Tutorial 5: Linear maps

A function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map, if for all $u, v \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ we have
(i) $F(u+v)=F(u)+F(v)$,
(ii) $F(\lambda u)=\lambda F(u)$.

Exercise 1. Which of the following functions are linear maps?

$$
\begin{aligned}
f_{1}: \mathbb{R} & \longrightarrow \mathbb{R} & f_{2}: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto \sin (x), & x & \longmapsto x^{2}+1, \\
f_{3}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} & f_{4}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} & \longmapsto\binom{8 x_{1}+2 x_{2}}{4 x_{2}}, & \binom{x_{1}}{x_{2}} & \longmapsto\binom{x_{1}+2 x_{2}}{x_{1}^{2}+x_{2}} .
\end{aligned}
$$

Theorem 4.2: For any linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ there exist a unique matrix $[F] \in \mathbb{R}^{m \times n}$, such that we have for all $x \in \mathbb{R}^{n}$

$$
F(x)=[F] x .
$$

(Here the left-hand side is the evaluation of the function F at x and the right-hand side is the multiplication of the matrix $[F]$ with x.)
$[F]$ is called the matrix of F.
Conversely, we also saw that for any matrix $A \in \mathbb{R}^{m \times n}$ we can define a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by setting $F(x)=A x$. This is always a linear map (Example 16 in the lecture) whose matrix is $[F]=A$.

Exercise 2. Show that there exist a unique linear map $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with the property

$$
G\binom{1}{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad G\binom{1}{2}=\left(\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right)
$$

What is the value of $G(x)$ for an arbitrary $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$? Determine the matrix of G.

