v1 + . . .+ (u • vm)vm ⇒ [u]B =

u • v1
...

u • vm

 .

(iii) Let [u]B =

x1
...
xm

, [w]B =

 y1
...
ym

. We have

u • w = (x1v1 + . . .+ xmvm) • (y1v1 + . . .+ ymvm) = x1y1 + . . .+ xmym = [u]B • [w]B .

Now we want to introduce another important concept in the following definition.

Definition 12.5 For a subspace U ⊂ Rn we define the orthogonal complement of U in Rn

by

U⊥ = {x ∈ Rn | x • u = 0 for all u ∈ U} .

Example 40 Consider the orthogonal projection Pu : R2 → R2 with u =
1√
13

(
−3
2

)
.

Recall that Pu(x) = x∥ =
u • x
u • u

u for any x ∈ R2.

In this case, ∥u∥ = 1 so we have

Pu(x) = x∥ = (u • x)u,

for any x ∈ R2. Clearly, {u} is an ONB of
the subspace U = im(Pu). We also know that
ker(Pu) = {x ∈ R2 | x • u = 0}. Fix an element
v ∈ ker(Pu). For any w ∈ U , we have w = λu for
some λ ∈ R and

v • w = v • (λu) = λ(v • u) = 0,

which implies that v ∈ U⊥. Thus, ker(Pu) ⊂ U⊥.
Furthermore, it is clear that U⊥ ⊂ ker(Pu). As a
result, ker(Pu) = U⊥, which shows that U⊥ is a
subspace.

x∥

U = im(Pu)

x⊥
U⊥ = ker(Pu)

x

Motivated by this example, we get the following lemma.

Lemma 12.6 Let U ⊂ Rn be a subspace.
(i) U⊥ ⊂ Rn is a subspace.
(ii) We have U ∩ U⊥ = {0}.
(iii) If (u1, . . . , ur) is a basis of U , x ∈ Rn, then

x ∈ U⊥ ⇐⇒ x • u1 = · · · = x • ur = 0 .

(iv) Let (f1, . . . , fr) be an ONB of U and x ∈ Rn. Then

x = x∥ + x⊥ ,
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where

x∥ =

r∑
i=1

(x • fi)fi ∈ U

x⊥ = x− x∥ ∈ U⊥ .

Proof. (i) Clearly, 0 ∈ U⊥ since 0 • u = 0 for any u ∈ U . Given any x, y ∈ U⊥ and λ ∈ R, we have
for all u ∈ U ,

(x+ y) • u = x • u+ y • u = 0 + 0 = 0 ⇒ x+ y ∈ U⊥,

(λx) • u = λ(x • u) = λ · 0 = 0 ⇒ λx ∈ U⊥.

Therefore, U⊥ is a subspace of Rn.

(ii) If x ∈ U ∩ U⊥, then x • x = 0 = x21 + . . .+ x2n ⇒ x1 = . . . = xn = 0 ⇒ x = 0.

(iii) “ =⇒ ” is clear.

“⇐= ” : For all w ∈ U , we have w = λ1u1 + . . .+ λmum for some λ1, . . . , λm ∈ R. Then, we have

x • w = x • (λ1u1 + . . .+ λmum) = λ1(x • u1) + . . .+ λm(x • um) = 0 + . . .+ 0 = 0.

Hence, x ∈ U⊥.

(iv) x∥ =
∑r

i=1(x • fi)fi ∈ U since (f1, . . . , fr) is a basis of U . We want to show that x⊥ ∈ U⊥.

For all 1 ≤ j ≤ r:

fj • x⊥ = fj • (x− x∥) = fj • x− fj •
r∑

i=1

(x • fi)fi = fj • x− x • fj = 0.

Hence, x⊥ ∈ U⊥ by using (iii).

We see that orthonormal bases are extremely useful for many calculations, so we may be concerned
about how to get them. Fortunately, the following algorithm allows us to obtain an orthonormal basis
from an arbitrary basis of any subspace.

Algorithm 12.7 (Gram-Schmidt algorithm (GSA)) Let B = (b1, . . . , bm) be an arbitrary
basis of a subspace U ⊂ Rn. The GSA constructs an orthonormal basis F = (f1, . . . , fm) of U
out of the basis B in the following m steps:

Step 1: Set f1 = b̂1 = 1
∥b1∥b1 .

Step l (2 ≤ l ≤ m): We have constructed orthonormal vectors f1, . . . , fl−1 in the steps before.
Now set

wl = bl − (bl • f1)f1 − · · · − (bl • fl−1)fl−1 = bl −
l−1∑
i=1

(bl • fi)fi

and define fl = ŵl =
1

∥wl∥wl.
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Example 41 Consider b1 =

1
1
1

 , b2 =

1
0
2

 , b3 =

−12
1

. B = (b1, b2, b3) is a basis of R3.

We will construct an ONB F = (f1, f2, f3) by GSA and demonstrate why it works.

Step 1: Set f1 = b̂1 =
1

∥b1∥
b1 =

1√
3

1
1
1

 and U1 = span{f1} = {b1}.

Step 2: We want to find a vector f2 ∈ span{f1, b2} such that f2 is orthogonal to f1.
From Lemma 12.6 (iv), we have

b2 = b2∥ + b2⊥ = (b2 • f1)f1 + b2⊥,

where b2∥ ∈ U1 and b2⊥ ∈ U⊥
1 .

