Tutorial 9: Inverses and subspaces

Exercise 1. Decide if the following two linear maps are invertible. Determine their inverses if they exist.

$$
\begin{array}{ll}
F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, & G: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, \\
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
2 x_{2}+2 x_{3} \\
x_{1}-4 x_{2}+6 x_{3} \\
x_{2}+x_{3}
\end{array}\right), & \left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
10 x_{1}+x_{2}-26 x_{3} \\
x_{1}-2 x_{3} \\
-x_{1}+x_{3}
\end{array}\right)
\end{array}
$$

Exercise 2. (Final Exam 2021) Let $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -2 \\ 1 & 2 & 5\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 1 & -2 \\ -1 & 2 & 5\end{array}\right)$. B not invertible
(i) Determine whether or not the matrices A and B are invertible and, if they are, compute their inverses.
(ii) Calculate the matrix $B A$ and decide if $B A^{n}$ is invertible for any integer $n \geq 1$.
(Next lecture) A subset $U \subset \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} if
i) $0 \in U$,
ii) for all $u, v \in U$ we have $u+v \in U$,
iii) for all $u \in U$ and $\lambda \in \mathbb{R}$ we have $\lambda u \in U$.
(Next lecture) The span of $v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$ is the set

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n} \in \mathbb{R}^{m} \mid \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}\right\}
$$

Exercise 3. (Final Exam 2019) Which of the following subsets of \mathbb{R}^{2} are subspaces? Justify your answers.
(i) $U_{1}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1}+x_{2}=x_{1} x_{2}\right\}$. N N
(ii) $U_{2}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, 2 x_{1}=x_{1}+x_{2}\right\}$. Yes
(iii) $U_{3}=\operatorname{span}\left\{\binom{2}{2}\right\} \cup \operatorname{span}\left\{\binom{2}{1}\right\} . \quad N_{0}$
(Reminder: \cup is the union of two sets)
(Solutions for Exercise $2 \& 3$ are contained in the solutions for the Final exam $2021 \& 2019$)

Homework 4: Reflection, Projection and Inverses

Deadline: 3rd December, 2023

Exercise 1. $\left(2+3=5\right.$ Points) Let $u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right) \in \mathbb{R}^{n}$ be with $u \neq 0$.
(i) Show that the reflection $\rho_{u}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a linear map.
(ii) Show that the matrix of the projection $P_{u}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is given by

$$
\left[P_{u}\right]=\frac{1}{u \bullet u} u u^{T} \in \mathbb{R}^{n \times n}
$$

where $u^{T}=\left(u_{1} u_{2} \ldots u_{n}\right) \in \mathbb{R}^{1 \times n}$. Use this to give an expression for $\left[\rho_{u}\right]$.

Exercise 2. $\left(2+3=5\right.$ Points) Let $u=\binom{2}{1}, d=\binom{1}{1}$ and $x=\binom{5}{0}$.
(i) Calculate the matrices $\left[P_{u}\right]$ and $\left[\rho_{u}\right]$ in this special case.
(ii) Calculate the following vectors and draw them in one picture together with u, d and x

$$
P_{u}(x), \quad \rho_{u}(x), \quad\left(P_{u} \circ P_{d}\right)(x), \quad \operatorname{rot}_{\frac{\pi}{2}}(x), \quad\left(P_{u} \circ \operatorname{rot}_{\frac{\pi}{2}}\right)(x), \quad\left(\operatorname{rot}_{\frac{\pi}{2}} \circ P_{u}\right)(x)
$$

Exercise 3. $\left(2+2=4\right.$ Points) Show that for all $u \in \mathbb{R}^{n}$ with $u \neq 0$ the projection P_{u} and the reflection ρ_{u} satisfy for all $x \in \mathbb{R}^{n}$ the following two properties:
(i) $P_{u}\left(P_{u}(x)\right)=P_{u}(x)$.
(ii) $\rho_{u}\left(\rho_{u}(x)\right)=x$.

Exercise 4. $(3+3=6$ Points $)$
(i) Decide if the following two linear maps are invertible. Determine their inverses if they exist.

$$
\begin{array}{ll}
F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, & G: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
-x_{1}+x_{2}+5 x_{3} \\
2 x_{1}-x_{2}+2 x_{3} \\
-x_{1}+x_{2}+4 x_{3}
\end{array}\right), & \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
x_{1}+x_{2}+2 x_{3} \\
2 x_{1}+2 x_{2}+4 x_{3} \\
2 x_{1}+3 x_{2}+5 x_{3}
\end{array}\right) .
\end{array}
$$

(ii) The kernel of a linear map $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is defined by

$$
\operatorname{ker}(H)=\left\{x \in \mathbb{R}^{n} \mid H(x)=0\right\}
$$

Determine $\operatorname{ker}(F)$ and $\operatorname{ker}(G)$.

