1) (10 Points) Consider the following linear system

$$
\left\{\begin{array}{r}
-x_{1}+2 x_{2}+3 x_{3}+2 x_{4}=3 \\
3 x_{1}-2 x_{2}-x_{3}+2 x_{4}=3 \\
x_{1}+2 x_{2}+5 x_{3}+6 x_{4}=9
\end{array} .\right.
$$

(i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $A x=b$.
(ii) Calculate the row-reduced echelon forms of the matrices $(A \mid b)$ and A and calculate their ranks.
(iii) Determine all the solutions to the linear system $A x=b$.
(iv) Find an injective linear map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ such that $A x=0$ for any $x \in \operatorname{im}(F)$.
2) (8 Points) Let $u=\binom{2}{-1} \in \mathbb{R}^{2}$ and define the following three functions:

$$
\begin{array}{llr}
f_{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} & f_{2}: \mathbb{R}^{2} \longrightarrow \mathbb{R} & f_{3}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{x_{1}(u \bullet u)-x_{2}}{x_{1}+x_{3}}, & \binom{x_{1}}{x_{2}} \longmapsto x_{1} \sin \left(x_{2}\right), & x \longmapsto(x \bullet u) x .
\end{array}
$$

(i) Which of the above functions f_{1}, f_{2}, f_{3} are linear maps? For each one that is linear, determine its matrix.
(ii) Is f_{2} injective and/or surjective?
3) (8 Points) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{2}{-2}=\binom{2}{-2}, \quad G\binom{-1}{2}=\binom{-1}{1}
$$

(i) Determine the matrix of G.
(ii) Find all vectors $x \in \mathbb{R}^{2}$ such that x is orthogonal to every vector $v \in \operatorname{im}(G)$.
4) (8 Points) We define the following linear map

$$
\begin{aligned}
& H: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3} \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \longmapsto\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3} \\
x_{3}+x_{4}
\end{array}\right) .
\end{aligned}
$$

(i) Calculate the image of H.
(ii) Decide if H is injective and/or surjective.
(iii) Find a linear map $J: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ with $H(J(y))=y$ for all $y \in \mathbb{R}^{3}$.
(iv) Show that there cannot exist a linear map $K: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ with $K(H(x))=x$ for all $x \in \mathbb{R}^{4}$.

1) (10 Points) Consider the following linear system

$$
\left\{\begin{array}{r}
-x_{1}+2 x_{2}+3 x_{3}+2 x_{4}=3 \\
3 x_{1}-2 x_{2}-x_{3}+2 x_{4}=3 \\
x_{1}+2 x_{2}+5 x_{3}+6 x_{4}=9
\end{array} .\right.
$$

(i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $A x=b$.
(ii) Calculate the row-reduced echelon forms of the matrices $(A \mid b)$ and A and calculate their ranks.
(iii) Determine all the solutions to the linear system $A x=b$.
(iv) Find an injective linear map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ such that $A x=0$ for any $x \in \operatorname{im}(F)$.
(i)

$$
A=\left(\begin{array}{cccc}
-1 & 2 & 3 & 2 \\
3 & -2 & -1 & 2 \\
1 & 2 & 5 & 6
\end{array}\right), b=\left(\begin{array}{l}
3 \\
3 \\
9
\end{array}\right)
$$

(ii)

$$
\begin{aligned}
(A \mid b) & =\stackrel{\Theta(1)(3)}{4}\left(\begin{array}{rrrr|r}
-1 & 2 & 3 & 2 & 3 \\
3 & -2 & -1 & 2 & 3 \\
1 & 2 & 5 & 6 & 9
\end{array}\right) \sim\left(\begin{array}{c}
\left(\frac{1}{4}\right) \Theta(11) \\
4
\end{array}\left(\begin{array}{rrrr|r}
1 & -2 & -3 & -2 & -3 \\
0 & 4 & 8 & 8 & 12 \\
0 & 4 & 8 & 8 & 12
\end{array}\right)\right. \\
& \sim(2)\left(\begin{array}{cccc|c}
1 & -2 & -3 & -2 & -3 \\
0 & 1 & 2 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lllll|}
1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\operatorname{rref}(A \mid b)
\end{aligned}
$$

We get $\operatorname{rref}(A)=\left(\begin{array}{llll}1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0\end{array}\right)$, and $\operatorname{rk}(A)=\operatorname{rk}(A \mid b)=2$.
(iii) By (ii) the solutions to $A x=b$ are given by $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$ with

$$
\begin{aligned}
& x_{1}=3-t_{1}-2 t_{2} \\
& x_{2}=3-2 t_{1}-2 t_{2} \\
& x_{3}=t_{1} \\
& x_{4}=t_{2}
\end{aligned}
$$

(iv) By (ii) the solutions to $A x=0$ are $x=\left(\begin{array}{c}x_{x} \\ x_{4}^{2} \\ x_{4}\end{array}\right)$ with

$$
\begin{aligned}
& x_{1}=-t_{1}-2 t_{2} \quad t_{1}, t_{2} \in \mathbb{R} . \\
& x_{2}=-2 t_{1}-2 t_{2} \\
& x_{3}=t_{1} \\
& x_{4}=t_{2}
\end{aligned}
$$