Set w2 = b2⊥ = b2 − (b2 • f1)f1 =

1
0
2

− 3√
3
f1 =

1
0
2

−
1
1
1

 =

 0
−1
1

.

Then, set f2 = ŵ2 =
1√
2

 0
−1
1

 and U2 = span{f1, f2} = span{b1, b2}.

Hence, (f1, f2) is an ONB of U2.
Step 3: Now, we want to find a vector f3 ∈ span{f1, f2, b3} such that f3 ∈ U⊥

2 . Again, from
Lemma 12.6 (iv), we have

b3 = b3∥ + b3⊥ = (b3 • f1)f1 + (b3 • f2)f2 + b3⊥,

where b3 = b3∥ ∈ U2 and b3⊥ ∈ U⊥
2 .

Set w3 = b3⊥ = b3− (b3 • f1)f1− (b3 • f2)f2 =

−12
1

− 2

3

1
1
1

+
1

2

 0
−1
1

 =
5

6

−21
1

.

Then, set f3 = ŵ3 =
1√
6

−21
1

 and

U3 = span{f1, f2, f3} = span{b1, b2, f3} = span{b1, b2, b3}.

Hence, B = (f1, f2, f3) is an ONB of U3 = R3 from that basis.

As a consequence of the Gram-Schmidt algorithm, we get the following theorem.

Theorem 12.8 Every subspace of Rn has an ONB.

Proof. According to Theorem 10.2 (i), every subspace has a basis. Using GSA, we get an ONB.

Corollary 12.9 Let U ⊂ Rn be a subspace. For all x ∈ Rn there exist unique x∥ ∈ U and

x⊥ ∈ U⊥ with

x = x∥ + x⊥ .

Proof. Existence: By Theorem 12.8, there exists an ONB (f1, . . . , fm) of U . And by Lemma 12.6 (iv),
we get x∥ and x⊥.
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Uniqueness: Let x = x∥ + x⊥ = y∥ + y⊥ for x∥, y∥ ∈ U and x⊥, y⊥ ∈ U⊥. Then, we have

U ∋ x∥ − y∥ = y⊥ − x⊥ ∈ U⊥.

Hence, x∥ − y∥ ∈ U ∩ U⊥ and y⊥ − x⊥ ∈ U ∩ U⊥. However, since U ∩ U⊥ = {0} by Lemma 12.6
(ii), we have

x∥ − y∥ = y⊥ − x⊥ = 0 =⇒ x∥ = y∥ and y⊥ = x⊥.

Exercises

Exercise 40. Let U ⊂ Rn be a subspace with orthonormal basis (f1, . . . , fr). We define the
orthogonal projection onto U by

PU : Rn −→ Rn

x 7−→
r∑

i=1

(x • fi)fi .

Show the following properties of PU :
(i) If U = span{u} with u ∈ Rn and u ̸= 0 then PU is the projection Pu we defined in Chapter

5.
(ii) PU is a linear map.
(iii) PU ◦ PU = PU .
(iv) imPU = U and ker(PU ) = U⊥, where U⊥ is the orthogonal complement of U defined by

U⊥ = {x ∈ Rn | x • u = 0 for all u ∈ U} .

Exercise 41. We define the following vectors

b1 =


1
1
0
1

 , b2 =


1
2
0
1

 , b3 =


1
2
1
3

 .

These form a basis B = (b1, b2, b3) of the subspace U = span{b1, b2, b3} ⊂ R4 (You do not need to
show this). Use the Gram-Schmidt algorithm to construct an orthonormal basis F = (f1, f2, f3)
of U from B.
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Orthogonal Projection & Least
squares

Assume you measure some data
(x1, y1), . . . , (xm, ym), and you
want to find a line which interpo-
lates these points in the best pos-
sible way. If all points would lie
on a line ℓ(x) = ax+ b, then they
would satisfy

x1x2 · · · xm

y1

y2

...

ym


ax1 + b = y1

ax2 + b = y2
...

axm + b = ym

⇐⇒


x1 1
x2 1
...
xm 1


(
a
b

)
=


y1
y2
...
ym

 ⇐⇒ A

(
a
b

)
= y (∗).

However, if they are not on one line (like in the picture), then the linear system (∗) has no solutions
because y /∈ im(A). Nevertheless, in the picture, we see that there might be a “best possible” line.

This chapter aims to explain how to obtain this “best-fit line.” In general, for some matrix A ∈ Rm×n

and some vector y ∈ Rm, we want to find a vector x ∈ Rn such that Ax is the closest point to y. The
main idea is to project y onto the image of A and then obtain a linear system we can solve for x. Later,
we will see that x can be obtained by solving the normal equation

ATAx = AT y.

From Corollary 12.9, for a subspace U ⊂ Rn and a vector x ∈ Rn, there uniquely exist x⊥ ∈ U⊥ and
x∥ ∈ U with x = x⊥ + x∥. Hence, we have the following map.

Definition 13.1 Let U ⊂ Rn be a subspace. The map

PU : Rn −→ Rn

x 7−→ x∥
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is the orthogonal projection onto U .

Remark. This generalizes the Pu for u ∈ Rn, u ̸= 0 we defined before by setting U = span{u}.

