Instructor: Henrik Bachmann Teaching assistant: Yuichiro Toma

Tutorial 9: Inverses and subspaces

Exercise 1. Decide if the following two linear maps are invertible. Determine their inverses if they exist.

$F: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$,	$G: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$,
$ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longmapsto \begin{pmatrix} 2x_2 + 2x_3 \\ x_1 - 4x_2 + 6x_3 \\ x_2 + x_3 \end{pmatrix} , $	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longmapsto \begin{pmatrix} 10x_1 + x_2 - 26x_3 \\ x_1 - 2x_3 \\ -x_1 + x_3 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{q} \\ \mathbf{z} - 2 - \mathbf{q} \\ \mathbf{z} \end{pmatrix}$
Exercise 2. (Final Exam 2021) Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -2 \\ 1 & 2 & 5 \end{pmatrix}$	and $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & -2 \\ -1 & 2 & 5 \end{pmatrix}$. B not invertible
 (i) Determine whether or not the matrices A and B are invertible and, if they are, compute their inverses. (ii) Calculate the matrix BA and decide if BAⁿ is invertible for any integer n ≥ 1 	
	If BA^n inv. then $B = BA^n \cdot (A^n)^{t}$ would
(Next lecture) A subset $U \subset \mathbb{R}^n$ is a subspace of \mathbb{R}^n if	be (nr.
i) $0 \in U$,	$\Rightarrow BA$
ii) for all $u, v \in U$ we have $u + v \in U$,	not inv.
iii) for all $u \in U$ and $\lambda \in \mathbb{R}$ we have $\lambda u \in U$.	

(Next lecture) The **span** of $v_1, \ldots, v_n \in \mathbb{R}^m$ is the set $\operatorname{span}\{v_1, \ldots, v_n\} = \{\lambda_1 v_1 + \cdots + \lambda_n v_n \in \mathbb{R}^m \mid \lambda_1, \ldots, \lambda_n \in \mathbb{R}\}.$

Exercise 3. (Final Exam 2019) Which of the following subsets of \mathbb{R}^2 are subspaces? Justify your answers.

(i)
$$U_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 + x_2 = x_1 x_2 \right\}$$
. Vc
(ii) $U_2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid 2x_1 = x_1 + x_2 \right\}$. Ves

(iii)
$$U_3 = \operatorname{span}\left\{ \begin{pmatrix} 2\\2 \end{pmatrix} \right\} \bigcup \operatorname{span}\left\{ \begin{pmatrix} 2\\1 \end{pmatrix} \right\}.$$
 No

(Reminder: \cup is the union of two sets)

(Solutions for Exercise 2 & 3 are contained in the solutions for the Final exam 2021 & 2019)

Version: November 28, 2023

Homework 4: Reflection, Projection and Inverses

Deadline: 3rd December, 2023

Exercise 1. (2+3 = 5 Points) Let
$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \in \mathbb{R}^n$$
 be with $u \neq 0$.

- (i) Show that the reflection $\rho_u : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a linear map.
- (ii) Show that the matrix of the projection $P_u : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is given by

$$[P_u] = \frac{1}{u \bullet u} u u^T \in \mathbb{R}^{n \times n} ,$$

where $u^T = (u_1 \, u_2 \, \dots \, u_n) \in \mathbb{R}^{1 \times n}$. Use this to give an expression for $[\rho_u]$.

Exercise 2.
$$(2+3 = 5 \text{ Points})$$
 Let $u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, d = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $x = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$.

- (i) Calculate the matrices $[P_u]$ and $[\rho_u]$ in this special case.
- (ii) Calculate the following vectors and draw them in one picture together with u,d and x

$$P_u(x), \quad \rho_u(x), \quad (P_u \circ P_d)(x), \quad \operatorname{rot}_{\frac{\pi}{2}}(x), \quad (P_u \circ \operatorname{rot}_{\frac{\pi}{2}})(x), \quad (\operatorname{rot}_{\frac{\pi}{2}} \circ P_u)(x),$$

Exercise 3. (2+2 = 4 Points) Show that for all $u \in \mathbb{R}^n$ with $u \neq 0$ the projection P_u and the reflection ρ_u satisfy for all $x \in \mathbb{R}^n$ the following two properties:

- (i) $P_u(P_u(x)) = P_u(x)$.
- (ii) $\rho_u(\rho_u(x)) = x$.