Therefore we define

$$
\begin{aligned}
F: & \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4} \\
& \binom{x_{1}}{x_{2}} \mapsto\left(\begin{array}{c}
-x_{1}-2 x_{2} \\
-2 x_{1}-2 x_{2} \\
x_{2}
\end{array}\right) .
\end{aligned}
$$

Clearly $A F(x)=0$.
F is injective, since if $F\binom{x_{1}}{x_{2}}=F\binom{\widetilde{x}_{1}}{\widehat{x}_{2}}$ we directly get $x_{1}=\tilde{x}_{1}$ and $x_{2}=\tilde{x}_{2}$ by comparing the third and forth entry.
2) (8 Points) Let $u=\binom{2}{-1} \in \mathbb{R}^{2}$ and define the following three functions:
$f_{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{x_{1}(u \bullet u)-x_{2}}{x_{1}+x_{3}},
$$

$f_{2}: \mathbb{R}^{2} \longrightarrow \mathbb{R}$
$\binom{x_{1}}{x_{2}} \longmapsto x_{1} \sin \left(x_{2}\right)$,

$$
\begin{aligned}
f_{3}: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto(x \bullet u) x .
\end{aligned}
$$

(i) Which of the above functions f_{1}, f_{2}, f_{3} are linear maps? For each one that is linear, determine its matrix.
(ii) Is f_{2} injective and/or surjective?
(i) $f_{1}: u \cdot u=\binom{2}{-1} \cdot\binom{2}{-1}=2.2+(-1)(-1)=5$

$$
\Rightarrow f_{1}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{5 x_{1}-x_{2}}{x_{1}+x_{3}}=\underbrace{\left(\begin{array}{ccc}
5 & -1 & 0 \\
1 & 0 & 1
\end{array}\right)}_{\left[f_{1}\right]}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

$\Rightarrow f_{1}$ is linear.
f_{2} : For $x=\binom{x_{1}}{x_{2}}=\binom{1}{\frac{\pi}{2}}$

we have $f_{2}(x)=1 \cdot \sin \left(\frac{\pi}{2}\right)=1 \cdot 1=1$.
For $\lambda=2$ we get $\lambda f_{2}(x)=2$, but

$$
\begin{aligned}
& f_{2}(\lambda x)=f_{2}\left(2 \cdot\binom{1}{\frac{\pi}{2}}\right)=f_{2}\binom{2}{\pi}=2 \cdot \sin (\pi)=0 . \\
\Rightarrow & \lambda f_{2}(x) \neq f_{2}(\lambda x)
\end{aligned}
$$

$\Rightarrow f_{2}$ is not linear.
(iii)

$$
\begin{aligned}
& \frac{f_{3}:}{f_{3}\binom{x_{1}}{x_{2}}=\left(\binom{x_{1}}{x_{2}} \cdot\binom{2}{-1}\right)\binom{x_{1}}{x_{2}}}=\left(2 x_{1}-x_{2}\right)\binom{x_{1}}{x_{2}} \\
& \\
& \\
& \\
& =\binom{2 x_{1}^{2}-x_{1} x_{2}}{2 x_{1} x_{2}-x_{2}^{2}} .
\end{aligned}
$$

We get

$$
\begin{aligned}
& 2 f_{3}\binom{1}{0}=2\binom{2}{0}=\binom{4}{0} \\
& f_{3}\left(2 \cdot\binom{1}{0}\right)=f_{3}\binom{2}{0}=\left(\begin{array}{l}
+ \\
8 \\
0
\end{array}\right)
\end{aligned}
$$

$\Rightarrow f_{3}$ is not linear.
(ii). For any $y \in \mathbb{R}$ we can choose $x=\binom{y}{\frac{\pi}{2}}$ and get $f_{2}(x)=f_{2}\left(\frac{y}{2}\right)=y \cdot \underbrace{\sin \left(\frac{\pi}{2}\right)}_{=1}=y$.
Therefore $y \in \operatorname{im}\left(f_{2}\right)$ for any $y \in \mathbb{R}$ and f_{2} is surjective.

- Since $f_{2}\binom{1}{\pi}=f_{2}\binom{1}{0}=0 \quad f_{2}$ is not injective.

