Linear Algebra I - Midterm question session

15th November 2023, 20:00

- You can join/leave whenever you want
- You can ask questions via voice, chat or via menti
- www.menti.com: 4266052
- I would appreciate if you turn on your cameras

1) (10 Points) Consider the following linear system

$$
\left\{\begin{array}{r}
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=6 \\
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=5 \\
3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4}=7
\end{array} .\right.
$$

i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $\left.A x=b . \quad(A \mid b) \sim \ldots \sim(B) \subset\right)$
ii) Determine the row-reduced echelon forms of the matrices $(A \mid b)$ and A.
iii) Find all the solutions to the linear system.
iv) Calculate the rank of $(A \mid b)$ and A.
v) Find a vector $c \in \mathbb{R}^{3}$, such that $A x=c$ has no solutions. Calculate the rank of $(A \mid c)$.
2) (10 Points) Let $u=\binom{2}{1} \in \mathbb{R}^{2}$ and define the following four functions:

$$
\begin{aligned}
f_{1}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} & f_{2}: \mathbb{R} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto(u \bullet x) u+x, & & \longmapsto\binom{2 \cos (x)}{\sin (x)}, \\
f_{3}: \mathbb{R}^{3} & \longrightarrow \mathbb{R}^{2} & \mathbb{R}^{3} & \longrightarrow \mathbb{R}^{4} \\
x & \longmapsto \frac{x \bullet x}{u \bullet u} u, & \left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & \longmapsto\left(\begin{array}{c}
0 \\
x_{1}+2 x_{2}+3 x_{3} \\
x_{1}-x_{3} \\
x_{2}
\end{array}\right) .
\end{aligned}
$$

i) Which of the above functions $f_{1}, f_{2}, f_{3}, f_{4}$ are linear maps? For each one that is linear, determine its matrix.
ii) Draw a picture of the image of f_{2}. Is f_{2} injective and/or surjective?
3) (6 Points) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{1}{1}=\binom{-1}{1}, \quad G\binom{1}{2}=\binom{3}{4}
$$

i) Determine the matrix of G.
ii) Determine the matrix of $G \circ G$.
4) (6 Points) We define the following linear map

$$
\begin{aligned}
& H: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
x_{1} \\
x_{2}+x_{3} \\
x_{1}+x_{2}+x_{3}
\end{array}\right)
\end{aligned}
$$

i) Calculate the image of H.
ii) Decide if H is injective and/or surjective.
iii) Find all vectors $v \in \mathbb{R}^{3}$, which are orthogonal to all vectors in the image of H.

1) (10 Points) Consider the following linear system

$$
\left\{\begin{aligned}
-2 x_{1}+4 x_{2}+x_{3}+x_{4} & =6 \\
-3 x_{1}+6 x_{2}+x_{3} & =7 \\
x_{1}-2 x_{2} & +x_{4}
\end{aligned}\right)
$$

i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $A x=b$.
ii) Determine the row-reduced echelon forms of the matrices $(A \mid b)$ and A.
iii) Find all the solutions to the linear system.
iv) Calculate the rank of $(A \mid b)$ and A.
v) Find all $y \in \mathbb{R}^{4}$ with $A y=2 b$ by using your result for iii).
2) (8 Points) Let $u=\binom{-1}{1} \in \mathbb{R}^{2}$ and define the following four functions:

$$
\begin{array}{rlrl}
f_{1}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} & f_{3}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto\left(\begin{array}{c}
u \bullet x \\
0 \\
x \bullet u
\end{array}\right), & \binom{x_{1}}{x_{2}} \longmapsto 2^{x_{1}+x_{2}}-1, & \left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
x \\
2 x
\end{array}\right.
\end{array}
$$

$$
x=\binom{0}{1} \quad \lambda=2
$$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{x_{1}-3 x_{2}}{2 x_{1}+x_{2} x_{3}} \cdot f_{3}(\lambda \mathbf{x})
$$

i) Which of the above functions f_{1}, f_{2}, f_{3} are linear maps? For each one that is linear, determine its matrix.
ii) Is f_{2} injective and/or surjective?
3) (8 Points)
i) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{-1}{2}=\binom{0}{1}, \quad G\binom{1}{-1}=\binom{2}{3}
$$

Determine the matrix of G.
ii) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a function with

$$
F\binom{-1}{2}=\binom{1}{1}, \quad F\binom{1}{-1}=\binom{2}{2}, \quad F\binom{1}{1}=\binom{3}{3} .
$$

