Linear Algebra I
Fall 2023
Recall:
Definition 8.1 A subset $U \subset \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} if
i) $0 \in \mathbb{R}^{n}$
(again: by 0 we mean ($\left.\begin{array}{l}0 \\ 0\end{array}\right\}$
ii) For all $u, v \in U: u+v \in U$ " u is closed under addition"
iii) Fo all $u \in U$ and $\lambda \in \mathbb{R}: \lambda u \in U$
" u is closed under scilly multiplication" scalar multiplication

- The span of $v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$

$$
\operatorname{span}\left\{v_{1} \ldots v_{n}\right\}=\left\{\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n} \mid \lambda_{1 \ldots, 1} \lambda_{n} \in \mathbb{R}\right\}
$$

is a subspace of \mathbb{R}^{m}.

- For lin. map. $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ the Keel 8 impose are subspaces.

$$
\begin{aligned}
& \left\{x \in \mathbb{R}^{n} \mid F(x)=0\right\}=\operatorname{Ker}(F) \quad \operatorname{im}(F)=\left\{y \in \mathbb{R}^{m} \left\lvert\, \exists_{\left.x \in \mathbb{R}_{1}, F(x)=y\right\}}^{\text {If }[F]=\left(\begin{array}{cc}
1 & 1 \\
v_{1} & \ldots \\
1 & v_{n} \\
1 & 1
\end{array}\right) \text { then } \operatorname{im}(F)=\operatorname{span}\left\{v_{1} \ldots, v_{n}\right\}}\right.\right.
\end{aligned}
$$

Fact: Every subspace is the kernel and imase of some lin maps.

Idea: If $U=\left\{x \in \mathbb{R}^{n} \mid\right.$ condition on $\left.x\right\}$ try to find $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with condition on $x \Leftrightarrow F(x)=0$.
Example: $u=\left\{x \in \mathbb{R}^{3} \mid x_{1}+x_{2}=0, x_{1}-x_{2}+x_{3}=0\right\}$
Set $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{x_{1}+x_{2}}{x_{1}-x_{2}+x_{2}}
$$

Then $\operatorname{ker}(f)=u$.
Theorem 8.7 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
i) The following statements are equivalent F is infective $\Leftrightarrow \operatorname{ker}(F)=\{0\} \Leftrightarrow r k(F)=n$. wi (f)
ii) The following statements are equivalent F is surjective $\Leftrightarrow \operatorname{in}(F)=\mathbb{R}^{m} \Leftrightarrow \operatorname{rk}(F)=m$.
iii) If $m=n$ then the foll owing statements are equiscleat F is bijective $\Leftrightarrow F$ is invective $\Leftrightarrow F$ is sujpective. \Leftrightarrow F invertible
$\oint 9$ Linear independence
We considered the linear map

$$
\begin{aligned}
G: & \mathbb{R}^{4} \longrightarrow \mathbb{R}^{2} \\
& x \longmapsto\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) x
\end{aligned}
$$

and calculated its image

$$
\operatorname{im}(G)=\mathbb{R}^{2}=\operatorname{span}\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

But we also learned that

$$
\begin{aligned}
\operatorname{im}(G) & =\text { span of columns of }[G] \\
& =\operatorname{span}\left\{\binom{1}{1},\binom{2}{1},\binom{0}{1},\binom{1}{1}\right\}
\end{aligned}
$$

This gives

$$
\frac{\operatorname{span}\left\{\binom{1}{0},\binom{0}{1}\right\}}{\text { We just need }} \underset{2 \text { vectors }}{\substack{\text { How can } \\ \text { We show this? }}} \underbrace{\operatorname{span}\left\{\binom{1}{1},\binom{2}{0},\binom{0}{1},\binom{1}{1}\right\}}_{\text {Too much vectors. Can }}
$$

Lemma 9.1 Let $v_{1}, \ldots, v_{l} \in \mathbb{R}^{m}$. If $v_{l} \in \operatorname{span}\left\{v_{1, \ldots, v_{l-1}}\right\}$ then

$$
\frac{\operatorname{span}\left\{v_{1}, \ldots, v_{l}\right\}}{\|}=\frac{\operatorname{span}\left\{v_{1}, \ldots, v_{l-1}\right\}}{V^{\prime \prime}} .
$$

Proof: Clearly we have WCV. Want to show VoW.
If $v \in \operatorname{span}\left\{v_{1}, \ldots, v_{l}\right\}=V$, then there exist $\lambda_{1 l \ldots,}, \lambda_{l} \in \mathbb{R}$ with

$$
\begin{equation*}
\left.v=\lambda_{1} v_{1}+\ldots+\lambda_{l} v_{l}\right) . \tag{*}
\end{equation*}
$$

