Tutorial 14: Orthonormal basis & Gram-Schmidt

A basis $F = (f_1, \ldots, f_m)$ of a subspace U is called an **orthonormal basis (ONB)** of U if f_1, \ldots, f_m are orthonormal. In other words, this means that:

(i) The vectors are pairwise orthogonal: For $1 \le i \ne j \le m$ we have $f_i \bullet f_j = 0$.

(ii) The vectors are normalized to norm 1: For all $1 \le i \le m$ we have $||f_i|| = \sqrt{f_i \bullet f_i} = 1$.

Gram-Schmidt algorithm (GSA)

Let $B = (b_1, \ldots, b_m)$ be an arbitrary basis of a subspace $U \subset \mathbb{R}^n$. The GSA constructs an orthonormal basis $F = (f_1, \ldots, f_m)$ of U out of the basis B in the following m steps:

Step 1: Set $f_1 = \hat{b_1} = \frac{1}{\|b_1\|} b_1$.

Step l $(2 \le l \le m)$: We have constructed orthonormal vectors f_1, \ldots, f_{l-1} in the steps before. Now set

$$w_{l} = b_{l} - (b_{l} \bullet f_{1})f_{1} - \dots - (b_{l} \bullet f_{l-1})f_{l-1} = b_{l} - \sum_{i=1}^{l-1} (b_{l} \bullet f_{i})f_{i}$$

and define $f_l = \frac{1}{\|w_l\|} w_l$.

Exercise 1. (Continue from the lecture) Consider the basis $B = (b_1, b_2, b_3)$ of \mathbb{R}^3 , where

$$b_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \qquad b_2 = \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \qquad b_3 = \begin{pmatrix} -1\\2\\1 \end{pmatrix}.$$

(i) Use the Gram-Schmidt algorithm to construct an orthonormal basis F of \mathbb{R}^3 out of B.

(ii) Find orthonormal bases for the subspaces $U = \operatorname{span}\{b_1, b_2\}$ and $V = \operatorname{span}\{b_1, b_3\}$.

See https://tinyurl.com/yc5mjem6 for a visualization.