Proposition 13.2 Let U ⊂ Rn be a subspace.
(i) PU is a linear map.
(ii) P 2

U = PU .
(iii) ker(PU ) = U⊥ and imPU = U .
(iv) If (f1, . . . , fm) is an ONB of U , then

PU (x) = (x • f1)f1 + · · ·+ (x • fm)fm .

Proof. (iv) is exactly Lemma 12.6 (iv). Using that, we can prove the other statements.

(i) PU is linear because for any x, y ∈ Rn and λ ∈ R, we have

PU (x+ y) =
m∑
i=1

(
(x+ y) • fi

)
fi =

m∑
i=1

(x • fi)fi +
m∑
i=1

(y • fi)fi = PU (x) + PU (y)

PU (λx) =
m∑
i=1

(
(λx) • fi

)
fi = λ

m∑
i=1

(x • fi)fi = λPU (x)

(ii) For any x ∈ Rn and any j such that 1 ≤ j ≤ m, we have

PU (x) • fj = fj • PU (x) = fj •
m∑
i=1

(x • fi)fi =
m∑
i=1

(x • fi)(fj • fi) = x • fj .

Hence, for any x ∈ Rn, we have

PU ◦ PU (x) = PU

(
PU (x)

)
=

m∑
i=1

(
PU (x) • fi

)
fi =

m∑
i=1

(x • fi)fi = PU (x).

Thus, P 2
U = PU ◦ PU = PU .

(iii) For the kernel, we have

x ∈ ker(PU ) ⇔ PU (x) = 0

⇔
m∑
i=1

(x • fi)fi = 0

⇔ x • f1 = . . . = x • fm = 0 (f1, . . . , fm are linearly independent)

⇔ x ∈ U⊥ (by Lemma 12.6 (iii))

Hence, ker(PU ) = U⊥.

For the image, if u ∈ im(PU ), then clearly u ∈ U because u ∈ span{f1, . . . , fm} = U . Otherwise,
if u ∈ U , then we have by Proposition 12.4 (ii),

u =

m∑
i=1

(u • fi)fi = PU (x),

which implies that u ∈ im(PU ). Therefore, u ∈ im(PU ) if and only if u ∈ U , i.e. im(PU ) = U .
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Proposition 13.3 Let U ⊂ Rn be a subspace and x ∈ Rn. Then for all u ∈ U we have

∥x− PU (x)∥ ≤ ∥x− u∥ .

We just have equality in the case when u = PU (x). In other words, if x is outside of U , then
PU (x) is the closest point to x which is in U .

Proof. For any u ∈ U , doing the same calculation as the one in the proof of Proposition 12.1 (ii), we get

∥x− u∥2 = ∥(x− PU (x)) + (PU (x)− u)∥2

= ∥x− PU (x)∥2 + 2
(
(x− PU (x)) • (PU (x)− u)

)
+ ∥PU (x)− u∥2

From Lemma 12.6 (iv), we have (x− PU (x)) = x⊥ ∈ U⊥. Because (PU (x)− u) ∈ U , we have

(x− PU (x)) • (PU (x)− u) = 0.

Therefore,

∥x− u∥2 = ∥x− PU (x)∥2 + ∥PU (x)− u∥2 ≥ ∥x− PU (x)∥2 ⇔ ∥x− u∥ ≥ ∥x− PU (x)∥ .

The equality occurs when ∥PU (x)− u∥ = 0 ⇔ u = PU (x).

Definition 13.4 The transpose of a matrix A = (aij) ∈ Rm×n is the matrix AT = (aji) ∈
Rn×m.

Example 42 Given the matrix

A =

(
1 2 3
4 5 6

)
∈ R2×3,

its transpose is

AT =

1 4
2 5
3 6

 ∈ R3×2.

Proposition 13.5 (i) For A,B ∈ Rm×n and λ ∈ R we have

(A+B)T = AT +BT , (λA)T = λAT .

(ii) For A ∈ Rm×n and B ∈ Rn×l we have

(AB)T = BTAT ∈ Rl×m .

(iii) For x, y ∈ Rn we have x • y = xT y.

Proof. This can be checked by direct calculations.

Example 43 (Basics behind 3D-Graphics) In this example, we want to project a cube in R3

to R2. This has the natural application of visualizing 3D-Graphics (in our case a cube) on a
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monitor. Our cube will have side-length 2 and its vertices are given by the following 8 points:

C =


0
0
0

 ,

2
0
0

 ,

0
2
0

 ,

0
0
2

 ,

2
2
0

 ,

2
0
2

 ,

0
2
2

 ,

2
2
2

 .

To make it look like a cube we connect two points if they share a facet, i.e. if their coordinates
just differ by one entry. We obtain the following picture:

x

y

z

Now we want to project this cube onto a plane, which determines the viewing angle onto the
scene. Let U = span{f1, f2} ⊂ R3 with

f1 =
1√
5

 2
−1
0

 ≈
 0.89
−0.45

0

, f2 =

0
0
1

.
We want to project the points in C onto the plane U and then calculate the coordinates with
respect to the orthonormal basis BU = (f1, f2). For each x ∈ C we now want to calculate
[PU (x)]BU

. By Proposition 13.2 we have PU (x) = (x • f1)f1 + (x • f2)f2.
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x

y

z

x

y

z

PU

x

y

z

c−1
BU

The coordinates are [PU (x)]BU
=

(
x • f1
x • f2

)
=

(
fT1 x
fT2 x

)
. Or in other words, we have

[PU (x)]BU
= (c−1

BU
◦ PU )(x) =

(

| fT1 |

| fT2 |

)
x =

( 2√
5
− 1√

5
0

0 0 1

)
x.

