Tutorial 3&4

Linear Algebra I & Mathematics Tutorial 1b Nagoya University, G30 Program, Fall 2023

Tutorial 3: Matrices & Vectors

84

Recall that a $m \times n$ -matrix is given by an array (with m rows and n columns) of numbers $a_{ij} \in \mathbb{R}$ $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij})_{1 \le i \le m} = (a_{ij})_{ij}.$ By $\mathbb{R}^{m \times n} = M_{m \times n}(\mathbb{R})$ we denote the set all of all $m \times n$ -matrices. A (column-) vector of size n is a $n \times 1$ -matrix $v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ and the set of all vectors of size n is denoted by $\mathbb{R}^n = \mathbb{R}^{n \times 1}$. For $A, B \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$ we defined $A + B = (a_{ij} + b_{ij})_{ij} \in \mathbb{R}^{m \times n}$ (Sum of two matrices), $\lambda A = (\lambda a_{ij})_{ij} \in \mathbb{R}^{m \times n}$ (Scalar multiplication). In the case $\lambda = -1$ we write (-1)A = -A and A - B means A + (-1)B. The product of a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $v \in \mathbb{R}^n$ is defined by

$$Av = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + \dots + a_{2n}v_n \\ \vdots \\ a_{m1}v_1 + a_{m2}v_2 + \dots + a_{mn}v_n \end{pmatrix} \in \mathbb{R}^m \qquad (\text{Matrix-vector multiplication}).$$

In other words we have: $(m \times n \text{-matrix}) \cdot (\text{vector of size } n) = (\text{vector of size } m).$

Example: m = 2, n = 3

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 1 \cdot 7 + 2 \cdot 8 + 3 \cdot 9 \\ 4 \cdot 7 + 5 \cdot 8 + 6 \cdot 9 \end{pmatrix} = \begin{pmatrix} 50 \\ 122 \end{pmatrix} .$$

Exercise 1. We define the following matrices and vectors:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 \\ 2 & 4 \\ 0 & -3 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 8 & 0 \\ 1 & 2 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix},$$
$$t = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad u = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad v = \begin{pmatrix} 3 \\ -4 \end{pmatrix}, \quad w = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}.$$

Version: October 16, 2023

Decide which of the following expressions are defined. Evaluate them if possible.

Exercise 2. The vectors t and v of Exercise 1 are drawn in the following diagram.

Draw the following vectors in the diagram:

$$-2t, t - \frac{1}{2}v, v + t, t + v, Et, Ev, E(Ev), Bt, Bv$$

Can you guess what happens in general to a vector in \mathbb{R}^2 when you multiply it with B or E?

Exercise 3.

- i) Calculate the rank of the matrices in Exercise 1.
- ii) Find a vector $x \in \mathbb{R}^2$, such that Ex = t and draw it in the diagram above.
- iii) Find a matrix $M \in \mathbb{R}^{2 \times 2}$ with Mv = t. Is this matrix unique?

Homework 2: Matrices & Vectors

Deadline: 29th October, 23:55, 2023

Exercise 1. (2+2 = 4 Points) Show that for all $A \in \mathbb{R}^{m \times n}$, $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ we have

- (i) A(x+y) = Ax + Ay,
- (ii) $A(\lambda x) = \lambda(Ax)$.

(Without using Proposition 2.4. from the lecture).

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. The **rank** $\operatorname{rk}(A)$ of A is the number of pivot elements in $\operatorname{rref}(A)$. For example,

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} = \operatorname{rref}(A) \quad ,$$

and therefore the rank of A is rk(A) = 2.

Exercise 2. (2+1+3=6 Points) Let $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ be a polynomial of degree 3 with real coefficients $a_0, a_1, a_2, a_3 \in \mathbb{R}$. For such a polynomial p define the vector v_p by

$$v_p = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^4 \,.$$

- (i) Find a matrix $D \in \mathbb{R}^{4 \times 4}$, such that $v_q = Dv_p$, where q(x) = 2p(x) p'(x). (Here p' denotes the derivative of the polynomial p with respect to x).
- (ii) Determine the rank of D in (i).
- (iii) For an arbitrary polynomial p of degree 3, find a polynomial s, such that $v_p = Dv_s$.

Exercise 3. (2+2 = 4 Points) Let $A \in \mathbb{R}^{3 \times 3}$ be a matrix.

- (i) Show that if rk(A) = 3 then there exists just one vector $x \in \mathbb{R}^3$ with Ax = 0.
- (ii) Show that if $rk(A) \leq 2$ then there exist infinitely many vectors $x \in \mathbb{R}^3$ with Ax = 0.

Exercise 4. (4+2 = 6 Points) Let $a, b, c, d \in \mathbb{R}$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- (i) Show that rk(A) = 2 if and only if $ad bc \neq 0$.
- (ii) We define the following subset of \mathbb{R}^2

 $L = \{ x \in \mathbb{R}^2 \mid x = Av \text{ for some } v \in \mathbb{R}^2 \}.$

How does L look like if rk(A) = 1? How does it look like if rk(A) = 2?

iii) Find a matrix $M \in \mathbb{R}^{2 \times 2}$ with Mv = t. Is this matrix unique?

