Tutorial 14: Orthonormal basis \& Gram-Schmidt

A basis $F=\left(f_{1}, \ldots, f_{m}\right)$ of a subspace U is called an orthonormal basis (ONB) of U if f_{1}, \ldots, f_{m} are orthonormal. In other words, this means that:
(i) The vectors are pairwise orthogonal: For $1 \leq i \neq j \leq m$ we have $f_{i} \bullet f_{j}=0$.
(ii) The vectors are normalized to norm 1: For all $1 \leq i \leq m$ we have $\left\|f_{i}\right\|=\sqrt{f_{i} \bullet f_{i}}=1$.

Gram-Schmidt algorithm (GSA)

Let $B=\left(b_{1}, \ldots, b_{m}\right)$ be an arbitrary basis of a subspace $U \subset \mathbb{R}^{n}$. The GSA constructs an orthonormal basis $F=\left(f_{1}, \ldots, f_{m}\right)$ of U out of the basis B in the following m steps:

Step 1: Set $f_{1}=\widehat{b_{1}}=\frac{1}{\left\|b_{1}\right\|} b_{1}$.
Step $l(2 \leq l \leq m)$: We have constructed orthonormal vectors f_{1}, \ldots, f_{l-1} in the steps before. Now set

$$
w_{l}=b_{l}-\left(b_{l} \bullet f_{1}\right) f_{1}-\cdots-\left(b_{l} \bullet f_{l-1}\right) f_{l-1}=b_{l}-\sum_{i=1}^{l-1}\left(b_{l} \bullet f_{i}\right) f_{i}
$$

and define $f_{l}=\frac{1}{\left\|w_{l}\right\|} w_{l}$.

Exercise 1. (Continue from the lecture) Consider the basis $B=\left(b_{1}, b_{2}, b_{3}\right)$ of \mathbb{R}^{3}, where

$$
b_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad b_{2}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right), \quad b_{3}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)
$$

(i) Use the Gram-Schmidt algorithm to construct an orthonormal basis F of \mathbb{R}^{3} out of B.
(ii) Find orthonormal bases for the subspaces $U=\operatorname{span}\left\{b_{1}, b_{2}\right\}$ and $V=\operatorname{span}\left\{b_{1}, b_{3}\right\}$.

See https://tinyurl.com/yc5mjem6 for a visualization.