Multiplying each element in C with this matrix gives the following set

P =

{(
0
0

)
,

( 4√
5

0

)
,

(
− 2√

5

0

)
,

(
0
2

)
,

( 2√
5

0

)
,

( 4√
5

2

)
,

(
− 2√

5

2

)
,

( 2√
5

2

)}
.

Drawing these points in R2 gives a picture of the cube viewed from the side:
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x

y

Now consider another plane V = span{v1, v2} spanned by

v1 =
1√
5

 2
−1
0

, v2 =
1√
21

1
2
4

.
Notice that this again gives an orthonormal basis BV = (v1, v2) of V . As before we get

[PV (x)]BV
= (c−1

BV
◦ PV )(x) =

(
| vT1 |

| vT2 |

)
x =

(
2√
5
− 1√

5
0

1√
21

2√
21

4√
21

)
x.

and applying this to each element in C gives

Q =

{(
0
0

)
,

(
4√
5
2√
21

)
,

(
− 2√

5
4√
21

)
,

(
0
8√
21

)
,

(
2√
5
6√
21

)
,

(
4√
5

10√
21

)
,

(
− 2√

5
12√
21

)
,

(
2√
5

14√
21

)}
.

Plotting these points creates a picture of the cube now viewed from a different angle:

x

y

z
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x

y

z

PV

x

y

z

c−1
BV

For any A ∈ Rm×n, we can define a linear map F : x 7→ Ax. Using that, we define the image and kernel
of the matrix A by im(A) = im(F ) and ker(A) = ker(F ).

Proposition 13.6 For all A ∈ Rm×n we have im(A)⊥ = ker(AT ).

Proof. Let x ∈ Rn. Then we have

x ∈ im(A)⊥ ⇔ y • x = 0, ∀y ∈ im(A)

⇔ (Av) • x = 0, ∀v ∈ Rn

⇔ (Av)Tx = 0, ∀v ∈ Rn (by Proposition 13.5 (iii))

⇔ vTATx = 0, ∀v ∈ Rn (by Proposition 13.5 (ii))

⇔ v •
(
ATx

)
= 0, ∀v ∈ Rn (by Proposition 13.5 (iii))

⇔ ATx = 0

⇔ x ∈ ker
(
AT
)
.

Corollary 13.7 Let A ∈ Rm×n.
(i) We have ker(ATA) = ker(A).
(ii) We have the following equivalence

ker(A) = {0} ⇐⇒ ATA ∈ Rn×n is invertible .

Proof. (i) We have

x ∈ ker
(
ATA

)
⇔ ATAx = 0 ⇔ Ax ∈ ker

(
AT
)
= im(A)⊥ (Proposition 13.6)

⇔ Ax ∈ im(A) ∩ im(A)⊥ = {0} (Lemma 12.6 (ii))

⇔ Ax = 0

⇔ x ∈ ker(A).

(ii) Since ATA is a n× n matrix, we have

ker(A) = {0} ⇐⇒ ker(ATA) = {0}
⇐⇒ ATA is invertible (Theorem 8.7)

We can now use our results to answer the question at the beginning of this chapter. Here, we will
present the least squares method.

Version 13 (January 25, 2024) - 92 -



Linear Algebra I - Orthogonal Projection & Least squares

Problem: Given a linear map F : Rn → Rm and b ∈ Rm, we want to find x ∈ Rn that minimizes the
quantity

δ = ∥F (x)− b∥ .

The ”least squares” stems from the fact that if b =

 b1
...
bm

 and F (x) =

y1...
yn

, then

δ = ∥F (x)− b∥ =
√
(y1 − b1)2 + . . .+ (ym − bm)2.

In other words, the problem is finding x ∈ Rn that minimizes the sum of squares of the difference yi−bi.

Remark. Minimal δ is 0 if and only if b ∈ im(F ), i.e. F (x) = b has a solution.

By Proposition 13.3, the minimal δ is given in the case F (x) = Pim(F )(b). Writing [F ] = A, we want to
find x ∈ Rn such that Ax = Pim(F )(b). We have

Ax = Pim(F ) ⇔ (Ax− b) ∈ (im(A))⊥ = ker(AT ) (by Proposition 13.6)

⇔ AT (Ax− b) = 0

⇔ ATAx = AT b

normal equation

Therefore, if ker(A) = {0} (i.e., the columns of A are linearly independent), then by Corollary 13.7,
ATA is invertible and we get the unique solution to our problem by

x =
(
ATA

)−1
AT b.

