Tutorial 12：Basis \＆Coordinates（Preview）

Happy new year！あけましたおめでとうございます！Frohes neues Jahr！

Recall：Let $V \subset \mathbb{R}^{n}$ be a subspace．Vectors $v_{1}, \ldots, v_{l} \in V$ form a basis of \mathbf{V} if
（i）$V=\operatorname{span}\left\{v_{1}, \ldots, v_{l}\right\}$ ，
（ii）v_{1}, \ldots, v_{l} are linearly independent．
In this case，we say that $\left(v_{1}, \ldots, v_{l}\right)$ is a（ordered）basis of V ．
（The following will be defined tomorrow in Lecture 12）
Let $B=\left(b_{1}, \ldots, b_{m}\right)$ be a basis of a subspace $V \subset \mathbb{R}^{n}$ ．We define the coordinate map by

$$
\begin{aligned}
c_{B}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n} \\
\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{array}\right) \longmapsto \lambda_{1} b_{1}+\cdots+\lambda_{m} b_{m} .
\end{aligned}
$$

（i）Since b_{1}, \ldots, b_{m} are linearly independent the map c_{B} is injective．
（ii）Since b_{1}, \ldots, b_{m} span V ，i．e．$V=\operatorname{span}\left\{b_{1}, \ldots, b_{m}\right\}$ ，we have $\operatorname{im}\left(c_{B}\right)=V$ ．
（iii）From（i）and（ii）we get：The map $c_{B}: \mathbb{R}^{m} \longrightarrow V$ is bijective．
（iv）For all $x \in V$ there exist unique $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ such that

$$
x=\lambda_{1} b_{1}+\cdots+\lambda_{m} b_{m} .
$$

The numbers $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$ are the coordinates of x（in the basis B ）．
（v）The coordinate vector of x（with respect to B ）is given by

$$
[x]_{B}=c_{B}^{-1}(x)=\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{array}\right) .
$$

Exercise 1．Consider the subspace $V=\operatorname{span}\left\{v_{1}, v_{2}\right\}$ of \mathbb{R}^{3} where

$$
v_{1}=\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

（i）Find two different bases B_{1} and B_{2} of V ．
（ii）For the element $x=\left(\begin{array}{c}5 \\ -2 \\ -8\end{array}\right)$ decide if x is in V ．If this is the case，calculate the coordinate vectors $[x]_{B_{1}}$ and $[x]_{B_{2}}$ ．