Exercise 1. Decide if the following two linear maps are invertible. Determine their inverses if they exist.

$$
\begin{aligned}
& F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
2 x_{2}+2 x_{3} \\
x_{1}-4 x_{2}+6 x_{3} \\
x_{2}+x_{3}
\end{array}\right)
\end{aligned}
$$

$$
G: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}
$$

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \leftrightarrow\left(\begin{array}{c}
10 x_{1}+x_{2}-2 x_{3} \\
x_{1}-2 x_{3} \\
x_{1}+x_{3}
\end{array}\right) .
$$

The matrix of F is $[F]=\left(\begin{array}{ccc}0 & 2 & 2 \\ 1 & -4 & 6 \\ 0 & 1 & 1\end{array}\right)$. We calculate:

$$
\begin{aligned}
& \left([F] \mid I_{3}\right)=\Psi_{\rightarrow}\left(\begin{array}{ccc|cccc}
0 & 2 & 2 & 1 & 0 & 0 \\
1 & -4 & 6 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \wedge\binom{-\frac{1}{2}}{2}\left(\begin{array}{ccc|ccc}
1 & -4 & 6 & 0 & 1 & 0 \\
0 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|cccc}
1 & -4 & 6 & 0 & 1 & 0 \\
0 & 2 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} & 0 & 1
\end{array}\right)
\end{aligned}
$$

Here we already see that $\operatorname{rref}([\mp)) \neq I_{3}$ and therefore F is not invertible.
For G we have $[G]=\left(\begin{array}{ccc}10 & 1 & -26 \\ 1 & 0 & -2 \\ -1 & 0 & 1\end{array}\right)$ and we get

$$
\begin{aligned}
& \left([G] \mid I_{3}\right)=\left[\begin{array}{ccc|ccc}
{[0} \\
(10 & 1 & 1 & -26 & 1 & 0
\end{array}\right) \\
& \sim \underset{\left[\begin{array}{c}
2 \\
(2) \\
(6)
\end{array}\right)}{\left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 0 & 1 & 0 \\
0 & 1 & -6 & 1 & -10 & 0 \\
0 & 0 & 1 & 0 & -1 & -1
\end{array}\right)} \sim\left(\begin{array}{lll|lll}
1 & 0 & 0 & 0 & -1 & -2 \\
0 & 1 & 0 & 1 & -16 & -6 \\
0 & 0 & 1 & 0 & -1 & -1
\end{array}\right)
\end{aligned}
$$

Therefore G is invertible and the inverse is given by

$$
\begin{aligned}
G^{-1}: \mathbb{R}^{3} & \longrightarrow \mathbb{R}^{3} \\
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & \mapsto\left(\begin{array}{c}
-x_{2}-2 x_{3} \\
x_{1}-16 x_{2}-6 x_{3} \\
-x_{2}-x_{3}
\end{array}\right)=[6]^{-1} x .
\end{aligned}
$$

Additional question: What is $\operatorname{Ker}(F), \operatorname{Ker}(G)$?

$$
\operatorname{ker}(F)=\left\{x \in R^{3} \mid F(x)=0\right\}
$$

By above calculation:

$$
\begin{aligned}
& {[F] } \sim\left(\frac { 1 } { 2 } (\begin{array} { l l l }
{ 1 } & { - 4 } & { 6 } \\
{ 0 } & { 2 } & { 2 } \\
{ 0 } & { 0 } & { 0 }
\end{array}) \sim \left(\begin{array}{|cc}
1
\end{array}\left(\begin{array}{ccc}
1 & -4 & 6 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\right.\right. \\
& \sim\left(\begin{array}{ccc}
1 & 0 & 10 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& \text { Solutions to } F(x)=0: \begin{array}{l}
x_{1}=-10 t \\
x_{2}=-t \\
x_{3}=t
\end{array}
\end{aligned}
$$

$$
\operatorname{Ker}(F)=\left\{x \in \mathbb{R}^{3} \left\lvert\, x=t\left(\begin{array}{c}
-10 \\
-1 \\
1
\end{array}\right)\right., t \in \mathbb{R}\right\}
$$

Since G is invertible, $G(x)=0$ just has the solution $X=0$, i.e.

$$
\operatorname{Ker}(G)=\{0\} .
$$