Since $V_{l} \in \operatorname{span}\left\{V_{1}, \ldots, V_{l-1}\right\}$ there also exist $\alpha_{1, \ldots,} \alpha_{l-1} \in \mathbb{R}$ with

$$
\begin{equation*}
V_{l}=\alpha_{1} V_{1}+\ldots+\alpha_{l-1} V_{l-1} . \tag{**}
\end{equation*}
$$

Combining ($*$) and ($(*)$ gives

$$
\begin{aligned}
v & =\lambda_{1} v_{1}+\ldots+\lambda_{l-1} v_{l-1}+\lambda_{l}\left(\alpha_{1} v_{1}+\ldots+\alpha_{l-1} v_{l-1}\right) \\
& =\left(\lambda_{1}+\lambda_{l} \alpha_{1}\right) v_{1}+\ldots+\left(\lambda_{l-1}+\lambda_{l} \alpha_{l-1}\right) v_{l-1}
\end{aligned}
$$

and therefore $v \in \operatorname{span}\left\{v_{1, \ldots,} v_{l-1}\right\}$, i.e. $V \subset W$.

Example 32
For the linear map G in Example 16 we get

$$
\begin{aligned}
& \operatorname{im}(G)=\operatorname{span}\left\{\binom{1}{1},\binom{2}{1},\binom{0}{1},\left(\begin{array}{l}
1 \\
1
\end{array} 1\right\}\right. \\
& \epsilon^{\operatorname{san}[(1),(0) 3} \\
& \binom{2}{1}=2\binom{1}{1}-\binom{0}{1} \\
& \text { (i) } 1 \text { span }\{(1),(1) \\
& \operatorname{span}\left\{\binom{1}{1},\binom{0}{1}\right\} \\
& \left.11 \text { Lemma 9.1 (} \begin{array}{l}
1 \\
0
\end{array}\right)=\binom{1}{1}-\binom{0}{1} \\
& \operatorname{span}\left\{\binom{1}{0},\binom{1}{1}\binom{0}{1}\right\} \\
& 11 \text { Lemma } 9.1 \quad\binom{1}{1}=\binom{1}{0}+\binom{0}{1} \\
& \operatorname{span}\left\{\binom{1}{0},\binom{0}{1}\right\}=\mathbb{R}^{2} .
\end{aligned}
$$

General question: When is it possible to remove elements from span $\left\{v_{1}, \ldots, v_{e}\right\}$ without changing it?

Definition 9.2 Vectors $v_{11} \ldots, v_{l} \in \mathbb{R}^{m}$ are called linearly independent if the equation

$$
\lambda_{1} v_{1}+\ldots+\lambda_{l} v_{l}=0 \quad\left(\lambda_{11 \ldots,} \lambda_{l} \in R\right)
$$

just has the unique solution $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{l}=0$.
Otherwise $v_{1 \ldots, i v e}$ are called linearly dependent.

Example 33 Are the vectors

$$
V_{1}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \quad V_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \quad V_{3}=\left(\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right)
$$

linearly independent?
The equation $\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}=0$ is equivalent to

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
v_{1} & V_{2} & v_{3} \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & -1 & 5 \\
2 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

$$
\begin{aligned}
& \stackrel{(-2)}{\oplus(-1)} \underset{\rightarrow}{\longrightarrow}\left(\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
1 & -1 & 5 & 0 \\
2 & 1 & 1 & 0
\end{array}\right) \widetilde{\Theta}(1) \underset{(-2)}{ }\left(\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
0 & -2 & 6 & 0 \\
0 & -1 & 3 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & -3 & 0
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & 2 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Solutions: $\quad \lambda_{1}=-2 t$

$$
\begin{aligned}
& \lambda_{2}=3 t \quad \Rightarrow \quad v_{1}, v_{2}, v_{3} \text { are } \\
& \lambda_{3}=t \quad \text { linearly dependent! }
\end{aligned}
$$

For $t=1$ we get $\lambda_{1}=-2, \lambda_{2}=3, \lambda_{3}=1$

$$
\begin{aligned}
& -2 v_{1}+3 v_{2}+v_{3}=-2\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+3\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)+\left(\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right)=0 \\
\Rightarrow & v_{3}=2 v_{1}-3 v_{2} \Rightarrow v_{3} \in \operatorname{span}\left\{v_{1}, v_{2}\right\}
\end{aligned}
$$

