Tutorial 6: Review for the midterm exam

General comments:

(i) Next week Friday (17th November) we will have the midterm exam. Content: Lecture 1-5.
(ii) On the homepage you can now find the midterms + solutions of the last four years.
(iii) For Homework 3, Exercise 1 the videos "Image of a non-linear map" and "When is a linear map surjective/injective" might be helpful. (On the homepage at "Additional materials")
(iv) On Saturday 18th November we will have Lecture 6. You can choose if you want to do it face-to-face in the classroom or online in Zoom (which will be recorded). I will do a voting in the next Lecture.

Exercise 1. Consider the linear map

$$
\begin{aligned}
F: \mathbb{R}^{3} & \longrightarrow \mathbb{R}^{3} \\
x & \longmapsto\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & -1 & 2 \\
1 & 1 & -5
\end{array}\right) x .
\end{aligned}
$$

(i) Calculate $\operatorname{im}(F)$.
(ii) Is F surjective and/or injective?
(iii) Find all solutions to $F(x)=0$.
(iv) Find all $x \in \mathbb{R}^{3}$ such that $v \bullet x=0$ for all $v \in \operatorname{im}(F)$.

In (iv) the dot product • of $u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right), v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right) \in \mathbb{R}^{n}$ is defined by

$$
u \bullet v=u_{1} v_{1}+\cdots+u_{n} v_{n}
$$

This will be introduced in Lecture 5 (Friday 10th November).

The solutions for Exercises 2-7 can be found in "Tutorial 6 2019" on the homepage.
Exercise 2. Give an example of a linear system which has
(i) exactly one solution.
(ii) infinitely many solutions.
(iii) no solutions.

Exercise 3. Which of the following matrices are on row-reduced echelon form?

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Exercise 4. Consider the following linear system

$$
\left\{\begin{array}{r}
x_{1}+4 x_{2}+7 x_{3}+2 x_{4}=1 \\
2 x_{1}+5 x_{2}+8 x_{3}+x_{4}=2 \\
3 x_{1}+6 x_{2}+10 x_{3}+x_{4}=1
\end{array}\right.
$$

(i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $A x=b$.
(ii) Calculate the row-reduced echelon form of $(A \mid b)$.
(iii) Find all the solutions to the linear system.
(iv) Calculate the rank of $(A \mid b)$ and A.

Exercise 5. Define for a matrix $A \in \mathbb{R}^{m \times n}$ the linear map

$$
\begin{aligned}
F_{A}: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{m} \\
x & \longmapsto A x .
\end{aligned}
$$

Choose for A the matrices appearing in Exercise $2 \& 3$ and decide for each case if F_{A} is injective and/or surjective and calculate the image of F_{A}.

Exercise 6.

(i) Determine all vectors that are orthogonal to the vector $v=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
(ii) Find a linear map $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, such that the image of G is given by all the vectors which are orthogonal to v. (i.e. the image gives all the vectors you determined in i)).

Exercise 7. Let $u=\binom{1}{2} \in \mathbb{R}^{2}$ and define the following four functions:

$$
\begin{array}{rlrl}
f_{1}: \mathbb{R} & \longrightarrow \mathbb{R}^{2} & f_{2}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto \operatorname{rot}_{x}(u), & & \longmapsto\binom{u \bullet x}{(u \bullet u)(x \bullet u)}, \\
f_{3}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} & f_{4}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & \longmapsto\binom{x_{1}+x_{2}+x_{3}}{1}, & \binom{x_{1}}{x_{2}} & \longmapsto\left(\begin{array}{c}
2 x_{2}-x_{1} \\
2 x_{1} \\
4 x_{1}+x_{2}
\end{array}\right) .
\end{array}
$$

(i) Give a geometric interpretation of the image of f_{1}. Is f_{1} injective and/or surjective?
(ii) Which of the above functions $f_{1}, f_{2}, f_{3}, f_{4}$ are linear maps? For each one that is linear, determine its matrix.

Exercise 1. Consider the linear map

$$
\begin{aligned}
F: \mathbb{R}^{3} & \longrightarrow \mathbb{R}^{3} \\
x & \longmapsto\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & -1 & 2 \\
1 & 1 & -5
\end{array}\right) x .
\end{aligned}
$$

i) Calculate $\operatorname{im}(F)$.
ii) Is F surjective and/or injective?
iii) Find all solutions to $F(x)=0$.
iv) Find all $x \in \mathbb{R}^{3}$ such that $v \bullet x=0$ for all $v \in \operatorname{im}(F)$.
i) We need to find all $y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$ s.th $F(x)=y$ has a solution.

$$
\begin{aligned}
& \left.([F] \mid y)=\stackrel{(-1)\left(\begin{array}{ccc|c}
-2 \\
L_{2}
\end{array}\left(\begin{array}{ccc|c}
1 & 0 & -1 & y_{1} \\
2 & -1 & 2 & y_{2} \\
1 & 1 & -5 & y_{3}
\end{array}\right) \approx\left(\begin{array}{ccc|c}
1 & 0 & -1 & y_{1} \\
0 & -1 & 4 & y_{1}-2 y_{1} \\
0 & 1 & -4 & y_{3}-y_{1}
\end{array}\right)\right.}{ } \quad \begin{array}{llll}
1 & 0 & -1 & y_{1} \\
0 & 1 & -4 & 2 y_{1}-y_{2} \\
0 & 0 & 0 & -3 y_{1}+y_{2}+y_{3}
\end{array}\right) .
\end{aligned}
$$

We get $\operatorname{im}(F)=\left\{\left.\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right) \in \mathbb{R}^{3} \right\rvert\,-3 y_{1}+y_{2}+y_{3}=0\right\}$
ii) . $\operatorname{im}(F) \neq \mathbb{R}^{3}$ and therefore F is not surjective.
$\left(-\right.$ We have $F\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)=F\left(\begin{array}{l}1 \\ 4 \\ 1\end{array}\right)$ and therefore
Do iii) first and F is not injective.
set $t=0$ and $t=1$
iii) By i) we see that for $y=\binom{0}{0}$ the solutions of $F(x)=y=0$ are given by $x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ with

$$
\begin{aligned}
& x_{1}=t \\
& x_{2}=4 t \\
& x_{3}=t .
\end{aligned} \quad t \in \mathbb{R}
$$

iv) By i) we see that all vectors v the image of F have the form

$$
V=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
3 y_{1}-y_{2}
\end{array}\right)
$$

for any $y_{1}, y_{2} \in \mathbb{R}$.
So for $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ we have

$$
\begin{aligned}
x \cdot v & =x_{1} y_{1}+x_{2} y_{2}+x_{3}\left(3 y_{1}-y_{2}\right) \\
& =\left(x_{1}+3 x_{3}\right) y_{1}+\left(x_{2}-x_{3}\right) y_{2} .
\end{aligned}
$$

In order to have $x \cdot v$ for all $v \in \operatorname{im}(F)$,
we therefore need to have $x_{1}+3 x_{3}=0$ and $x_{2}-x_{3}=0$. This gives a linear system.

$$
\left\{\begin{aligned}
x_{1}+3 x_{3} & =0 \\
x_{2}-x_{3} & =0 \\
x_{1} & =-3 t
\end{aligned}\right.
$$

Solutions:

$$
x_{2}=t \quad \text { for } \quad t \in \mathbb{R}
$$

$$
x_{3}=t
$$

\Rightarrow All multiples of $\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)$ are orthogonal to the vectors in the image of F.

