Tutorial 2: Linear systems

Elementary row operations:.

(R1) Add a multiple of an equation to another.
(R2) Multiply an equation with a non-zero number.
(R3) Change the order of the equations.

Gaussian elimination / Row reduction: Given a linear system

$$
\left\{\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

one procedure for bringing this linear system to its row-reduced echelon form is as follows:

I. Downwards:

1) Make the first equation contain the first variable by using (R3).
2) Make the coefficient of this variable equal to 1 by using (R2).
3) Eliminate this variable from all other equations by using (R1).
4) Iterate with the first occurring variable in the remaining equations.

II. Upwards

1) Let x_{i} be the first variable in the last equation. Eliminate x_{i} from all other equations by using (R1).
2) Go to previous equations and iterate.

Remark: The above algorithm always works, but in practice there are sometimes shorter / better ways to obtain the reduced echelon form.

Exercise 1. Which of the following linear systems are on row-reduced echelon form? For those that are not, find an equivalent system (i.e. one which has the same solutions) that is on row-reduced echelon form. For each system, find all solutions.
i) $\left\{\begin{aligned} 3 x_{1} & +4 x_{2}+7 x_{3} \\ x_{1}+x_{2} & =5 \\ -x_{4} & =0\end{aligned}\right.$
ii) $\left\{x_{1}+x_{2}+x_{3}=1\right.$

Exercise 2. Decide for which real numbers $a \in \mathbb{R}$ the following linear system has solutions. Give all the solutions in these cases.

$$
\left\{\begin{array}{rlrl}
2 x_{2} & +2 x_{3} & = & 2 a+8 \\
x_{1}+x_{2} & -x_{3} & = & 4 \\
2 x_{1} & & -4 x_{3} & =
\end{array} a+9\right.
$$

