Linear Algebra I - Midterm exam Sol (K\' 'l On Fall 2023

Nagoya University, G30 Program Instructor: Henrik Bachmann

1) (10 Points) Consider the following linear system

—x1 + 229 4+ 3x3 + 224 = 3
3r1 — 219 — r3 + 2x4 = 3
Ty + 2x9 + bxz + 6x4 = 9
(i) Find a matrix A € R*** and and a vector b € R3, such that the solutions of the above linear system
T
are given by the vectors x = <g{;§> € R* satisfying Az = b.
Lz

(ii) Calculate the row-reduced echelon forms of the matrices (A | b) and A and calculate their ranks.

(iii) Determine all the solutions to the linear system Ax = b.

(iv) Find an injective linear map F : R? — R? such that Az = 0 for any x € im(F).

2) (8 Points) Let u = (_21) € R? and define the following three functions:

:R* — R?
y f2 i RE R fo:R> — R
1 z1(ueu) — xo T .
To | —> €1+ 3 s o — I s1n(x2) R T — ((E o u):c .
T3

(i) Which of the above functions fi, f2, f3 are linear maps? For each one that is linear, determine its
matrix.

(ii) Is fo injective and/or surjective?

3) (8 Points) Let G : R? — R? be a linear map with

2 2 -1 -1
(5)=(5) ()=(0)
(i) Determine the matrix of G.

(ii) Find all vectors z € R? such that z is orthogonal to every vector v € im(G).

4) (8 Points) We define the following linear map

H:R* —R?
T
" 1+ 2o
.T2 — | 2 + x3
3
T3 + X4
T4

(i) Calculate the image of H.

(ii) Decide if H is injective and/or surjective.

(iii) Find a linear map J : R® — R* with H(J(y)) =y for all y € R3.
)

(iv) Show that there cannot exist a linear map K : R? — R* with K(H(z)) = z for all z € R%.
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2) (8 Points) Let u = (_21> € R? and define the following three functions:
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(i) Which of the above functions f1, f2, f3 are linear maps? For each one that is linear, determine its
matrix.

(ii) Is fo injective and/or surjective?
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3) (8 Points) Let G : R? — R? be a linear map with
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(i) Determine the matrix of G,

(ii) Find all vectors z € R? such that z is orthogonal to every vector v € im(QG).
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4) (8 Points) We define the following linear map

H:R* —R® X
X
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(i) Calculate the image of H. [Hﬁ)
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(iii

Decide if H is injective and/or surjective.

Find a linear map J : R®* — R* with H(J(y)) =y for all y € R3.

)
)
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(iv) Show that there cannot exist a linear map K : R?* — R* with K(H(z)) = z for all z € R*.
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