Example 44 Find the best possible quadratic polynomial f(t) = a0 + a1t+ a2t
2 to fit the data

points (0, 2), (1, 1), (2, 2), (3, 3).
We first translate this problem into linear algebra: We want to minimize

(f(0)− 2)2 + (f(1)− 1)2 + (f(2)− 2)2 + (f(3)− 3)2,

so we define the linear map F : R3 → R4 for x =

a0a1
a2

 ∈ R3 by

F (x) =


f(0)
f(1)
f(2)
f(3)

 =


a0 + a1 · 0 + a2 · 02
a0 + a1 · 1 + a2 · 12
a0 + a1 · 2 + a2 · 22
a0 + a1 · 3 + a2 · 32

 =


1 0 0
1 1 1
1 2 4
1 3 9


a0a1
a2

 = Ax,

where A =


1 0 0
1 1 1
1 2 4
1 3 9

. Then, we want to find x ∈ R3 such that ∥Ax− b∥ with b =


2
1
2
3

 is

minimal. Therefore, we need to solve the normal equation ATAx = AT b.
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We have

AT =

1 1 1 1
0 1 2 3
0 1 4 9

 , ATA =

1 1 1 1
0 1 2 3
0 1 4 9



1 0 0
1 1 1
1 2 4
1 3 9

 =

 4 6 14
6 14 36
14 36 98

 ,

AT b =

1 1 1 1
0 1 2 3
0 1 4 9



2
1
2
3

 =

 8
14
36

 .

Then, we want solve the linear system 4 6 14
6 14 36
14 36 98

a0a1
a2

 =

 8
14
36

 .

This linear system has a unique solution


a0 = 19

10

a1 = − 11
10

a2 = 1
2

.

Hence, the best fit polynomial is

f(t) =
19

10
− 11

10
t+

1

2
t2.

−1 0 1 2 3 4

1

2

3

4

5

f(t) = (1.9) + (−1.1)t+ (0.5)t2

t

f
(t
)

Remark. This method works for arbitrary polynomials (i.e. in particular for lines). In addition, the
normal equation always have a unique solution if the columns of A are linearly indepdendent. In
applications, this is usually the case since the number of data points (the number m of rows of A) is
usually greater than the degree of the polynomial (n− 1), where n is the number of columns of A.
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Exercises

Exercise 42. Three points (x1, y1), (x2, y2) and (x3, y3) lie on one (non-vertical) line, if there
exist a, b ∈ R with axj + b = yj for j = 1, 2, 3. In other words the linear systemx1 1

x2 1
x3 1


︸ ︷︷ ︸

=A

(
a
b

)
=

y1y2
y3


︸ ︷︷ ︸

=y

has a solution, i.e. y ∈ im(A).
(i) Show that the points (0, 1), (1, 3) and (2, 2) do not lie on one line.

For (ii) - (iv) we assume that A =

0 1
1 1
2 1

 and y =

1
3
2

 .

(ii) Calculate an orthonormal basis F = (f1, f2) of im(A) by using the GSA for the columns of
A.
(Hint: The result becomes nicer if you set b1 = second column of A and b2 = first column
of A.)

(iii) Calculate z = (y • f1)f1 + (y • f2)f2 and show that z ∈ im(A).

(iv) Solve the linear system A

(
a
b

)
= z and draw the graph of f(x) = ax+ b together with the

three points in i). Can you interpret the connection between the graph and the points?

Exercise 43. Assume we have the following data points
i 1 2 3 4
xi 0 1 2 3
yi 2 1 3 4

(i) Find the line of best fit for the above data, i.e. find a, b ∈ R such that the function

l(x) = ax+ b minimizes the sum of squares
∑4

i=1(l(xi)− yi)2.
(ii) Interpolate the data by a quadratic polynomial. For this find c, d, e ∈ R such that the

function p(x) = cx2 + dx+ e minimizes
∑4

i=1(p(xi)− yi)2.
(iii) Draw the data points and the graphs of l and p into one diagram.
For both (i) and (ii) solve the exercise by finding the solutions to the normal equation.
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14.1 Linear Algebra I - Midterm 2019
Exercise 1. (10 Points) Consider the following linear system 2x1 + 3x2 + 4x3 + 5x4 = 6

x1 + 2x2 + 3x3 + 4x4 = 5
3x1 + 4x2 + 5x3 + 6x4 = 7

.

(i) Find a matrix A ∈ R3×4 and and a vector b ∈ R3, such that the solutions of the above linear

system are given by the vectors x =

(
x1
x2
x3
x4

)
∈ R4 satisfying Ax = b.

(ii) Determine the row-reduced echelon forms of the matrices (A | b) and A.
(iii) Find all the solutions to the linear system.
(iv) Calculate the rank of (A | b) and A.
(v) Find a vector c ∈ R3, such that Ax = c has no solutions. Calculate the rank of (A | c).

Exercise 2. (10 Points) Let u =

(
2
1

)
∈ R2 and define the following four functions:

f1 : R2 −→ R2

x 7−→ (u • x)u+ x ,

f2 : R −→ R2

x 7−→
(
2 cos(x)
sin(x)

)
,

f3 : R3 −→ R2

x 7−→ x • x
u • u

u ,

f4 : R3 −→ R4x1x2
x3

 7−→


0
x1 + 2x2 + 3x3

x1 − x3
x2

 .

(i) Which of the above functions f1, f2, f3, f4 are linear maps? For each one that is linear, determine
its matrix.

(ii) Draw a picture of the image of f2. Is f2 injective and/or surjective?

Exercise 3. (6 Points) Let G : R2 → R2 be a linear map with

G

(
1
1

)
=

(
−1
1

)
, G

(
1
2

)
=

(
3
4

)
.

