Tutorial $3 \& 4$

Linear Algebra I \& Mathematics Tutorial 1b Nagoya University, G30 Program, Fall 2023

Instructor: Henrik Bachmann Teaching assistant: Risan, Yuichiro Toma

Tutorial 3: Matrices \& Vectors

Recall that a $m \times n$-matrix is given by an array (with m rows and n columns) of numbers $a_{i j} \in \mathbb{R}$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)=\left(a_{i j}\right)_{\substack{1 \leq i \leq m \\
1 \leq j \leq n}}=\left(a_{i j}\right)_{i j} .
$$

By $\mathbb{R}^{m \times n}=M_{m \times n}(\mathbb{R})$ we denote the set all of all $m \times n$-matrices.
A (column-) vector of size n is a $n \times 1$-matrix

$$
v=\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
$$

and the set of all vectors of size n is denoted by $\mathbb{R}^{n}=\mathbb{R}^{n \times 1}$. For $A, B \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$ we defined

$$
\begin{aligned}
A+B & =\left(a_{i j}+b_{i j}\right)_{i j} \in \mathbb{R}^{m \times n} & & \text { (Sum of two matrices) } \\
\lambda A & =\left(\lambda a_{i j}\right)_{i j} \in \mathbb{R}^{m \times n} & & \text { (Scalar multiplication) } .
\end{aligned}
$$

In the case $\lambda=-1$ we write $(-1) A=-A$ and $A-B$ means $A+(-1) B$.
The product of a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $v \in \mathbb{R}^{n}$ is defined by

$$
A v=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} v_{1}+a_{12} v_{2}+\cdots+a_{1 n} v_{n} \\
a_{21} v_{1}+a_{22} v_{2}+\cdots+a_{2 n} v_{n} \\
\vdots \\
a_{m 1} v_{1}+a_{m 2} v_{2}+\cdots+a_{m n} v_{n}
\end{array}\right) \in \mathbb{R}^{m} \quad \text { (Matrix-vector multiplication). }
$$

In other words we have: $(m \times n$-matrix $) \cdot($ vector of size $n)=($ vector of size $m)$.
Example: $m=2, n=3$

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
7 \\
8 \\
9
\end{array}\right)=\binom{1 \cdot 7+2 \cdot 8+3 \cdot 9}{4 \cdot 7+5 \cdot 8+6 \cdot 9}=\binom{50}{122}
$$

Exercise 1. We define the following matrices and vectors:

$$
\begin{gathered}
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
-1 & 0 \\
2 & 4 \\
0 & -3
\end{array}\right), \quad D=\left(\begin{array}{ccc}
0 & 8 & 0 \\
1 & 2 & -1
\end{array}\right), \quad E=\left(\begin{array}{cc}
\frac{3}{5} & -\frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right) \\
t=\binom{1}{2}, \quad u=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), \quad v=\binom{3}{-4}, \quad w=\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right)
\end{gathered}
$$

Decide which of the following expressions are defined. Evaluate them if possible.

$$
\begin{gathered}
A t, \quad A u, \quad w A, \quad 2 A, \quad A+B, \quad A+C, \quad A+D, \quad \frac{3}{4} B t, \quad B u, \quad B+B, \quad D w, \\
C v, \quad t+u, \quad t u, \quad-v, \quad u+w, \quad t-u, \quad \frac{1}{2} w, \quad C+w, \quad E t, \quad E v \quad E(E v)
\end{gathered}
$$

Exercise 2. The vectors t and v of Exercise 1 are drawn in the following diagram.

Draw the following vectors in the diagram:

$$
-2 t, \quad t-\frac{1}{2} v, \quad v+t, \quad t+v, \quad E t, \quad E v, \quad E(E v), \quad B t, \quad B v .
$$

Can you guess what happens in general to a vector in \mathbb{R}^{2} when you multiply it with B or E ?

Exercise 3.

i) Calculate the rank of the matrices in Exercise 1.
ii) Find a vector $x \in \mathbb{R}^{2}$, such that $E x=t$ and draw it in the diagram above.
iii) Find a matrix $M \in \mathbb{R}^{2 \times 2}$ with $M v=t$. Is this matrix unique?

