Tutorial 9: Inverses and subspaces

Exercise 1. Decide if the following two linear maps are invertible. Determine their inverses if they exist.

$$
\begin{array}{ll}
F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, & G: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
2 x_{2}+2 x_{3} \\
x_{1}-4 x_{2}+6 x_{3} \\
x_{2}+x_{3}
\end{array}\right), & \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
10 x_{1}+x_{2}-26 x_{3} \\
x_{1}-2 x_{3} \\
-x_{1}+x_{3}
\end{array}\right)
\end{array}
$$

Exercise 2. (Final Exam 2021) Let $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -2 \\ 1 & 2 & 5\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 1 & -2 \\ -1 & 2 & 5\end{array}\right)$.
(i) Determine whether or not the matrices A and B are invertible and, if they are, compute their inverses.
(ii) Calculate the matrix $B A$ and decide if $B A^{n}$ is invertible for any integer $n \geq 1$.
(Next lecture) A subset $U \subset \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} if
i) $0 \in U$,
ii) for all $u, v \in U$ we have $u+v \in U$,
iii) for all $u \in U$ and $\lambda \in \mathbb{R}$ we have $\lambda u \in U$.
(Next lecture) The span of $v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$ is the set

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n} \in \mathbb{R}^{m} \mid \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}\right\}
$$

Exercise 3. (Final Exam 2019) Which of the following subsets of \mathbb{R}^{2} are subspaces? Justify your answers.
(i) $U_{1}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, x_{1}+x_{2}=x_{1} x_{2}\right\}$.
(ii) $U_{2}=\left\{\left.\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2} \right\rvert\, 2 x_{1}=x_{1}+x_{2}\right\}$.
(iii) $U_{3}=\operatorname{span}\left\{\binom{2}{2}\right\} \bigcup \operatorname{span}\left\{\binom{2}{1}\right\}$.
(Reminder: \cup is the union of two sets)
(Solutions for Exercise $2 \& 3$ are contained in the solutions for the Final exam $2021 \& 2019$)