Show that F is not a linear map.
4) (8 Points) We define the following linear map

$$
\begin{aligned}
& H: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{1}-x_{3} \\
x_{2}+x_{3}
\end{array}\right) .
\end{aligned}
$$

i) Calculate the image of H.
ii) Decide if H is injective and/or surjective.
iii) Find a non-zero vector $v \in \mathbb{R}$, such that v is orthogonal to $H(v)$. (Just one explicit vector is enough)

After finishing this exam please send your solution as one pdf file to
henrik.bachmann@math.nagoya-u.ac.jp

1) (10 Points) Consider the following linear system

$$
\left\{\begin{array}{rl}
3 x_{1}-6 x_{2}+x_{3}+5 x_{4} & =5 \\
2 x_{1}-4 x_{2}+x_{3}+3 x_{4} & =4 \\
-x_{1}+2 x_{2}-2 x_{3} & =
\end{array} .\right.
$$

i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $A x=b$.
ii) Determine the row-reduced echelon forms of the matrices $(A \mid b)$ and A and calculate their ranks.
iii) Find all the solutions to the linear system.
iv) Determine all $x \in \mathbb{R}^{4}$ which satisfy $A x=b$ and which are orthogonal to the vector $u=\left(\begin{array}{c}0 \\ 1 \\ -1 \\ 1\end{array}\right)$.
2) (8 Points) Let $u=\binom{1}{2} \in \mathbb{R}^{2}$ and define the following three functions:
$f_{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \longmapsto\binom{2 x_{1}+3 x_{2}}{x_{1}+(u \bullet u) x_{3}}, \quad\binom{x_{1}}{x_{2}} \longmapsto \sin \left(x_{1}\right)+\cos \left(x_{2}\right)$,
$f_{3}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$
$x \longmapsto\left(\begin{array}{c}x \bullet x \\ 0 \\ u \bullet u\end{array}\right)$.
i) Which of the above functions f_{1}, f_{2}, f_{3} are linear maps? For each one that is linear, determine its matrix.
ii) Is f_{2} injective and/or surjective?
3) (8 Points)
i) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{1}{1}=\binom{1}{0}, \quad G\binom{-2}{-1}=\binom{-2}{2}
$$

Determine the matrix of G.
ii) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map with

$$
F\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
2 \\
3
\end{array}\right), \quad F\left(\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right)=\left(\begin{array}{l}
6 \\
4 \\
6
\end{array}\right) .
$$

Show that F is not injective.
4) (8 Points) We define the following linear map

$$
\begin{aligned}
& H: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \\
&\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
x_{1}+x_{2}-x_{3} \\
x_{1}+2 x_{2} \\
x_{2}+x_{3}
\end{array}\right) .
\end{aligned}
$$

i) Calculate the image of H.
ii) Decide if H is injective and/or surjective.
iii) Find all vectors $x \in \mathbb{R}^{3}$ with $H(x)=2 x$.

1) (10 Points) Consider the following linear system

$$
\left\{\begin{array}{rl}
x_{1}+3 x_{2} & +x_{4}
\end{array}=1 \begin{array}{l}
x_{2}+2 x_{3}-2 x_{4}=2 \\
2 x_{1}-2 x_{2}+x_{3}+x_{4}
\end{array}\right\}
$$

i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $A x=b$.
ii) Determine the row-reduced echelon forms of the matrices $(A \mid b)$ and A and calculate their ranks.
iii) Find all the solutions to the linear system.
iv) Determine all $x \in \mathbb{R}^{4}$ which satisfy $A x=b$ and which have norm $\|x\|=\sqrt{14}$.
2) (8 Points) Let $u=\binom{1}{-1} \in \mathbb{R}^{2}$ and define the following three functions:

$$
-10=10-20
$$

$f_{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$
$f_{2}: \mathbb{R}^{2} \longrightarrow \mathbb{R}$

$$
\binom{x_{1}}{x_{2}} \longmapsto e^{x_{1}}-e^{x_{2}},
$$

$$
\begin{aligned}
f_{3}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto(x \bullet u) u
\end{aligned}
$$

i) Which of the above functions f_{1}, f_{2}, f_{3} are linear maps? For each one that is linear, determine its matrix.
ii) Is f_{2} injective and/or surjective?

3) (8 Points) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{-1}{1}=\binom{4}{-2}, \quad G\binom{2}{2}=\binom{-4}{4}
$$

i) Determine the matrix of G.
ii) Find all vectors $x \in \mathbb{R}^{2}$ such that x is orthogonal to $G(x)$.
4) (8 Points) We define the following linear map

$$
\begin{aligned}
& H: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4} \\
&\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
x_{1}+x_{2} \\
x_{2}+x_{3} \\
x_{1}+2 x_{2}+x_{3} \\
2 x_{1}-2 x_{3}
\end{array}\right)
\end{aligned}
$$

i) Calculate the image of H.
ii) Decide if H is injective and/or surjective.
iii) Find a linear map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ with $\operatorname{im}(F)=\operatorname{im}(H)$.