 $B = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ $B = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$

3) i) $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 \\ 2 & 4 \\ 0 & -3 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 8 & 0 \\ 1 & 2 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix},$ $A \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} = rref(A)$ \Rightarrow rk(A)=2 rk(B) = 2, rk(C) = 2, rk(D) = 2vk(E) = 2ii) Find $x \in \mathbb{R}^2$ with $Ex = t = \left(= \left(\frac{1}{2} - \frac{4}{3} \right) \begin{pmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\sim \begin{bmatrix} 3 & -4 & 5 \\ 1 & 7 & 5 \\ 1 & 7 & 5 \\ \end{bmatrix} \sim \begin{bmatrix} 0 & -25 & -10 \\ 1 & 7 & 5 \\ \end{bmatrix}$ $\sim \begin{pmatrix} | 0 | \frac{||}{5} \\ 0 | \frac{2}{5} \end{pmatrix} \quad \text{Solution} : X = \begin{pmatrix} \frac{||}{5} \\ \frac{2}{5} \\ \frac{2}{5} \end{pmatrix}$

iii) Find ME R^{ixe} with Mv=t
(=)
$$M\begin{pmatrix} 3\\ -4 \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

Set $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then
 $M\begin{pmatrix} 3\\ -4 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3\\ -4 \end{pmatrix} = \begin{pmatrix} 3a - 4b \\ 3c - 4d \end{pmatrix}$
We therefore use to solve $\begin{pmatrix} 3a - 4b \\ 3c - 4d \end{pmatrix} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$.
This is in fact a linear system
 $\frac{1}{3}$ $\begin{cases} 3a - 4b = 1 \\ 3c - 4d = 2 \end{cases}$
(=) $\begin{cases} a - \frac{4}{3}b = \frac{1}{3} \\ C - \frac{4}{3}d = \frac{2}{3} \end{cases}$
Privat
 $a = \frac{1}{3} + \frac{4}{3}t_1$, $c = \frac{2}{3} + \frac{4}{3}t_2$
Solutions: $b = t_1$, $d = t_2$

All matrices of the form

$$M = \begin{pmatrix} \frac{1}{3} + \frac{9}{3}t_1 & t_1 \\ \frac{2}{3} + \frac{9}{3}t_2 & t_2 \end{pmatrix}$$
for any $t_1, t_2 \in \mathbb{R}$ satisfy $Mv = t$.
In particular, such a matrix is not unique.

Exercise 1. (3+3=6 Points) Show that for all $A \in \mathbb{R}^{m \times n}$, $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ we have i) A(x+y) = Ax + Ay, ii) $A(\lambda x) = \lambda(Ax)$.

Write
$$x = \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix}$$
, $y = \begin{pmatrix} y_i \\ \vdots \\ y_n \end{pmatrix}$ and $A = \begin{pmatrix} a_{i_1} \dots a_{i_n} \\ \vdots \\ a_{m_1} \dots a_{m_n} \end{pmatrix}$
and then calculate both sides
 $A(x+y) = A\begin{pmatrix} x_1+y_1 \\ \vdots \\ x_n+y_n \end{pmatrix} = \dots$.

Exercise 2. (2+1+3=6 Points) Let $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ be a polynomial of degree 3 with real coefficients $a_0, a_1, a_2, a_3 \in \mathbb{R}$. For such a polynomial p define the vector v_p by

$$v_p = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{R}^4 \,.$$

(i) Find a matrix $D \in \mathbb{R}^{4 \times 4}$, such that $v_q = Dv_p$, where q(x) = 2p(x) - p'(x). (Here p' denotes the derivative of the polynomial p with respect to x).

- (ii) Determine the rank of D in (i).
- (iii) For an arbitrary polynomial p of degree 3, find a polynomial s, such that $v_p = Dv_s$.

Example:
$$p(x) = [+2x-3x^2+5x^3]$$
 then
 $V_p = \begin{pmatrix} 2\\ -3\\ 5 \end{pmatrix}$
(i): Calculate $2p(x) - p'(x)$
 $f_{OV \ p(x) = a_0 + a_1x + a_2x^2 + a_3x^3}$
(ii) calculate $rref(D)$
(iii) Solve linear system.

Exercise 3. (2+2 = 4 Points) Let $A \in \mathbb{R}^{3 \times 3}$ be a matrix.

- (i) Show that if rk(A) = 3 then there exists just one vector $x \in \mathbb{R}^3$ with Ax = 0.
- (ii) Show that if $rk(A) \leq 2$ then there exist infinitely many vectors $x \in \mathbb{R}^3$ with Ax = 0.

If
$$A \in \mathbb{R}^{3\times3}$$
 how can $rref(A|\$)$ look like
if $rk(A)=3$ and $rk(A)=2$? What does this
say about the solutions of $Ax=0$?

Exercise 4. (4+2 = 6 Points) Let $a, b, c, d \in \mathbb{R}$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- (i) Show that rk(A) = 2 if and only if $ad bc \neq 0$.
- (ii) We define the following subset of \mathbb{R}^2

$$L = \{ x \in \mathbb{R}^2 \mid x = Av \text{ for some } v \in \mathbb{R}^2 \}.$$

How does L look like if rk(A) = 1? How does it look like if rk(A) = 2?

