Tutorial 15: Orthogonal complement \& Normal equation

Exercise 1. We define the subspace $U=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\} \subset \mathbb{R}^{3}$, where

$$
u_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right), \quad u_{3}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) .
$$

(i) Determine a basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U and calculate its dimension.
(ii) Determine a basis for U^{\perp}.

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map with matrix $A=[F] \in \mathbb{R}^{m \times n}$ and let $y \in \mathbb{R}^{m}$ be an arbitrary vector.

If $y \in \operatorname{im}(F)$ then the linear system $A x=y$ has a solution. But if $y \notin \operatorname{im}(F)$ then there does not exists a $x \in \mathbb{R}^{n}$ with $A x=y$. In this case, we can ask for the best possible x, i.e. the one such that $\|A x-y\|$ is minimal.

Facts:

(i) The $x \in \mathbb{R}^{n}$ such that $\|A x-y\|$ is minimal is given by a solution of the normal equation

$$
A^{T} A x=A^{T} y .
$$

(ii) The normal equation always has (at least one) solution x. This x has the property $A x=$ $P_{\mathrm{im}(F)}(y)$, i.e. $A x$ is the orthogonal projection of y onto the image of F.
(iii) If $\operatorname{ker}(A)=\{0\}$ (the columns of A are linearly independent) then $A^{T} A \in \mathbb{R}^{n \times n}$ is invertible and the normal equation has a unique solution given by

$$
x=\left(A^{T} A\right)^{-1} A^{T} y .
$$

Exercise 2. Assume we have the following data points

i	1	2	3
x_{i}	0	1	2
y_{i}	2	1	3

Find the line of best fit for the above data, i.e. find $a, b \in \mathbb{R}$ such that the function $l(x)=a x+b$ minimizes the sum of squares $\sum_{i=1}^{3}\left(l\left(x_{i}\right)-y_{i}\right)^{2}$.

Exercise 1. We define the subspace $U=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\} \subset \mathbb{R}^{3}$, where

$$
u_{1}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad u_{2}=\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right), \quad u_{3}=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) .
$$

(i) Determine a basis $B=\left(b_{1}, \ldots, b_{m}\right)$ of U and calculate its dimension.
(ii) Determine a basis for U^{\perp}.
(i) We calculate the ref of $\left(\begin{array}{ccc}\dot{a}_{1} & \dot{u}_{2} & \dot{u}_{3}\end{array}\right)$:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
u_{1} & u_{2} & u_{3} \\
1 & 1 & 1
\end{array}\right)=\left[\begin{array}{ccc}
-1 \\
\hline
\end{array}\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
1 & 0 & 2
\end{array}\right) \sim \underset{\sim}{-1}\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 1 \\
0 & -2 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)\right.
$$

We see that $B=\left(u_{1}, u_{2}\right)$ is a basis of u.
(Also notice $\left[u_{3}\right]_{B}=\binom{2}{-1}$)
(ii) We want to find all $x \in \mathbb{R}^{3}$ such that $x \cdot u=0$ for all $u \in U$.
We learned: Just need to check $x \cdot u_{1}=x \cdot u_{2}=0$ maris of u
So we want x with $\binom{-u_{1}-}{-u_{2}-} x=0$

$$
\leadsto \quad\binom{-u_{1}-}{-u_{2}-}=\left(\begin{array}{ccc}
-2 \\
1
\end{array}\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & -2
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)\right.
$$

$$
x=\left(\begin{array}{c}
-t \\
-2 t \\
t
\end{array}\right) \quad \text { for } \quad t \in \mathbb{R} .
$$

Therefore $U^{\perp}=\operatorname{span}\left\{\left(\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right)\right\}$ and $\left(\left(\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right)\right.$ is a basis of U^{\perp}.

Exercise 2. Assume we have the following data points

i	1	2	3
x_{i}	0	1	2
y_{i}	2	1	3

Find the line of best fit for the above data, i.e. find $a, b \in \mathbb{R}$ such that the function $l(x)=a x+b$ minimizes the sum of squares $\sum_{i=1}^{3}\left(l\left(x_{i}\right)-y_{i}\right)^{2}$.

If the 3 points would lie on a line $l(x)=a x+b$ would have $l\left(x_{i}\right)=a x_{i} t_{h}=y_{i}$ for $i=1,2,3$ and

$$
\underbrace{\left(\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1 \\
x_{3} & 1
\end{array}\right)}_{A}\binom{q}{b}=\left(\begin{array}{l}
a x_{1}+b \\
a x_{2}+b \\
a x_{3}+b
\end{array}\right)=\left(\begin{array}{l}
l\left(x_{1}\right) \\
l\left(x_{2}\right) \\
l\left(x_{3}\right)
\end{array}\right)=\underbrace{\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)}_{y}
$$

But they are not on a line and $A\binom{a}{b}=y$ has no solution.
Since $\quad\left\|A\binom{a}{b}-y\right\|=\left\|\left(\begin{array}{l}l\left(x_{1}\right) \\ l\left(x_{2}\right) \\ l\left(x_{2}\right)\end{array}\right)-\left(\begin{array}{l}y_{1} \\ y_{1} \\ y_{2}\end{array}\right)\right\|$

$$
=\sqrt{\sum_{i=1}^{3}\left(l\left(x_{i}\right)-y_{i}\right)^{2}}
$$

we need to find $\binom{a}{b}$ such that $\left\|A\binom{a}{b}-y\right\|$ is minimal in order to minimize the sum of squares $\sum_{i=1}^{3}\left(\ell\left(x_{i}\right)-y_{i}\right)^{2}$.
\Rightarrow Need to solve the normal equation

$$
\left.\begin{array}{c}
A^{\top} A\binom{9}{1}=A^{\top} y \\
A^{\top} A=\left(\begin{array}{ll}
0 & 1
\end{array} 2\right. \\
1
\end{array} 111\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
5 & 3 \\
3 & 3
\end{array}\right) .
$$

$$
\begin{aligned}
&\left(\frac{1}{3}\right) \oplus\left(\begin{array}{cc|c}
5 & 3 & 7 \\
3 & 3 & 6
\end{array}\right) \sim \underset{\rightarrow-2}{\Gamma}\left(\begin{array}{ll|l}
2 & 0 & 1 \\
1 & 1 & 2
\end{array}\right) \\
& \sim\left(\frac{1}{2}\right)\left(\begin{array}{cc|c}
1 & 1 & 2 \\
0 & -2 & -3
\end{array}\right) \sim \underset{\Theta}{\sim}\left(\begin{array}{ll|l}
1 & 1 & 2 \\
0 & 1 & \frac{3}{2}
\end{array}\right) \\
& \sim\left(\begin{array}{ll|l}
1 & 0 & \frac{1}{2} \\
0 & 1 & \frac{3}{2}
\end{array}\right) \\
& \Rightarrow l(x)=\frac{1}{2} x+\frac{3}{2}
\end{aligned}
$$

Bonus question:
Consider the linear map

$$
\begin{aligned}
F: & \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& X \longmapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right) x
\end{aligned}
$$

i) Decide if $y=\binom{2}{3}$ is in $\operatorname{im}(F)$.
ii) What is $P_{\text {in }(F)}(y)$?
if ii) By the previous exercise we know that

$$
\begin{gathered}
A\binom{\frac{1}{2}}{\frac{3}{2}}=P_{\text {imf }(f)}(y) \\
11 \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right)\binom{\frac{1}{2}}{\frac{3}{2}}=\left(\begin{array}{c}
\frac{3}{2} \\
2 \\
\frac{5}{2}
\end{array}\right)
\end{gathered}
$$