Homework 2: Matrices \& Vectors

Deadline: 29th October, 23:55, 2023

Exercise 1. $\left(2+2=4\right.$ Points) Show that for all $A \in \mathbb{R}^{m \times n}, x, y \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ we have
(i) $A(x+y)=A x+A y$,
(ii) $A(\lambda x)=\lambda(A x)$.
(Without using Proposition 2.4. from the lecture).

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. The $\operatorname{rank} \operatorname{rk}(A)$ of A is the number of pivot elements in $\operatorname{rref}(A)$.
For example,

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 0 & 1 \\
1 & -1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -2 & 1 \\
0 & -2 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & \frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right)=\operatorname{rref}(A)
$$

and therefore the rank of A is $\operatorname{rk}(A)=2$.

Exercise 2. $\left(2+1+3=6\right.$ Points) Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ be a polynomial of degree 3 with real coefficients $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$. For such a polynomial p define the vector v_{p} by

$$
v_{p}=\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \in \mathbb{R}^{4}
$$

(i) Find a matrix $D \in \mathbb{R}^{4 \times 4}$, such that $v_{q}=D v_{p}$, where $q(x)=2 p(x)-p^{\prime}(x)$.
(Here p^{\prime} denotes the derivative of the polynomial p with respect to x).
(ii) Determine the rank of D in (i).
(iii) For an arbitrary polynomial p of degree 3 , find a polynomial s, such that $v_{p}=D v_{s}$.

Exercise 3. $\left(2+2=4\right.$ Points) Let $A \in \mathbb{R}^{3 \times 3}$ be a matrix.
(i) Show that if $\operatorname{rk}(A)=3$ then there exists just one vector $x \in \mathbb{R}^{3}$ with $A x=0$.
(ii) Show that if $\operatorname{rk}(A) \leq 2$ then there exist infinitely many vectors $x \in \mathbb{R}^{3}$ with $A x=0$.

Exercise 4. $\left(4+2=6\right.$ Points) Let $a, b, c, d \in \mathbb{R}$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(i) Show that $\operatorname{rk}(A)=2$ if and only if $a d-b c \neq 0$.
(ii) We define the following subset of \mathbb{R}^{2}

$$
L=\left\{x \in \mathbb{R}^{2} \mid x=A v \text { for some } v \in \mathbb{R}^{2}\right\}
$$

How does L look like if $\operatorname{rk}(A)=1$? How does it look like if $\operatorname{rk}(A)=2$?

$$
t=\binom{1}{2}, \quad u=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), \quad v=\binom{3}{-4}, \quad w=\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right) .
$$

Decide which of the following expressions are defined. Evaluate them it possible.

Exercise 2. The vectors t and v of Exercise 1 are drawn in the following diagram.
$X=$ (exine down ind dimension or just not defined)

$$
A u=\binom{5}{11}
$$

$$
\left.\begin{array}{l}
2 A=\left(\begin{array}{lll}
2 & 4 & 6 \\
8 & 10 & 12
\end{array}\right) \\
A+D=\left(\begin{array}{ccc}
1 & 10 & 3 \\
5 & 7 & 5
\end{array}\right) \\
\frac{3}{4} B t=\binom{\frac{3}{2}}{-\frac{3}{4}} \\
B+B=\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right) \\
D w=\binom{16}{1} \\
C V=\left(\begin{array}{c}
-3 \\
-10 \\
12
\end{array}\right) \\
-v=\binom{-3}{4} \\
u+w=\binom{0}{4} \\
\frac{1}{2} w=\binom{-\frac{1}{2}}{1} \\
E+=\binom{-1}{2} \\
E=\binom{5}{0} \\
B=1
\end{array}\right)
$$

Multiplying with E: Rotation by 53°
Draw the following vectors in the diagram: Mut. by Bi Rotation E

$$
\begin{array}{llllll}
-2 t, & t-\frac{1}{2} v, \quad v+t, \quad t+v, \quad E t, \quad E v, \quad E(E v), \quad B t, \quad B v . \quad-2 t=\binom{-2}{-4}
\end{array}
$$