2022
3) (8 Points) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{-1}{1}=\binom{4}{-2}, \quad G\binom{2}{2}=\binom{-4}{4} .
$$

i) Determine the matrix of G.
ii) Find all vectors $x \in \mathbb{R}^{2}$ such that x is orthogonal to $G(x)$.
i) Want [G]

One way: Find $G\binom{x_{1}}{x_{2}}$. Fa this we try to find a, b with $\binom{x_{1}}{x_{2}}=a\binom{-1}{1}+b\binom{2}{2}$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
-1 & 2 \\
1 & 2
\end{array}\right)\binom{a}{b} \\
& \text { (1) }\left(\begin{array}{cc|c}
-1 & 2 & x_{1} \\
1 & 2 & x_{2}
\end{array}\right) \sim \stackrel{\Theta 1}{\frac{1}{4}}\left(\begin{array}{cc|c}
-1 & 2 & x_{1} \\
0 & 4 & x_{1}+x_{2}
\end{array}\right) \\
& \sim\left[\left(\begin{array}{cc|c}
1 & -2 & -x_{1} \\
0 & 1 & \frac{x_{1}}{4}+\frac{x_{2}}{4}
\end{array}\right)\right. \\
& \sim\left(\begin{array}{cc|c}
1 & 0 & \left(\frac{x_{1}}{2}+\frac{x_{2}}{2}\right. \\
0 & 1 & \frac{x_{1}}{4}+\frac{x_{2}}{4}
\end{array}\right)=a \\
& \binom{x_{1}}{x_{2}}=\left(-\frac{x_{1}}{2}+\frac{x_{2}}{2}\right)\binom{-1}{1}+\left(\frac{x_{1}}{4}+\frac{x_{2}}{4}\right)\binom{2}{2}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\Rightarrow G\binom{x_{1}}{x_{2}} & =\left(-\frac{x_{1}}{2}+\frac{x_{2}}{2}\right)\binom{4}{-2}+\left(\frac{x_{1}}{4}+\frac{x_{2}}{4}\right) \\
& =\binom{-4}{4} \\
2 x_{1}
\end{array}\right)=\underbrace{\left(\begin{array}{cc}
-3 & 1 \\
2 & 0
\end{array}\right)}_{[6]}\binom{x_{1}}{x_{2}}
$$

Another way:
Try to find $G\binom{1}{0}$ and $G\binom{0}{1}$,
since $[G]=\left(\begin{array}{ll}1 & 1 \\ G^{\prime} \\ 1 & G^{\prime} \\ 1 & G_{1} \\ 1\end{array}\right)=\left(\begin{array}{cc}-3 & 1 \\ 2 & 0\end{array}\right)$

$$
\begin{aligned}
\binom{0}{1} & =\frac{1}{2}\binom{-1}{1}+\frac{1}{4}\binom{2}{2}^{11}\binom{G\left(l_{1}\right)}{1} G\binom{1}{1} \\
G\binom{0}{1} & =\frac{1}{2} G\binom{-1}{1}+\frac{1}{4} G\binom{2}{2} \\
& =\frac{1}{2}\binom{4}{-2}+\frac{1}{4}\binom{-4}{4}=\binom{2}{-1}+\binom{-1}{1}=\binom{1}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{1}{0}=-\frac{1}{2}\binom{-1}{1}+\frac{1}{4}\binom{2}{2} \\
& =-\frac{1}{2}\binom{4}{-2}+\frac{1}{4}\binom{-4}{4}=\binom{-2}{1}+\binom{-1}{1} \\
& =\binom{-3}{2} \\
& F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \\
& {[F]=\left(\begin{array}{ll}
1 & 0 \\
2 & 4 \\
3 & 10 \\
3 & 8
\end{array}\right)} \\
& \left.\begin{array}{rl}
F
\end{array}\right) \\
& \left.\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=[F]\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \\
& F\left(\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
4 \\
8
\end{array}\right)
\end{aligned}
$$

ii) Want to find $\underset{\substack{x_{1}^{\prime \prime} \\ x_{2}}}{x \in \mathbb{R}^{2}}$ with $\underset{\substack{\text { orthogonal to } \\ G(x) .}}{x} G(x)=0$

$$
\begin{aligned}
x \cdot G(x) & =\binom{x_{1}}{x_{2}} \cdot G\binom{x_{1}}{x_{2}} \\
& \stackrel{i}{=}\binom{x_{1}}{x_{2}} \cdot\binom{-3 x_{1}+x_{2}}{2 x_{1}} \\
& =x_{1} \cdot\left(-3 x_{1}+x_{2}\right)+2 x_{1} x_{2} \\
& =x_{1} \cdot(\underbrace{-3 x_{1}+x_{2}+2 x_{2}}_{-3 x_{1}+3 x_{2}})=0
\end{aligned}
$$