3) (8 Points) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{2}{-2}=\binom{2}{-2}, \quad G\binom{-1}{2}=\binom{-1}{1} .
$$

(i) Determine the matrix of G.
(ii) Find all vectors $x \in \mathbb{R}^{2}$ such that x is orthogonal to every vector $v \in \operatorname{im}(G)$.
(i) We try to find a, b with

$$
\binom{x_{1}}{x_{2}}=a\binom{2}{-2}+b\binom{-1}{2}=\left(\begin{array}{cc}
2 & -1 \\
-2 & 2
\end{array}\right)\binom{a}{b} .
$$

$$
\begin{aligned}
& \left(\frac{1}{2}\right)(1)\left(\begin{array}{cc|c}
2 & -1 & x_{1} \\
-2 & 2 & x_{2}
\end{array}\right) \sim \stackrel{\rightharpoonup}{2}\left(\begin{array}{cc|c}
1 & -\frac{1}{2} & \frac{x_{1}}{2} \\
0 & 1 & x_{1}+x_{2}
\end{array}\right) \sim\left(\begin{array}{ll|c}
1 & 0 & x_{1}+\frac{x_{2}}{2} \\
0 & 1 & x_{1}+x_{2}
\end{array}\right) \\
& \Rightarrow a=x_{1}+\frac{x_{2}}{2}, b=x_{1}+x_{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \text { ore } \begin{aligned}
G\binom{x_{1}}{x_{2}} & =G\left(\left(x_{1}+\frac{x_{2}}{2}\right)\binom{2}{-2}+\left(x_{1}+x_{2}\right)\binom{-1}{2}\right) \\
& =\left(x_{1}+\frac{x_{2}}{2}\right) G\binom{2}{-2}+\left(x_{1}+x_{2}\right) G\binom{-1}{2} \\
& =\left(x_{1}+\frac{x_{2}}{2}\right)\binom{2}{-2}+\left(x_{1}+x_{2}\right)\binom{-1}{1} \\
& =\binom{x_{1}}{-x_{1}}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{aligned}
\end{aligned}
$$

(ii) By (i) we see that any $v \in \operatorname{im}(6)$ has the form $V=\binom{t}{-t}$ for $t \in \mathbb{R}$.

We have

$$
\begin{aligned}
x \cdot v=\binom{x_{1}}{x_{2}} \cdot\binom{t}{-t} & =x_{1} t-x_{2} t \\
& =\left(x_{1}-x_{2}\right) t
\end{aligned}
$$

In order to get $x \cdot v=O$ we therefore need $x_{1}=x_{2}$.
\Rightarrow All vectors of the form $\binom{t}{t}$ for $t \in \mathbb{R}$ are orthogonal to all vector in $\operatorname{im}(G)$.
4) (8 Points) We define the following linear map

$$
\begin{aligned}
& H: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3} \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \longmapsto\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3} \\
x_{3}+x_{4}
\end{array}\right)=\underbrace{\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)}_{[H]}\left(\begin{array}{l}
\boldsymbol{x}_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
\end{aligned}
$$

(i) Calculate the image of H.
(ii) Decide if H is injective and/or surjective.
(iii) Find a linear map $J: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ with $H(J(y))=y$ for all $y \in \mathbb{R}^{3}$.
(iv) Show that there cannot exist a linear map $K: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ with $K(H(x))=x$ for all $x \in \mathbb{R}^{4}$.
(i) To calculate im(H) we need to find all $y \in \mathbb{R}^{3}$, with $H(x)=y$ has a solution.

$$
\begin{aligned}
& ([H] \mid y)=\underset{-1}{-1}\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & y_{1} \\
0 & 0 & 1 & 0 \\
y_{2} & y_{2}
\end{array}\right) \sim\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & y_{1} \\
0 & 1 & 0 & -1 & y_{2}-y_{3} \\
0 & 0 & 1 & 1 & y_{3}
\end{array}\right) \\
& \sim\left(\begin{array}{cccc|c}
1 & 0 & 0 & 1 & y_{1}-y_{2}+y_{3} \\
0 & 1 & 0 & -1 & y_{2}-y_{3} \\
0 & 0 & 1 & 1 & \\
\hline
\end{array}\right)
\end{aligned}
$$

$\Rightarrow H(x)=y$ has a solution for any $y \in \mathbb{R}^{3}$ (namely $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{4} \\ x_{4}\end{array}\right)=\left(\begin{array}{c}y_{1}-y_{1}+y_{1} \\ y_{2}-y_{3} \\ 0\end{array}\right)$ is one)

$$
\Rightarrow \quad \operatorname{im}(H)=\mathbb{R}^{3}
$$

(ii) By (i) we see that H is surjective. But since $H\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)=H\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ we see that H is not injective.
(iii) By (i) we get that $H(x)=y$ has a solution given by $x=\left(\begin{array}{c}y_{1}-y_{1}+y_{3} \\ y_{2} y_{3} y_{3} \\ y_{j}\end{array}\right)$.
If we define $J: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$

$$
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
y_{1}-y_{2}+y_{3} \\
y_{2} y_{3} z_{3} \\
0
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
1 \\
1
\end{array}\right)
$$

we therefore have $H(J(y))=y$.
(iv) By (ii) we know that for $x=\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$ we have $H(x)=0$. For any linear map $K: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ we would therefore get

$$
K(H(X))=\underset{\substack{\text { since } \\
\text { a thesis is } \\
\text { a lase the case for a lin map. }}}{K(0)=0 \neq x=\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right) .}
$$

