Tutorial 5: Linear maps

A function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, if for all $u, v \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ we have
(i) $F(u+v)=F(u)+F(v)$,
(ii) $F(\lambda u)=\lambda F(u)$.

Exercise 1. Which of the following functions are linear maps?

$$
\begin{array}{rlrl}
f_{1}: \mathbb{R} & \longrightarrow \mathbb{R} & f_{2}: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto \sin (x), & x & \longmapsto x^{2}+1, \\
f_{3}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} & f_{4}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} & \longmapsto\binom{8 x_{1}+2 x_{2}}{4 x_{2}}, & \binom{x_{1}}{x_{2}} & \longmapsto\binom{x_{1}+2 x_{2}}{x_{1}^{2}+x_{2}} .
\end{array}
$$

Theorem 4.2: For any linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ there exist a unique matrix $[F] \in \mathbb{R}^{m \times n}$, such that we have for all $x \in \mathbb{R}^{n}$

$$
F(x)=[F] x .
$$

(Here the left-hand side is the evaluation of the function F at x and the right-hand side is the multiplication of the matrix $[F]$ with x.)
$[F]$ is called the matrix of F.
Conversely, we also saw that for any matrix $A \in \mathbb{R}^{m \times n}$ we can define a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by setting $F(x)=A x$. This is always a linear map (Example 16 in the lecture) whose matrix is $[F]=A$.

Exercise 2. Show that there exist a unique linear map $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with the property

$$
G\binom{1}{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad G\binom{1}{2}=\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
$$

What is the value of $G(x)$ for an arbitrary $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$? Determine the matrix of G.

Homework 3: Functions \& Linear maps

Deadline: 12th November, 2023

Exercise 1. $(3+3+4=10$ Points) We define the following four functions:

$$
\begin{aligned}
f_{1}: \mathbb{R} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto\binom{1-\cos (x)}{\sin (x)}, \\
f_{3}: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto \frac{4 x}{x^{2}+4}
\end{aligned}
$$

$$
\begin{aligned}
f_{2}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} & \longmapsto\binom{2 x_{1}-x_{2}}{x_{1} x_{2}} \\
f_{4}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
\binom{x_{1}}{x_{2}} & \longmapsto\left(\begin{array}{c}
3 x_{1}-x_{2} \\
2 x_{1}-x_{2} \\
x_{1}-x_{2}
\end{array}\right) .
\end{aligned}
$$

(i) Calculate the image of each function, i.e. $\operatorname{describe} \operatorname{im}\left(f_{j}\right)$ for $j=1,2,3,4$ as explicit as possible. If you can not find a mathematical description try to describe the elements of the image in words.
(ii) Decide for each function if it is injective and/or surjective and/or bijective.
(iii) Decide which of the above functions are linear maps.

Justify your answers.

Exercise 2. (5 Points) Show that there exist a unique linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with the property

$$
T\binom{1}{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad T\binom{1}{-1}=\left(\begin{array}{c}
4 \\
5 \\
6
\end{array}\right)
$$

What is the value of $T(x)$ for an arbitrary $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$? Determine the matrix of T.

Exercise 3. $(2+2+3=7$ Points)
(i) Let X be a finite set. Show that a function $f: X \rightarrow X$ is injective if and only if it is surjective.
(ii) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map. Show that F can not be surjective.
(iii) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. Show that F is injective if and only if the only solution to $F(x)=0$ is $x=0$.

Tutorial solutions
Exercise 1. Which of the following functions are linear maps?

$f_{1}:$	\mathbb{R}	$\longrightarrow \mathbb{R}$	$f_{2}: \mathbb{R}$
x	$\longmapsto \mathbb{R}$		
x	$\longmapsto \sin (x)$,		$\longmapsto x^{2}+1$,
$f_{3}: \mathbb{R}^{2}$	$\longrightarrow \mathbb{R}^{2}$	$f_{4}: \mathbb{R}^{2}$	$\longrightarrow \mathbb{R}^{2}$
$\binom{x_{1}}{x_{2}}$	$\longmapsto\binom{8 x_{1}+2 x_{2}}{4 x_{2}}$,	$\binom{x_{1}}{x_{2}}$	$\longmapsto\binom{x_{1}+2 x_{2}}{x_{1}^{2}+x_{2}}$.

1) f_{1} is not linear since $\sin \left(\frac{\pi}{2}\right)=1$, but

$$
\sin \left(2 \cdot \frac{\pi}{2}\right)=\sin (\pi)=0 \neq 2 \cdot \sin \left(\frac{\pi}{2}\right)=2 .
$$

Therefore $\lambda \sin (u)=\sin (\lambda u)$ is not the for all $\lambda \in \mathbb{R}, u \in \mathbb{R}^{\prime}$.
2) f_{2} is not linear since $f_{2}(0+0)=f_{2}(0)=1$, but $f_{2}(0)+f_{2}(0)=1+1=2 \neq 1$.
3) f_{3} is linear.