(i) Determine the matrix of G.
(ii) Determine the matrix of G ◦G.

Exercise 4. (6 Points) We define the following linear map

H : R3 −→ R3x1x2
x3

 7−→
 x1

x2 + x3
x1 + x2 + x3

 .

(i) Calculate the image of H.
(ii) Decide if H is injective and/or surjective.
(iii) Find all vectors v ∈ R3, which are orthogonal to all vectors in the image of H.
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14.2 Linear Algebra I - Midterm 2020

Exercise 1. (10 Points) Consider the following linear system −2x1 + 4x2 + x3 + x4 = 6
−3x1 + 6x2 + x3 = 7
x1 − 2x2 + x4 = −1

.

(i) Find a matrix A ∈ R3×4 and and a vector b ∈ R3, such that the solutions of the above linear

system are given by the vectors x =

(
x1
x2
x3
x4

)
∈ R4 satisfying Ax = b.

(ii) Determine the row-reduced echelon forms of the matrices (A | b) and A.
(iii) Find all the solutions to the linear system.
(iv) Calculate the rank of (A | b) and A.
(v) Find all y ∈ R4 with Ay = 2b by using your result for iii).

Exercise 2. (8 Points) Let u =

(
−1
1

)
∈ R2 and define the following four functions:

f1 : R2 −→ R3

x 7−→

u • x0
x • u

 ,

f2 : R2 −→ R(
x1
x2

)
7−→ 2x1+x2 − 1 ,

f3 : R3 −→ R2x1x2
x3

 7−→ (
x1 − 3x2

2x1 + x2x3

)
.

(i) Which of the above functions f1, f2, f3 are linear maps? For each one that is linear, determine its
matrix.

(ii) Is f2 injective and/or surjective?

Exercise 3. (8 Points)
(i) Let G : R2 → R2 be a linear map with

G

(
−1
2

)
=

(
0
1

)
, G

(
1
−1

)
=

(
2
3

)
.

Determine the matrix of G.
(ii) Let F : R2 → R2 be a function with

F

(
−1
2

)
=

(
1
1

)
, F

(
1
−1

)
=

(
2
2

)
, F

(
1
1

)
=

(
3
3

)
.

Show that F is not a linear map.

Exercise 4. (8 Points) We define the following linear map

H : R3 −→ R3x1x2
x3

 7−→
x1 + x2
x1 − x3
x2 + x3

 .

(i) Calculate the image of H.
(ii) Decide if H is injective and/or surjective.
(iii) Find a non-zero vector v ∈ R3, such that v is orthogonal to H(v). (Just one explicit vector is

enough)
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14.3 Linear Algebra I - Midterm 2021

Exercise 1. (10 Points) Consider the following linear system 3x1 − 6x2 + x3 + 5x4 = 5
2x1 − 4x2 + x3 + 3x4 = 4
−x1 + 2x2 − 2x3 = −5

.

(i) Find a matrix A ∈ R3×4 and and a vector b ∈ R3, such that the solutions of the above linear

system are given by the vectors x =

(
x1
x2
x3
x4

)
∈ R4 satisfying Ax = b.

(ii) Determine the row-reduced echelon forms of the matrices (A | b) and A and calculate their ranks.
(iii) Find all the solutions to the linear system.

(iv) Determine all x ∈ R4 which satisfy Ax = b and which are orthogonal to the vector u =

 0
1
−1
1

.

Exercise 2. (8 Points) Let u =

(
1
2

)
∈ R2 and define the following three functions:

f1 : R3 −→ R2x1x2
x3

 7−→ (
2x1 + 3x2

x1 + (u • u)x3

)
,

f2 : R2 −→ R(
x1
x2

)
7−→ sin(x1) + cos(x2) ,

f3 : R2 −→ R3

x 7−→

x • x0
u • u

 .

(i) Which of the above functions f1, f2, f3 are linear maps? For each one that is linear, determine its
matrix.

(ii) Is f2 injective and/or surjective?

Exercise 3. (8 Points)
(i) Let G : R2 → R2 be a linear map with

G

(
1
1

)
=

(
1
0

)
, G

(
−2
−1

)
=

(
−2
2

)
.

Determine the matrix of G.
(ii) Let F : R3 → R3 be a linear map with

F

−11
0

 =

3
2
3

 , F

 1
−1
5

 =

6
4
6

 .

Show that F is not injective.

Exercise 4. (8 Points) We define the following linear map

H : R3 −→ R3x1x2
x3

 7−→
x1 + x2 − x3

x1 + 2x2
x2 + x3

 .

(i) Calculate the image of H.
(ii) Decide if H is injective and/or surjective.
(iii) Find all vectors x ∈ R3 with H(x) = 2x.

Version 13 (January 25, 2024) - 99 -



Linear Algebra I - Midterm & Final exams

14.4 Linear Algebra I - Midterm 2022

Exercise 1. (10 Points) Consider the following linear system x1 + 3x2 + x4 = 1
x2 + 2x3 − 2x4 = 2

2x1 − 2x2 + x3 + x4 = 3
.

(i) Find a matrix A ∈ R3×4 and and a vector b ∈ R3, such that the solutions of the above linear

system are given by the vectors x =

(
x1
x2
x3
x4

)
∈ R4 satisfying Ax = b.

