Tutorial 3: Matrices \& Vectors

Recall that a $m \times n$-matrix is given by an array (with m rows and n columns) of numbers $a_{i j} \in \mathbb{R}$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(a_{i j}\right)_{\substack{1 \leq i \leq m \\
1 \leq j \leq n}}=\left(a_{i j}\right)_{i j}
$$

By $\mathbb{R}^{m \times n}=M_{m \times n}(\mathbb{R})$ we denote the set all of all $m \times n$-matrices.
A (column-) vector of size n is a $n \times 1$-matrix

$$
v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
$$

and the set of all vectors of size n is denoted by $\mathbb{R}^{n}=\mathbb{R}^{n \times 1}$. For $A, B \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$ we defined

$$
\begin{aligned}
A+B & =\left(a_{i j}+b_{i j}\right)_{i j} \in \mathbb{R}^{m \times n} & & \text { (Sum of two matrices) } \\
\lambda A & =\left(\lambda a_{i j}\right)_{i j} \in \mathbb{R}^{m \times n} & & (\text { Scalar multiplication) } .
\end{aligned}
$$

In the case $\lambda=-1$ we write $(-1) A=-A$ and $A-B$ means $A+(-1) B$.
The product of a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $v \in \mathbb{R}^{n}$ is defined by

$$
A v=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} v_{1}+a_{12} v_{2}+\cdots+a_{1 n} v_{n} \\
a_{21} v_{1}+a_{22} v_{2}+\cdots+a_{2 n} v_{n} \\
\vdots \\
a_{m 1} v_{1}+a_{m 2} v_{2}+\cdots+a_{m n} v_{n}
\end{array}\right) \in \mathbb{R}^{m} \quad \text { (Matrix-vector multiplication). }
$$

In other words we have: $(m \times n$-matrix $) \cdot($ vector of size $n)=($ vector of size $m)$.
Example: $m=2, n=3$

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
7 \\
8 \\
9
\end{array}\right)=\binom{1 \cdot 7+2 \cdot 8+3 \cdot 9}{4 \cdot 7+5 \cdot 8+6 \cdot 9}=\binom{50}{122}
$$

Exercise 1. We define the following matrices and vectors:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
-1 & 0 \\
2 & 4 \\
0 & -3
\end{array}\right), \quad D=\left(\begin{array}{ccc}
0 & 8 & 0 \\
1 & 2 & -1
\end{array}\right), \quad E=\left(\begin{array}{cc}
\frac{3}{5} & -\frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right) \\
t=\binom{1}{2}, \quad u=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), \quad v=\binom{3}{-4}, \quad w=\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right)
\end{gathered}
$$

Decide which of the following expressions are defined. Evaluate them if possible.

$$
\begin{gathered}
A t, \quad A u, \quad w A, \quad 2 A, \quad A+B, \quad A+C, \quad A+D, \quad \frac{3}{4} B t, \quad B u, \quad B+B, \quad D w, \\
C v, \quad t+u, \quad t u, \quad-v, \quad u+w, \quad t-u, \quad \frac{1}{2} w, \quad C+w, \quad E t, \quad E v \quad E(E v)
\end{gathered}
$$

Exercise 2. The vectors t and v of Exercise 1 are drawn in the following diagram.

Draw the following vectors in the diagram:

$$
-2 t, \quad t-\frac{1}{2} v, \quad v+t, \quad t+v, \quad E t, \quad E v, \quad E(E v), \quad B t, \quad B v .
$$

Can you guess what happens in general to a vector in \mathbb{R}^{2} when you multiply it with B or E ?

Exercise 3.

i) Calculate the rank of the matrices in Exercise 1.
ii) Find a vector $x \in \mathbb{R}^{2}$, such that $E x=t$ and draw it in the diagram above.
iii) Find a matrix $M \in \mathbb{R}^{2 \times 2}$ with $M v=t$. Is this matrix unique?

