Mathematics Tutorial 1b (Linear Algebra I) Fall 2023
Nagoya University, G30 Program Instructor: Henrik Bachmann

Tutorial 15: Orthogonal complement & Normal equation

Exercise 1. We define the subspace U = span{uj,ug,uz} C R3, where

1 2 0
Uy = 0 y U = -1 s us = 1
1 0 2
(i) Determine a basis B = (b1, ..., by,) of U and calculate its dimension.

(ii) Determine a basis for U~.

Let F' : R™ — R™ be a linear map with matrix A = [F] € R™*" and let y € R™ be an arbitrary
vector.

If y € im(F') then the linear system Az = y has a solution. But if y ¢ im(F’) then there does not
exists a ¢ € R™ with Az = y. In this case, we can ask for the best possible z, i.e. the one such that
||Az — y|| is minimal.

Facts:
(i) The z € R™ such that ||Az — y|| is minimal is given by a solution of the normal equation
AT Az = ATy,
(ii) The normal equation always has (at least one) solution x. This = has the property Az =
Pi(r)(y), i.e. Az is the orthogonal projection of y onto the image of F.

(iii) If ker(A) = {0} (the columns of A are linearly independent) then AT A € R™"*" is invertible and
the normal equation has a unique solution given by

= (ATA)71ATy.

Exercise 2. Assume we have the following data points

1 11213

Find the line of best fit for the above data, i.e. find a,b € R such that the function I(z) = az + b
minimizes the sum of squares Zle(l(:ci) — ;)2
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Exercise 2. Assume we have the following data points
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Find the line of best fit for the above data, i.e. find a, b € R such that the function (z) = az+b minimizes
the sum of squares 3°_ (I(x;) — y:)2.
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