Can you guess what happens in general to a vector in \mathbb{R}^{2} when you multiply it with B or E ?
Exercise 3.
i) Calculate the rank of the matrices in Exercise 1.
ii) Find a vector $x \in \mathbb{R}^{2}$, such that $E x=t$ and draw it in the diagram above.
iii) Find a matrix $M \in \mathbb{R}^{2 \times 2}$ with $M v=t$. Is this matrix unique?

$$
\begin{gathered}
B t=\binom{2}{-1} \\
B v=\binom{-4}{-3}
\end{gathered}
$$

3) i)

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 2 \\
4 & 5 \\
4 & 6
\end{array}\right), B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), C=\left(\begin{array}{cc}
-1 & 0 \\
2 & 4 \\
0 & -3
\end{array}\right), D=\left(\begin{array}{ccc}
0 & 8 & 0 \\
1 & 2 & -1
\end{array}\right), \quad E=\left(\begin{array}{c}
\frac{1}{3} \\
\frac{3}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{array}\right), \\
& A \sim\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right)=\operatorname{rref}(A) \\
& \Rightarrow \quad r k(A)=2 \\
& \quad v k(B)=2, \quad v k(C)=2, \quad v k(D)=2 \\
& \operatorname{rk}(E)=2
\end{aligned}
$$

ii) Find $x \in \mathbb{R}^{2}$ with $E x=t \Leftrightarrow\left(\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{2}$

$$
\begin{aligned}
(E \mid t) & =\stackrel{(5)}{(5)}\left(\begin{array}{cc|c}
5 & -\frac{4}{5} & 1 \\
\frac{4}{5} & \frac{3}{5} & 2
\end{array}\right) \sim\left[\begin{array}{cc|c}
-\frac{\theta}{5}\left(\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right. & 10
\end{array}\right) \\
& \sim\left[\begin{array}{cc|c}
3 & -4 & 5 \\
1 & 7 & 5
\end{array}\right) \sim\left(\begin{array}{cc|c}
0 & -25 & -10 \\
1 & 7 & 5
\end{array}\right) \\
& \approx\left(\begin{array}{cc|c}
1 & 7 & 5 \\
0 & -25 & -10
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 7 & 5 \\
0 & 1 & \frac{2}{5}
\end{array}\right) \\
& \sim\left(\begin{array}{ll|l}
1 & 0 & \frac{11}{5} \\
0 & 1 & \frac{2}{5}
\end{array}\right) \quad \text { Solution: } X=\binom{\frac{11}{5}}{\frac{2}{5}}
\end{aligned}
$$

iii) Find $M \in \mathbb{R}^{2 \times 2}$ with $M_{v}=t$

$$
\Leftrightarrow \quad M\binom{3}{-4}=\binom{1}{2}
$$

Set $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then

$$
M\binom{3}{-4}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{3}{-4}=\binom{3 a-4 b}{3 c-4 d}
$$

We therefore want to solve $\binom{3 a-4 b}{3 c-4 d}=\binom{1}{2}$.
This is in fact a linear system

$$
\begin{aligned}
& \begin{aligned}
\frac{1}{3} \\
\frac{1}{3}
\end{aligned}\left\{\begin{aligned}
3 a-4 b & =1 \\
3 c-4 d & =2
\end{aligned}\right. \\
& \Leftrightarrow\left\{\begin{array}{r}
a-\frac{4}{3} b-\frac{f}{a}=\frac{1}{3} \\
c-\frac{4}{3} d=\frac{2}{3}
\end{array}\right. \\
& \text { Solutions: } \begin{array}{ll}
a=\frac{1}{3}+\frac{4}{3} t_{1}, & c=\frac{2}{3}+\frac{4}{3} \\
b=t_{1} & d=t_{2}
\end{array}
\end{aligned}
$$

All matrices of the form

$$
M=\left(\begin{array}{cc}
\frac{1}{3}+\frac{4}{3} t_{1} & t_{1} \\
\frac{2}{3}+\frac{4}{3} t_{2} & t_{2}
\end{array}\right)
$$

for any $t_{1}, t_{2} \in \mathbb{R}$ satisfy $M_{v}=t$.
In particular, such a matrix is not unigne.