Exercise 4. (3+3=6 Points)

(i) Decide if the following two linear maps are invertible. Determine their inverses if they exist.

$$F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, \qquad G: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, \\ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \longmapsto \begin{pmatrix} -x_{1} + x_{2} + 5x_{3} \\ 2x_{1} - x_{2} + 2x_{3} \\ -x_{1} + x_{2} + 4x_{3} \end{pmatrix}, \qquad \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \longmapsto \begin{pmatrix} x_{1} + x_{2} + 2x_{3} \\ 2x_{1} + 2x_{2} + 4x_{3} \\ 2x_{1} + 3x_{2} + 5x_{3} \end{pmatrix}.$$

(ii) The **kernel** of a linear map $H : \mathbb{R}^n \to \mathbb{R}^m$ is defined by

$$\ker(H) = \left\{ x \in \mathbb{R}^n \mid H(x) = 0 \right\}.$$

Determine $\ker(F)$ and $\ker(G)$.

Exercise 1. Decide if the following two linear maps are invertible. Determine their inverses if they exist.

$$F: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \qquad G: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \\ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longmapsto \begin{pmatrix} 2x_2 + 2x_3 \\ x_1 - 4x_2 + 6x_3 \\ x_2 + x_3 \end{pmatrix}, \qquad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longmapsto \begin{pmatrix} 10x_1 + x_2 - 26x_3 \\ x_1 - 2x_3 \\ -x_1 + x_3 \end{pmatrix}.$$

The matrix of
$$\mp$$
 is $[F] = \begin{pmatrix} 0 & 2 & 2 \\ 1 & -4 & 6 \\ 0 & 1 & 1 \end{pmatrix}$. We calculate:
 $\left([F] | I_3 \right) = \begin{bmatrix} 2 & 0 & 2 & 2 & | & 1 & 0 & 0 \\ 1 & -4 & 6 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{bmatrix} 1 & -4 & 6 & | & 0 & 1 & 0 \\ 0 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 & 0 \end{bmatrix}$
 $\sim \begin{pmatrix} 1 & -4 & 6 & | & 0 & 1 & 0 \\ 0 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & 0 & 0 & | & -\frac{1}{2} & 0 & 1 \end{pmatrix}$

Here we already see that $rref([F]) \neq I_3$ and therefore F is not invertible.

For G we have
$$[G] = \begin{pmatrix} 10 & 1 & -26 \\ 1 & 0 & -2 \\ -1 & 0 & 1 \end{pmatrix}$$
 and we get
 $([G] | I_3) \stackrel{f}{=} \stackrel{(10 & 1 - 26 \\ 1 & 0 & -2 \\ -1 & 0 & 1 \end{pmatrix} \stackrel{(100)}{=} \stackrel{(100)}$

Therefore G is invertible and the inverse is given by $G^{-1}: [R^{3} \longrightarrow R^{3}]$ $X = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \mapsto \begin{pmatrix} -x_{2} - 2x_{3} \\ x_{1} - 16x_{2} - 6x_{3} \\ -x_{2} - x_{3} \end{pmatrix} = [G^{-1}x].$

Additional question: What is Ker(F), Ker(G)? $|(e_r(F) = \{x \in R^3 | F(x) = 0\}$ By above calculation: $\sim \begin{pmatrix} | & O & | 0 \\ 0 & | & | \\ 0 & () & 0 \end{pmatrix}$ $\chi_{l} = -lot$ $X_1 = -t$ Solutions to F(x)=0: $X_{7} = t$

 $V(r(F) = \{ X \in \mathbb{R}^3 \mid X = t \begin{pmatrix} -lo \\ -l \end{pmatrix}, t \in \mathbb{R}^3 \}$

Since G is invertible, G(x)=0 just has the solution X=0, i.e. Kev(G) = FOG.