1) (10 Points) Consider the following linear system

$$
\left\{\begin{array}{r}
-x_{1}+2 x_{2}+3 x_{3}+2 x_{4}=3 \\
3 x_{1}-2 x_{2}-x_{3}+2 x_{4}=3 \\
x_{1}+2 x_{2}+5 x_{3}+6 x_{4}=9
\end{array} .\right.
$$

(i) Find a matrix $A \in \mathbb{R}^{3 \times 4}$ and and a vector $b \in \mathbb{R}^{3}$, such that the solutions of the above linear system are given by the vectors $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right) \in \mathbb{R}^{4}$ satisfying $A x=b$.
(ii) Calculate the row-reduced echelon forms of the matrices $(A \mid b)$ and A and calculate their ranks.
(iii) Determine all the solutions to the linear system $A x=b$.
(iv) Find an injective linear map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ such that $A x=0$ for any $x \in \operatorname{im}(F)$.
2) (8 Points) Let $u=\binom{2}{-1} \in \mathbb{R}^{2}$ and define the following three functions:

$$
\begin{array}{llr}
f_{1}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} & f_{2}: \mathbb{R}^{2} \longrightarrow \mathbb{R} & f_{3}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{x_{1}(u \bullet u)-x_{2}}{x_{1}+x_{3}}, & \binom{x_{1}}{x_{2}} \longmapsto x_{1} \sin \left(x_{2}\right), & x \longmapsto(x \bullet u) x .
\end{array}
$$

(i) Which of the above functions f_{1}, f_{2}, f_{3} are linear maps? For each one that is linear, determine its matrix.
(ii) Is f_{2} injective and/or surjective?
3) (8 Points) Let $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map with

$$
G\binom{2}{-2}=\binom{2}{-2}, \quad G\binom{-1}{2}=\binom{-1}{1}
$$

(i) Determine the matrix of G.
(ii) Find all vectors $x \in \mathbb{R}^{2}$ such that x is orthogonal to every vector $v \in \operatorname{im}(G)$.
4) (8 Points) We define the following linear map

$$
\begin{aligned}
& H: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3} \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \longmapsto\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3} \\
x_{3}+x_{4}
\end{array}\right) .
\end{aligned}
$$

(i) Calculate the image of H.
(ii) Decide if H is injective and/or surjective.
(iii) Find a linear map $J: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ with $H(J(y))=y$ for all $y \in \mathbb{R}^{3}$.
(iv) Show that there cannot exist a linear map $K: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ with $K(H(x))=x$ for all $x \in \mathbb{R}^{4}$.

