Tutorial 11: Linear independence \& Bases

(i) Vectors $v_{1}, \ldots, v_{l} \in \mathbb{R}^{n}$ are called linearly independent if the equation

$$
\begin{equation*}
\lambda_{1} v_{1}+\cdots+\lambda_{l} v_{l}=0 \tag{0.1}
\end{equation*}
$$

with $\lambda_{1}, \ldots, \lambda_{l} \in \mathbb{R}$ just has the unique solution $\lambda_{1}=\cdots=\lambda_{l}=0$.
(ii) If there exist another solution of (0.1), i.e. where at least for one $j=1, \ldots, l$ we have $\lambda_{j} \neq 0$, then the vectors v_{1}, \ldots, v_{l} are called linearly dependent.

Let $V \subset \mathbb{R}^{n}$ be a subspace. Vectors $v_{1}, \ldots, v_{l} \in V$ form a basis of \mathbf{V} if
(i) $V=\operatorname{span}\left\{v_{1}, \ldots, v_{l}\right\}$,
(ii) v_{1}, \ldots, v_{l} are linearly independent.

In this case, we say that $\left\{v_{1}, \ldots, v_{l}\right\}$ is a basis of V.

Exercise 1. Consider the following linear map

$$
\begin{aligned}
F: \mathbb{R}^{5} & \longrightarrow \mathbb{R}^{3} \\
& x \longmapsto\left(\begin{array}{lllcc}
-2 & 2 & 2 & 0 & 6 \\
-2 & 2 & 1 & -3 & 5 \\
-3 & 3 & 2 & -3 & 8
\end{array}\right) x .
\end{aligned}
$$

(i) Find a basis for $\operatorname{ker}(F)$.
(ii) Find a basis for $\operatorname{im}(F)$.

Plan for the coming weeks:

(i) Friday 22nd December during the lecture: Christmath Challenge 2023 (45minutes) \& Lecture 11 (45 minutes). Make sure to be on time and bring your phone or laptop to take the challenge (we will again use menti.com). Content of the challenge: Lecture 1-10 (and more...)
(ii) Tuesday 26th December: No tutorials (Also no Calculus tutorial)
(iii) First meeting next year: Tuesday 9th January for the tutorial.
(iv) Wednesday 10th January: Lecture 12. This is a makeup day for Friday 12th January, where we will have no lecture.

Homework 6: Linear independence \& Basis

Deadline: 14th January, 2024

Exercise 1. (6 Points) Let $V \subset \mathbb{R}^{n}$ be a subspace, $v_{1}, \ldots, v_{l} \in V$ linearly independent and $V=$ $\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}$ for some $w_{1}, \ldots, w_{m} \in \mathbb{R}^{n}$. Show that we have $l \leq m$. (Without using Lemma 9.4)

In other words: Show that a subspace spanned by m vectors can not contain more than m linearly independent vectors.

Exercise 2. (7 Points) Determine bases for the kernel and the image of the following linear map

$$
\begin{aligned}
F: \mathbb{R}^{5} & \longrightarrow \mathbb{R}^{3} \\
& x \longmapsto\left(\begin{array}{ccccc}
0 & 0 & 0 & -2 & 2 \\
-1 & -2 & 1 & 1 & 2 \\
1 & 2 & -1 & 2 & -5
\end{array}\right) x
\end{aligned}
$$

The following exercise is intended to show the basic idea of 3D computer graphics, by showing how to get a 2-dimensional picture (to be shown on a 2-dimensional monitor) from an 3-dimensional object.
Exercise 3. (7 Points)
(i) We define the corners of a cube with side length 18 in \mathbb{R}^{3} by the following set of 8 points:

$$
W=\left\{\left.\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, w_{1}, w_{2}, w_{3} \in\{0,18\}\right\}
$$

Make a drawing of a cube with side length 18 in \mathbb{R}^{3}, i.e. draw the 8 points in the set W and connect two points if they differ just by one entry.
(This just means that you draw a cube like you would usually draw it. "Differ by one entry" just means that these points are on the same edge of the cube.)
(ii) Show that $D=\left(d_{1}, d_{2}, d_{3}\right)$ is a basis of \mathbb{R}^{3}, where

$$
d_{1}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), \quad d_{2}=\left(\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right), \quad d_{3}=\left(\begin{array}{c}
3 \\
-6 \\
3
\end{array}\right)
$$

(iii) Write each $x \in W$ as a linear combination in the basis D, i.e. for each x find $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ with

$$
x=\lambda_{1} d_{1}+\lambda_{2} d_{2}+\lambda_{3} d_{3}
$$

(iv) For each $x \in W$ draw the points $\left(\lambda_{1}, \lambda_{2}\right)$ in \mathbb{R}^{2}. Connect two points if the corresponding elements in W just differ by one entry.

Explanation: What you should get in (iv) is a drawing of the 3-dimensional cube in 2 dimensions. The basis D somehow describes from which direction you look at the cube. If you replaced the D by the standard basis $\left(e_{1}, e_{2}, e_{3}\right)$, you would get a picture of the cube from the top (i.e., just a square). The λ_{3}, which you did not use for the drawing, describes the distance in the viewing direction.