(ii) Determine the row-reduced echelon forms of the matrices (A | b) and A and calculate their ranks.
(iii) Find all the solutions to the linear system.
(iv) Determine all x ∈ R4 which satisfy Ax = b and which have norm ∥x∥ =

√
14.

Exercise 2. (8 Points) Let u =

(
1
−1

)
∈ R2 and define the following three functions:

f1 : R3 −→ R2x1x2
x3

 7−→ (
(u • u)− 2

x1 + (u • u)x3

)
,

f2 : R2 −→ R(
x1
x2

)
7−→ ex1 − ex2 ,

f3 : R2 −→ R2

x 7−→ (x • u)u .

(i) Which of the above functions f1, f2, f3 are linear maps? For each one that is linear, determine its
matrix.

(ii) Is f2 injective and/or surjective?

Exercise 3. (8 Points) Let G : R2 → R2 be a linear map with

G

(
−1
1

)
=

(
4
−2

)
, G

(
2
2

)
=

(
−4
4

)
.

(i) Determine the matrix of G.
(ii) Find all vectors x ∈ R2 such that x is orthogonal to G(x).

Exercise 4. (8 Points) We define the following linear map

H : R3 −→ R4x1x2
x3

 7−→


x1 + x2
x2 + x3

x1 + 2x2 + x3
2x1 − 2x3

 .

(i) Calculate the image of H.
(ii) Decide if H is injective and/or surjective.
(iii) Find a linear map F : R2 → R4 with im(F ) = im(H).
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14.5 Linear Algebra I - Finals 2019

Exercise 1. (12 Points) Let A =

 0 1 −2 3
1 −2 3 −4
−2 3 −4 5

 and B =

2 1 1
3 2 1
2 1 2

.

(i) Compute the products AB and BA, or explain why they are not defined.
(ii) Determine whether or not the matrices A and B are invertible and, if they are, compute their

inverses.
(iii) Calculate Im(B) and ker(B).

Exercise 2. (14 Points) We define the subspace U = span{u1, u2, u3} ⊂ R3, where

u1 =

0
1
1

 , u2 =

 1
0
−3

 , u3 =

 1
2
−1

 .

(i) Determine a basis B = (b1, . . . , bm) of U and calculate its dimension.
(ii) Calculate the coordinate vectors [u1]B , [u2]B and [u3]B , where B is the basis you determined in i).
(iii) Determine a basis for U⊥.
(iv) Find a linear map G : R2 → R3 with ker(G) = {0} and Im(G) = U .

Exercise 3. (10 Points) Which of the following subsets of R2 are subspaces? Justify your answers.

(i) U1 =

{(
x1
x2

)
∈ R2 | x1 + x2 = x1x2

}
.

(ii) U2 =

{(
x1
x2

)
∈ R2 | 2x1 = x1 + x2

}
.

(iii) U3 = span

{(
2
2

)}⋃
span

{(
2
1

)}
.

(Friendly reminder: ∪ is the union of two sets)

Exercise 4. (14 Points) We define the following linear map

T : R2 −→ R3(
x1
x2

)
7−→

 1 2
0 3
−1 1

(x1
x2

)
.

(i) Calculate an orthonormal basis F = (f1, . . . , fr) for Im(T ).

(ii) Check for which t ∈ R the vector v =

1
t
1

 is an element in Im(T ). Determine the coordinate

vector [v]F in this case.

(iii) Find a w ∈ R3 with [w]F =

(
1
2

)
.

(iv) Find a x ∈ R2 such that ∥T (x)− b∥ is minimal, where b =

1
2
4

.

(In (ii) and (iii) the F is the basis of Im(T ) you calculated in (i)).
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14.6 Linear Algebra I - Finals 2020

Exercise 1. (12 Points) Let A =

 1 −1 0
−2 3 −4
−2 3 −3

 and B =


1 0 1
0 2 −1
−2 0 0
0 1 0

.

(i) Compute the products AB and BA, or explain why they are not defined.
(ii) Determine whether or not the matrices A and B are invertible and, if they are, compute their

inverses.
(iii) Find all x ∈ R3 with ATAATAATAx = 0. Justify you answer.

Exercise 2. (12 Points) We define the subspace U = span{u1, u2, u3, u4} ⊂ R3, where

u1 =

0
1
1

 , u2 =

−10
3

 , u3 =

1
3
0

 , u4 =

 1
2
−1

 .

(i) Determine a basis B = (b1, . . . , bm) of U and calculate its dimension.
(ii) Calculate the coordinate vectors [u1]B , [u2]B ,[u3]B and [u4]B , where B is the basis from i).
(iii) Find a linear map G : R3 → R3 with Im(G) = U . What is the dimension of ker(G)?

Exercise 3. (12 Points) Set u =

(
−1
2

)
. Which of the following subsets of R2 are subspaces? Justify

your answers.

(i) U1 =

{(
x1
x2

)
∈ R2 | 2x1 − 3x2 = x1

}
.

(ii) U2 =

{(
x1
x2

)
∈ R2 | x1 is an integer, i.e. x1 ∈ {. . . ,−2,−1, 0, 1, 2, . . . }

}
.

(iii) U3 =
{
x ∈ R2 | x /∈ span{u}

}
.

