Tutorial 15: Orthogonal complement & Normal equation

Exercise 1. We define the subspace $U = \operatorname{span}\{u_1, u_2, u_3\} \subset \mathbb{R}^3$, where

$$u_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2\\-1\\0 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 0\\1\\2 \end{pmatrix}.$$

- (i) Determine a basis $B = (b_1, \ldots, b_m)$ of U and calculate its dimension.
- (ii) Determine a basis for U^{\perp} .

Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with matrix $A = [F] \in \mathbb{R}^{m \times n}$ and let $y \in \mathbb{R}^m$ be an arbitrary vector.

If $y \in im(F)$ then the linear system Ax = y has a solution. But if $y \notin im(F)$ then there does not exists a $x \in \mathbb{R}^n$ with Ax = y. In this case, we can ask for the best possible x, i.e. the one such that ||Ax - y|| is minimal.

Facts:

(i) The $x \in \mathbb{R}^n$ such that ||Ax - y|| is minimal is given by a solution of the **normal equation**

$$A^T A x = A^T y.$$

- (ii) The normal equation always has (at least one) solution x. This x has the property $Ax = P_{im(F)}(y)$, i.e. Ax is the orthogonal projection of y onto the image of F.
- (iii) If ker(A) = {0} (the columns of A are linearly independent) then $A^T A \in \mathbb{R}^{n \times n}$ is invertible and the normal equation has a unique solution given by

$$x = (A^T A)^{-1} A^T y.$$

Exercise 2. Assume we have the following data points

i	1	2	3
x_i	0	1	2
y_i	2	1	3

Find the line of best fit for the above data, i.e. find $a, b \in \mathbb{R}$ such that the function l(x) = ax + b minimizes the sum of squares $\sum_{i=1}^{3} (l(x_i) - y_i)^2$.

Exercise 1. We define the subspace $U = \operatorname{span}\{u_1, u_2, u_3\} \subset \mathbb{R}^3$, where

$$u_1 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 2\\-1\\0 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 0\\1\\2 \end{pmatrix}.$$

- (i) Determine a basis $B = (b_1, \ldots, b_m)$ of U and calculate its dimension.
- (ii) Determine a basis for U^{\perp} .

(i) We calculate the met of
$$(d_1, d_2, d_3)$$
:
 $(d_1, d_1, d_3) = G(1, 2, 0) = G(2) = G(2)$

(ii) We want to find all
$$x \in \mathbb{R}^3$$
 such that $x \circ u = 0$
for all $u \in U$.
We learned: Just need to check $x \circ u_1 = x \circ u_2 = 0$
haris of u
So we want x with $\begin{pmatrix} -u_1 \\ -u_2 \end{pmatrix} = 0$
 $\begin{pmatrix} -u_1 \\ -u_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ -10 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 \\ -1 - 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 \\ -1 - 2 \end{pmatrix}$

$$X = \begin{pmatrix} -4 \\ -24 \\ + \end{pmatrix} \text{ for } f \in \mathbb{R}.$$

Therefore $U^{\perp} = \text{span} \left\{ \begin{pmatrix} -1 \\ -2 \\ i \end{pmatrix} \right\} \text{ and } \left(\begin{pmatrix} -1 \\ -2 \\ i \end{pmatrix} \right) \text{ is }$
a basis of $U^{\perp}.$

Exercise 2. Assume we have the following data points

		-	
i	1	2	3
x_i	0	1	2
y_i	2	1	3

Find the line of best fit for the above data, i.e. find $a, b \in \mathbb{R}$ such that the function l(x) = ax + b minimizes the sum of squares $\sum_{i=1}^{3} (l(x_i) - y_i)^2$.

But they are not on a line and
$$A(b) = y$$

has no solution.
Since $||A(b) - y|| = ||\begin{pmatrix} l(x_1) \\ l(x_2) \end{pmatrix} - \begin{pmatrix} y_1 \\ y_1 \\ y_1 \end{pmatrix}||$
 $= \sqrt{\sum_{i=1}^{37} (l(x_i) - y_i)^2}$
We need to find (b) such that $||A(b) - y||$
is minimal in order to minimize the
sum of squares $\sum_{i=1}^{37} (l(x_i) - y_i)^2$.
 $=)$ Need to solve the normal equation
 $A^T A(b) = A^T y$
 $A^T A = \begin{pmatrix} 0 & 12 \\ 1 & 11 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$

$$\int \int \left(\begin{array}{c} 5 & 3 & | & 7 \\ 3 & 3 & | & 6 \end{array} \right) \sim \int \int \left(\begin{array}{c} 2 & 0 & | & 1 \\ 1 & 1 & | & 2 \end{array} \right) \\ \sim \left(\begin{array}{c} 1 & 1 & | & 2 \\ 0 & -2 & | & -3 \end{array} \right) \sim \int \left(\begin{array}{c} 1 & 1 & | & 2 \\ 0 & 1 & | & \frac{2}{2} \end{array} \right) \\ \sim \left(\begin{array}{c} 1 & 0 & | & \frac{1}{2} \\ 0 & 1 & | & \frac{2}{2} \end{array} \right) \\ \rightarrow \quad l(x) = \frac{1}{2}x + \frac{3}{2} \\ \end{array}$$
Bonus question:
$$\int \operatorname{ansides} \operatorname{the} \operatorname{biseat} \operatorname{map}$$

Consider the linear map

$$F : \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$$

$$X \longmapsto \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} X$$
i) Decide if $Y = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ is in $im(F)$.
ii) What is $P_{im(F)}(Y)$?