Exercise 1. Consider the following linear map

$$
\begin{aligned}
F: \mathbb{R}^{5} & \longrightarrow \mathbb{R}^{3} \\
& x \longmapsto\left(\begin{array}{ccccc}
-2 & 2 & 2 & 0 & 6 \\
-2 & 2 & 1 & -3 & 5 \\
-3 & 3 & 2 & -3 & 8
\end{array}\right) x .
\end{aligned}
$$

(i) Find a basis for $\operatorname{ker}(F)$.
(ii) Find a basis for $\operatorname{im}(F)$.
(i) We calculate the Kernel by solving $F(x)=0$, ie. we determine ref $[[F]$):

$$
\left.\left.\begin{array}{rl}
{[F]} & =\left(-\frac{1}{2}\right)(-1) \\
\hline
\end{array}\left(\begin{array}{rrrrr}
-2 & 2 & 2 & 0 & 6 \\
-2 & 2 & 1 & -3 & 5 \\
-3 & 3 & 2 & -3 & 8
\end{array}\right) \sim \stackrel{(3)}{(-1)}\left(\begin{array}{ccccc}
1 & -1 & -1 & 0 & -3 \\
0 & 0 & -1 & -3 & -1 \\
-3 & 3 & 2 & -3 & 8
\end{array}\right)\right]\left(\begin{array}{rrrrr}
1 & -1 & -1 & 0 & -3 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & -1 & -3 & -1
\end{array}\right) \sim\left(\begin{array}{rrrrr}
1 & -1 & 0 & 3 & -2 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\operatorname{rref}([F])\right]
$$

\Rightarrow The solutions of $F(x)=0$ are siren by $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{5}\end{array}\right)$

$$
\begin{aligned}
& x_{1}=t_{1}-3 t_{2}+2 t_{3} \\
& x_{2}=t_{1}
\end{aligned}
$$

with

$$
\begin{aligned}
& x_{2}=t_{1} \\
& x_{3}=-3 t_{2}-t_{3} \quad \text { for } t_{1}, t_{2}, t_{3} \in \mathbb{R} \\
& x_{4}=t_{2} \\
& x_{5}=t_{3}
\end{aligned}
$$

Written differently:

$$
\begin{gather*}
x=t_{1} \cdot\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+t_{2}\left(\begin{array}{c}
-3 \\
0 \\
-3 \\
0 \\
0
\end{array}\right)+t_{3}\left(\begin{array}{c}
2 \\
0 \\
-1 \\
0 \\
1
\end{array}\right) \tag{*}\\
v_{1} \quad \operatorname{ver}(F)=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}
\end{gather*}
$$

Notice that V_{1}, V_{2}, V_{3} are lin. indef which follows by looking at rows $2,4,5$.
$\Rightarrow \quad\left\{v_{1}, v_{2}, v_{7}\right\}$ is basis of $\operatorname{ker}(F)$.
(ii) Image: Write $[F]=\left(\begin{array}{ccccc}u_{1} & 1 & c_{2} & c_{1} & 1 \\ 1 & u_{1} & u_{3} & u_{4} & u_{5} \\ 1 & 1 & 1 & 1\end{array}\right)$. We have $\operatorname{im}(F)=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$, but $u_{11 \ldots} u_{5}$ are not lin. indef. as we have seen in (i). Since any $\binom{\lambda_{i}}{\lambda_{5}} \in \operatorname{ker}(F)$ gives $\lambda_{1} u_{1}+\ldots+\lambda_{5} u_{5}=0$.

Claim 1: $u_{2}, u_{4}, u_{5} \in \operatorname{span}\left\{u_{1}, u_{3}\right\}$
Setting $t_{1}=1, t_{2}=0, t_{3}=0$ in (A)
gives $\left.u_{1}+u_{2}=0 \Rightarrow u_{2}=-u_{1} \in \operatorname{spana} u_{1}, 4\right]=$
$t_{1}=0, t_{2}=1, t_{3}=0$ in (k) gives

$$
\left.-3 u_{1}-3 u_{3}+u_{4}=0 \Rightarrow u_{4}=3 u_{1}+3 u_{3} \operatorname{tran}\left\{u_{1} u_{4}\right]\right)
$$

$t_{1}=0, t_{2}=0, t_{3}=1$ in (\neq) gives

$$
2 u_{1}-u_{3}+u_{5}=0 \Rightarrow u_{5}=-2 u_{1}+u_{3} \in \operatorname{spar}\left[u_{1}, u_{3}\right]
$$

Claim 2: u_{1}, u_{3} are lin. indef.
Need to check $\lambda_{1} u_{1}+\lambda_{3} u_{3}=0 \Rightarrow \lambda_{1}=\lambda_{3}=0$.
But by (i) we see $\left(\begin{array}{cc}1 & 1 \\ u_{1} & u_{3} \\ 1 & 1\end{array}\right) \sim\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ i.e. u_{1}, u_{3} are lin-indep. $\Rightarrow\left\{u_{1}, u_{3}\right\}$ basis $\begin{gathered}\text { in }(F)\end{gathered}$