(iv) U4 =

{(
x1
x2

)
∈ R2 |

(
x1
x2

)
• u = x1

}
.

Exercise 4. (14 Points) We define the following linear map

H : R2 −→ R3(
x1
x2

)
7−→

 1 1
−2 4
2 −1

(x1
x2

)
.

(i) Show that dim(Im(H)) = 2.
(ii) Calculate an orthonormal basis (f1, f2) for Im(H).
(iii) Find a vector v ∈ R3, such that B = (f1, f2, v) is an orthonormal basis for R3.

(iv) Calculate [H(x)]B for any x =

(
x1
x2

)
∈ R2.

(v) Find a x ∈ R2 such that ∥H(x)− b∥ is minimal, where b =

−51
−1

.
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Exercise 1. (14 Points) Let A =

1 2 3
0 1 −2
1 2 5

 and B =

 1 2 3
4 1 −2
−1 2 5

.

(i) Determine whether or not the matrices A and B are invertible and, if they are, compute their
inverses.

(ii) Calculate the matrix BA and decide if BAn is invertible for any integer n ≥ 1.
(iii) Determine if Im(A)∪ Im(B) and Im(A)∩ Im(B) are subspaces and, if they are, determine a basis.

Exercise 2. (12 Points) We define the subspace U = span{u1, u2, u3, u4} ⊂ R3, where

u1 =

1
0
1

 , u2 =

−12
1

 , u3 =

 3
−4
−1

 , u4 =

 4
−2
2

 .

(i) Determine a basis B = (b1, . . . , bm) of U and calculate its dimension.
(ii) Calculate the coordinate vectors [u1]B , [u2]B ,[u3]B and [u4]B , where B is the basis from i).
(iii) Calculate an orthonormal basis F = (f1, . . . , fm) for U and determine [u1]F , [u2]F ,[u3]F and [u4]F
(iv) Determine a basis for U⊥.

Exercise 3. (12 Points) Set u =

(
3
4

)
and let C ∈ R2×2 be an arbitrary matrix. Which of the following

subsets of R2 are subspaces? Justify your answers.
(i) U1 =

{
x ∈ R2 | x • x = x • u

}
.

(ii) U2 =

{(
x1
x2

)
∈ R2 | 2x1 − x2 = 3x2

}
.

(iii) U3 =
{
x ∈ R2 | Cx = x

}
.

(iv) U4 =

{(
x1
x2

)
∈ R2 | x1 · x2 ≥ x1

}
.

Exercise 4. (12 Points) Assume we have the following data points
i 1 2 3
xi 1 2 3
yi 0 −1 −3

(i) Find the line of best fit for the above data, i.e. find m,n ∈ R such that the function l(x) = mx+n

minimizes the sum of squares
∑3

i=1(l(xi)− yi)2.
(ii) We define the following linear map

H : R2 −→ R3(
x1
x2

)
7−→

1 1
2 1
3 1

(x1
x2

)

and set V = Im(H). Determine a basis of V and for b =

 0
−1
−3

 calculate the orthogonal projection

PV (b). Use your result to show that b is not an element in V .
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14.8 Linear Algebra I - Finals 2022

Exercise 1. (12 Points) Let A =

1 0
0 1
0 0

, B =

 2 −4 1
−1 2 −1
1 −1 2

 and C = ATBA.

(i) Determine whether or not the matrices A, B, and C are invertible and, if they are, compute their
inverses.

(ii) Determine im(C), ker(C) and im(C) ∩ ker(C).
(iii) Give a basis for ker(Cn) for all n ≥ 1.

Exercise 2. (14 Points) We define the subspace U = span{u1, u2, u3, u4} ⊂ R3, where

u1 =

2
2
1

 , u2 =

−6−6
−3

 , u3 =

−13
1

 , u4 =

 6
−2
0

 .

(i) Determine a basis B = (b1, . . . , bm) of U and calculate its dimension.
(ii) Calculate the coordinate vectors [u1]B , [u2]B ,[u3]B and [u4]B , where B is the basis from i).
(iii) Find a linear map F : R3 → R3 with ker(F ) = U⊥ and determine a basis of im(F ).

Exercise 3. (12 Points) Let D ∈ R2×2 be an arbitrary matrix. Which of the following sets are
subspaces? Justify your answers.

(i) U1 =


x1x2
x3

 ∈ R3 | 2x1 − x2 = −x3 + x2

 .

(ii) U2 =
{
x ∈ R2023 | x • x ≥ −2023

}
.

(iii) U3 =
{
x ∈ R2 | There exists a y ∈ R2 with Dy = 3x

}
.

(iv) U4 =

{(
x1
x2

)
∈ R2 | x1 + x2 = 0

}
∪
{(

x1
x2

)
∈ R2 | x1 · x2 ≤ 0

}
.

Exercise 4. (12 Points) We consider the vector b =


1
1
1
1

, the linear map

G : R2 −→ R4

(
x1
x2

)
7−→


1 1
−1 1
1 3
−1 −1

(x1x2
)
,

and define the subspace U = im(G).
(i) Show that dim(U) = 2 and find an orthonormal basis F = (f1, f2) of U .
(ii) Determine the orthogonal projection y = PU (b) of b onto U and calculate [y]F .
(iii) Find a x ∈ R2 such that ∥G(x)− b∥ is minimal.
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