Comments to Homework 2:

Exercise 1. $\left(3+3=6\right.$ Points) Show that for all $A \in \mathbb{R}^{m \times n}, x, y \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$ we have
i) $A(x+y)=A x+A y$,
ii) $A(\lambda x)=\lambda(A x)$.

Write $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right), y=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$ and $A=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & & \vdots \\ a_{m 1} & . & a_{m n}\end{array}\right)$ and then calculate both sides

$$
\begin{aligned}
& A(x+y)=A\left(\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right)=\ldots \ldots \\
& A x+A y=\ldots \ldots=\ldots
\end{aligned}
$$

Exercise 2. $\left(2+1+3=6\right.$ Points) Let $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ be a polynomial of degree 3 with real coefficients $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}$. For such a polynomial p define the vector v_{p} by

$$
v_{p}=\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \in \mathbb{R}^{4}
$$

(i) Find a matrix $D \in \mathbb{R}^{4 \times 4}$, such that $v_{q}=D v_{p}$, where $q(x)=2 p(x)-p^{\prime}(x)$. (Here p^{\prime} denotes the derivative of the polynomial p with respect to x).
(ii) Determine the rank of D in (i).
(iii) For an arbitrary polynomial p of degree 3 , find a polynomial s, such that $v_{p}=D v_{s}$.

Example:

$$
\begin{aligned}
& p(x)=1+2 x-3 x^{2}+5 x^{3} \text { then } \\
& v_{p}=\left(\begin{array}{c}
1 \\
2 \\
-3 \\
5
\end{array}\right) \\
& \text { (i): - calculate } 2 p(x)-p^{\prime}(x) \\
& \text { for } p(x)=\sigma_{0}+a_{1} x+a_{2} a^{2}+a_{3} x^{2} \\
& \text { (ii) calculate ref(} D \text {) } \\
& \text { (iii) Solve linear system. }
\end{aligned}
$$

Exercise 3. $\left(2+2=4\right.$ Points) Let $A \in \mathbb{R}^{3 \times 3}$ be a matrix.
(i) Show that if $\operatorname{rk}(A)=3$ then there exists just one vector $x \in \mathbb{R}^{3}$ with $A x=0$.
(ii) Show that if $\operatorname{rk}(A) \leq 2$ then there exist infinitely many vectors $x \in \mathbb{R}^{3}$ with $A x=0$.

If $A \in \mathbb{R}^{3 \times 3}$ how can $\operatorname{rref}\left(A \left\lvert\, \begin{array}{l}\circ \\ 0\end{array}\right.\right)$ look like if $\operatorname{rk}(A)=3$ and $\operatorname{rk}(A) \leq 2$? What does this say about the solutions of $A x=0$?

Exercise 4. (4+2 = 6 Points) Let $a, b, c, d \in \mathbb{R}$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(i) Show that $\operatorname{rk}(A)=2$ if and only if $a d-b c \neq 0$.
(ii) We define the following subset of \mathbb{R}^{2}

$$
L=\left\{x \in \mathbb{R}^{2} \mid x=A v \text { for some } v \in \mathbb{R}^{2}\right\} .
$$

How does L look like if $\operatorname{rk}(A)=1$? How does it look like if $\operatorname{rk}(A)=2$?

Show two directions: are statements then
(1) $\operatorname{rk}(A)=2 \Rightarrow a d-b c \neq 0$ $P_{1} \Rightarrow P_{2}$
and
(2) $a d-b c \neq 0 \Rightarrow \operatorname{rk}(A)=2$ $\Leftrightarrow T_{1} \Rightarrow \rightarrow P_{1}$

For (1): Show that if $a d-b c=0$ then $r k(A) \neq 2$ For (2):
Try to bring $\left(\begin{array}{ll}a & b \\ c & a\end{array}\right)$ to wee. If $a d-b c \neq 0$ then you are allowed to divide by it.