Lemma 9.1

$$
\stackrel{\operatorname{Lemma~} 9.1}{\Rightarrow} \operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\} .
$$

But V_{1}, V_{2} are linearly independent since

$$
\left.\begin{array}{rl}
\lambda_{1} v_{1}+\lambda_{2} v_{2}=0 m b\left(\begin{array}{cc|c}
1 & 1 & 0 \\
1 & -1 & 0 \\
2 & 1 & 0
\end{array}\right) \\
& 2 \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0 \\
0
\end{array}\right) \\
0
\end{array}\right) .
$$

Theorem 9.3 Let $v_{1, \ldots, v_{l}} \in \mathbb{R}^{m}$. The following statements ave equivalent:
i) $V_{11 \ldots,}, v_{e}$ are linearly dependent.
ii) There exists a $j=1, \ldots, l$ such that V_{j} is a linear combination of the other vectors.
iii) There exists a $j=l_{1 . .1} \ell$ with

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{j-1}, v_{j+1} \ldots, v_{l}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{l}\right\}
$$

Proof: ii) \Rightarrow iii) is Lemma 9.1
iii) \Rightarrow ii) $v_{j} \in \operatorname{span}\left\{v_{1}, \ldots, v_{l}\right\} \stackrel{i i j)}{=} \operatorname{span}\left\{v_{1}, \ldots, x_{1} \ldots v_{l}\right\}$

$$
\Rightarrow v_{j} \in \operatorname{span}\left\{v_{1}, \ldots, w_{1}, \ldots, v_{l}\right\}
$$

ii) \Rightarrow i) Suppose $v_{j}=\lambda_{1} v_{1}+\ldots+\lambda_{j-1} v_{j-1}+\lambda_{j+1} v_{j+1}+\cdots \lambda_{l} v_{1}$

Then

$$
0=\lambda_{1} v_{1}+\ldots+\lambda_{j-1} v_{j-1}-\underbrace{v_{j}}_{j}+\lambda_{j+1} v_{j+1}+\ldots+\lambda_{l} v_{l .} .
$$

$\Rightarrow V_{1, \ldots} V_{l}$ are linearly dependent.
i) \Rightarrow ii): Suppose $\lambda_{1} v_{1}+\ldots+\lambda_{l} v_{l}=0$ with $\lambda_{j} \neq 0$.

$$
\begin{aligned}
& \text { Then } V_{j}=\left(\frac{\lambda_{1}}{\lambda_{j}}\right) V_{1}+\ldots+\left(\frac{\lambda_{i-1}}{\lambda_{j-1}}\right) V_{j-1}+\left(\frac{\lambda_{j+1}}{\lambda_{j}}\right) v_{j+1}+\ldots+\left(\frac{\lambda_{l}}{\lambda_{j}}\right) V_{l} \\
& \Rightarrow \quad V_{j} \in \operatorname{span}\left\{V_{1}, \ldots, V_{j-1}, V_{j+1}, \ldots, V_{l}\right\}
\end{aligned}
$$

Lemma 9.4 $V \subset \mathbb{R}^{n}$ subspace, $V_{1} \ldots, V_{l} \in V$ linearly independent,
 then $\ell \leq m$.
(i.e. a space spanned by m vectors can not contain more than m linear independent vectors) Proof: Homework 6

Lemma 9.5 If $v_{1, \ldots, l}, v_{l} \in \mathbb{R}^{n}$ are linearly independent and $\omega \in \mathbb{R}^{n}$ with $\omega \notin \operatorname{span}\left\{v_{1}, \ldots, v_{l}\right\}$ then $v_{1}, \ldots, v_{1} w$ are linearly independent.

$$
\left(\lambda_{1}, \ldots \lambda_{0}, \mu \in \mathbb{R}\right)
$$

Proof: Assume that $\lambda_{1} v_{1}+\ldots+\lambda_{l} v_{l}+\mu \omega=0$. If $\mu \neq 0$, then $\omega=\left(\frac{\lambda_{1}}{\mu}\right) v_{1}+\ldots+\left(\frac{\lambda_{l}}{\mu}\right) v_{l} \in \operatorname{span}\left\{v_{1} \ldots, v_{l}\right\}$. Hence $\mu=0 \Rightarrow \lambda_{1} v_{1}+\ldots+\lambda_{l} v_{l}=0$
$\Rightarrow \lambda_{1}=\ldots=\lambda_{l}=0$
$V_{1} \ldots, V_{\ell}$ are $\quad \Rightarrow \quad V_{1}, \ldots, V_{l}, w$ are lin. indef.
lin. indef.