There are two ways to check this:
(1) check the two condition in the definition.
easier \rightarrow (2) show that there exist a matrix $A \in \mathbb{R}^{\text {men }}$ with $f_{3}(x)=A x$
(2): If we set $A=\left(\begin{array}{ll}8 & 2 \\ 0 & 4\end{array}\right)$, we have $f_{3}(x)=A x$ and therefore f_{3} is linear.
[or : (1): For $u=\binom{u_{1}}{u_{2}}, v=\binom{v_{1}}{v_{2}}$ we have

$$
\left.\begin{array}{l}
f_{3}(u+v)=f_{3}\binom{u_{1}+v_{1}}{u_{2}+v_{2}}=\binom{8\left(u_{1}+v_{1}\right)+2\left(u_{2}+v_{2}\right)}{4\left(u_{2}+v_{2}\right)} \\
=\binom{8 u_{1}+2 u_{2}+8 v_{1}+2 v_{2}}{4 u_{2}+4 v_{2}}=\binom{8 u_{1}+2 u_{2}}{4 u_{2}}+\binom{8 v_{1}+2 u_{2}}{4 v_{2}}
\end{array}\right) . \begin{gathered}
=f_{3}(u)+f_{3}(v) \\
\text { For } \lambda \in \mathbb{R}: \\
f_{3}(\lambda u)=f_{3}\binom{\lambda u_{1}}{\lambda u_{2}}=\binom{8 \lambda u_{1}+2 \lambda u_{2}}{4 \lambda u_{2}} \\
=\left(\begin{array}{c}
\lambda\left(8 u_{1}+2 u_{2}\right) \\
\lambda \\
\left(4 u_{2}\right)
\end{array}\right)=\lambda\binom{8 u_{1}+2 u_{2}}{4 u_{2}} \\
=\lambda f_{3}(u) .
\end{gathered}
$$

You see that in this care (1) is much longer than (2)!

Exercise 2. Show that there exist a unique linear map $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with the property

$$
G\binom{1}{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad G\binom{1}{2}=\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
$$

What is the value of $G(x)$ for an arbitrary $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$? Determine the matrix of G.

$$
\begin{aligned}
& \text { If } G \text { is linear, then } G(u+v)=G(u)+G(v) \\
& \text { and } G(\lambda u)=\lambda G(u) . \operatorname{In} \text { particular, if } \\
& \binom{x_{1}}{x_{2}}=a\binom{1}{1}+b\binom{1}{2} \text {, then } \\
& \begin{aligned}
G\binom{x_{1}}{x_{2}} & =G\left(a\binom{1}{1}+b\binom{1}{2}\right. \\
= & G\binom{1}{1}+b G\binom{1}{2}
\end{aligned}=a\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+b\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right) \\
& \\
& =\binom{a-b}{b-b}
\end{aligned}
$$

$$
\text { To find } a, b \text { we want to solve }
$$

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\binom{a}{b}=\binom{x_{1}}{x_{2}}
$$

i.e. (ar always) consider the augmented matrix

$$
\begin{aligned}
\Theta_{1} & \left(\begin{array}{ll|l}
1 & 1 & x_{1} \\
1 & 2 & x_{2}
\end{array}\right) \sim \bigoplus_{\Theta}\left(\begin{array}{ll|l}
1 & 1 & x_{1} \\
0 & 1 & x_{2}-x_{1}
\end{array}\right) \\
& \sim\left(\begin{array}{ll|l}
1 & 0 & x_{1}-x_{2} \\
0 & 1 & x_{2}-x_{1}
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow \quad \begin{aligned}
& \text { unique solution } \\
& \Rightarrow \\
& = \\
& x_{1}-x_{2}, \quad b=x_{2}-x_{1} \text {. }
\end{aligned}
$$

Therefore for any $x_{1}, x_{2} \in \mathbb{R}$ we have

$$
\binom{x_{1}}{x_{2}}=\left(2 x_{1}-x_{2}\right)\binom{1}{1}+\left(x_{2}-x_{1}\right)\binom{1}{2}
$$

(as you can check by writing out the risht-hand side).
In particular, if G is a linear map, then

$$
\begin{aligned}
& G\binom{x_{1}}{x_{2}}=\left(2 x_{1}-x_{2}\right) G\binom{1}{1}+\left(x_{2}-x_{1}\right) G\binom{1}{2} \\
& =\left(2 x_{1}-x_{2}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\left(x_{2}-x_{1}\right)\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{l}
3 x_{1}-2 x_{2} \\
x_{2}-x_{1} \\
3 x_{1}-2 x_{2}
\end{array}\right)
\end{aligned}
$$

Since $\left(\begin{array}{l}3 x_{1}-2 x_{2} \\ x_{2}-x_{2} \\ 3 x_{1}-2 x_{2}\end{array}\right)=\left(\begin{array}{rr}3 & -2 \\ -1 & 1 \\ 3 & -2\end{array}\right)\binom{x_{1}}{x_{2}}$
we have $[G]=\left(\begin{array}{cc}3 & -2 \\ -1 & 1 \\ 3 & -2\end{array}\right)$.