We have $x \cdot G(x)=0$ if $x_{1}=0$

$$
\begin{gathered}
\text { or }-3 x_{1}+3 x_{2}=0 . \\
\left(-x_{1}+x_{2}=0\right)
\end{gathered}
$$

$\left(\begin{array}{c}\text { In other words if } x=\binom{0}{t} \text { or } x=\binom{t}{t} \\ \text { for } t \in \mathbb{R} .\end{array}\right.$
$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
\binom{x_{1}}{x_{2}} \mapsto x_{1}+\sin \left(x_{2}\right) \underset{\operatorname{im}(f)=\mathbb{R}}{\left\{\begin{array}{l}
\left\{y \in \mathbb{R} \mid \exists x \in \mathbb{R}^{2}\right. \\
\text { with } f(x)=y)
\end{array}\right.}
$$

Quills subjective?
Yes: Foray $y \in \mathbb{R}$ we can chare $x=\binom{y}{0}$ and have $f(x)=y$. Therefore any y is in in $(f) \Rightarrow \operatorname{in}(f)=\mathbb{R}$.
2) Is f injoctive?

No since $f\binom{1}{d}=f\binom{1}{2 \pi}$.
g:

$$
\begin{aligned}
& \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \binom{x_{1}}{x_{2}} \mapsto x_{1}^{2}+\sin \left(x_{2}\right)
\end{aligned}
$$

g is not surjective since $-5 \notin \mathrm{im}(g)$.
(Because $x_{1}^{2} \geq 0$ for any $x_{1} \in R$ and $\sin \left(x_{2}\right) \geq-1$ for any $x_{2} \in \mathbb{R}$.

$$
\Rightarrow \quad x_{1}^{2}+\sin \left(x_{2}\right) \geq-1 \quad 1
$$

2019
3) (6 Points) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{1}{1}=\binom{-1}{1}, \quad G\binom{1}{2}=\binom{3}{4}
$$

i) Determine the matrix of G.
ii) Determine the matrix of $G \circ G$.

$$
\text { i) } \begin{aligned}
& {[G]=\left(\begin{array}{ll}
-5 & 4 \\
-2 & 3
\end{array}\right)} \\
& G\binom{x_{1}}{x_{2}}=\binom{-5 x_{1}+4 x_{2}}{-2 x_{1}+3 x_{2}} \\
& \text { ii) }(G \circ G)\binom{x_{1}}{x_{2}}=G\left(G\binom{x_{1}}{x_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & G\binom{-5 x_{1}+4 x_{2}}{-2 x_{1}+3 x_{2}} \\
= & \binom{-5\left(-5 x_{1}+4 x_{2}\right)+4\left(-2 x_{1}+3 x_{2}\right)}{-2\left(-5 x_{1}+4 x_{2}\right)+3\left(-2 x_{1}+3 x_{2}\right.} \\
= & \binom{17 x_{1}-8 x_{2}}{4 x_{1}+x_{2}} \\
= & \left(\begin{array}{cc}
17 & -8 \\
4 & 1
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& {\left[\begin{array}{lll}
G & 0 & G
\end{array}\right)=[G] \cdot[G] }
\end{aligned}
$$

2020

$$
\begin{aligned}
f_{2}: \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
\binom{x_{1}}{x_{2}} & \longmapsto 2^{x_{1}+x_{2}}-1,
\end{aligned}
$$

$$
a^{x}>0, a \in \mathbb{R}
$$

f_{2} surjective? No, since $2^{x}>0$ for any $x \in \mathbb{R}$, i.e. $2^{x_{1}+x_{2}}-1>-1$ for any $x_{1}, x_{2} \in \mathbb{R}$.

$$
\begin{aligned}
& \Rightarrow-100 \notin \operatorname{im}\left(f_{2}\right) \\
& \Rightarrow \quad i m\left(f_{2}\right) \neq \mathbb{R}
\end{aligned}
$$

f_{2} injective? No, since $f_{2}\binom{0}{0}=f_{2}\binom{-1}{1}$.
11

If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear then

$$
\begin{aligned}
& F(0)=0 \\
& F\left(\begin{array}{l}
0 \\
i \\
j
\end{array}\right)=\left(\begin{array}{l}
0 \\
i \\
0
\end{array}\right)
\end{aligned}
$$

