Linear Algebra I
$\S 8$ Subspaces, Kernel 8 Image
In the previous lectures we considered subsets of \mathbb{R}^{n}, which arised when studying linear maps. For example, for a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ we calculated the image $\operatorname{im}(F) \subset \mathbb{R}^{m}$. In the case $m=3$ we saw that the image could be everything $\left(\mathbb{R}^{3}\right)$, a plane, a line or just a point $0 \in \mathbb{R}^{m}$.

$$
\text { e.g. when } \begin{aligned}
& F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \text {. } \\
& X \mapsto\binom{0}{0}
\end{aligned}
$$

These sets are examples of subspaces, which we define in a bit more abstract way by the following:

Definition 8.1 A subset $U \subset \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} if
i) $0 \in \mathbb{R}^{n} \quad$ (again: by 0 we mean $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array} 1\right.$
ii) For all $u, v \in U: U+v \in U$ " U is closed under addition"
iii) Fo all $u \in U$ and $\lambda \in \mathbb{R}: \lambda u \in U$ " U is closed under scalar multiplication scalar multiplication

Example 29

1) $U=\{0\}$ and $U=\mathbb{R}^{n}$ are always subspaces of \mathbb{R}^{n} for all $n \geq 1$.
2) Subspaces of \mathbb{R}^{n} :

$$
\begin{array}{ll}
n=1: & \{0\}, \mathbb{R}^{\prime} \\
n=2: & \{0\}, \quad \text { lines } \\
& v \neq 0 \\
v \in \mathbb{R}^{2} & \{\lambda v \mid \lambda \in \mathbb{R}\}, \mathbb{R}^{2} \\
n=3: & \{0\}, \text { lines, planes, } \mathbb{R}^{3}
\end{array}
$$

3) $U=\left\{x \in \mathbb{R}^{3} \mid x_{1}+x_{2}-3 x_{2}=43 \subset \mathbb{R}^{3}\right.$ is not a subspace because $0 \notin U$.
4) $U=\left\{\left.\binom{x}{x} \in \mathbb{R}^{3} \right\rvert\,-1 \leq x_{1} \leq 1\right\}$ is also not a subspace. We have $\binom{1}{0} \in U$ but $2 \cdot\binom{1}{0} \notin U$.

A lot of subspaces come from linear maps (actually all of them). We will see that the image of a linear map is a subspace. Another important space coming from a linear map is its Kernel.

Definition 8.2 For a lin. map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the Kernel of F is defined by

$$
\operatorname{Ker}(F)=\left\{x \in \mathbb{R}^{n} \mid F(x)=0\right\} .
$$

In other words: The Kernel of a linear map is the set of all solutions of the linear system $[F] x=0$.

Proposition 8.3 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
i) The Kernel $\operatorname{Ker}(F)$ is a subspace of \mathbb{R}^{n}.
ii) The image $i m(\neq)$ is a subspace of \mathbb{R}^{m}

Proof: To show that a subset U is a subspace we need to check the 3 conditions
i) $0 \in \mathbb{R}^{n}$
ii) For all $u, v \in u: u+v \in u$
iii) Fo all $u \in U$ and $\lambda \in \mathbb{R}: \lambda u \in U$
$\operatorname{Ker}(7)$: i) We learned before that for any linear map we have $F(0)=0$.

$$
\Rightarrow \quad 0 \in \operatorname{ker}(F) .
$$

ii) Let $u, v \in \operatorname{Ker}(F)$. Then we have

$$
\begin{aligned}
& F(u+v)=F(u)+F(v)=0+0=0 \\
& \Rightarrow u+v \in \operatorname{Kev}(F) .
\end{aligned}
$$

iii) Let $u \in \operatorname{Ker}(F)$ and $\lambda \in \mathbb{R}$ then

$$
\begin{aligned}
& F(\lambda u)=\lambda F(u)=\lambda 0=0 \\
& \Rightarrow \lambda u \in \operatorname{Ker}(F) .
\end{aligned}
$$

$\Rightarrow \operatorname{Ker}(F)$ is a subspace of \mathbb{R}^{n}.
imPF): i) Since $F(0)=0$ we have $0 \in \operatorname{im}(F)$.
ii) Let $u, v \in \operatorname{im}(F)$, ie. $u=F(x), v=F(y)$ for some $x, y \in \mathbb{R}^{n}$. Then we have

$$
\begin{aligned}
& u+v=F(x)+F(y)=F(x+y) \\
& \Rightarrow u+v \in \operatorname{im}(F) .
\end{aligned}
$$

ii) Let $u \in \operatorname{in}(F), u=F(x), \lambda \in \mathbb{R}$;

$$
\begin{aligned}
& \lambda u=\lambda F(x)=F(\lambda x) \\
& \Rightarrow \lambda u \in \operatorname{im}(F) .
\end{aligned}
$$

$\Rightarrow \quad \operatorname{im}(F)$ is a subspace of \mathbb{R}^{m}.

Fun fact: Actually every subspace can be written as the Kernel and the image of some linear map. But this we can not prove yet.

Example 30 1) Let $u \in \mathbb{R}^{n}, u \neq 0$.

$$
\text { orthogonal prod: } P_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

The Kernel of P_{u} is given by all vectors $v \in \mathbb{R}^{n}$ with $u \cdot v=0$, because

$$
P_{u}(v)=\frac{u \cdot v}{u \cdot u} u=0 .
$$

$n=2: \operatorname{Ker}\left(P_{u}\right)=$ line, $n=3: \operatorname{Ker}\left(P_{u}\right)=$ plane
2) Consider the linear map

$$
\begin{aligned}
F: & \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& X \longmapsto\left(\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right) X
\end{aligned}
$$

Kernel:

$$
\begin{aligned}
& X \in \operatorname{Ker}(F) \Leftrightarrow F(X)=0 \\
& \left(\left[F \left\lvert\, \begin{array}{l}
0 \\
0
\end{array}\right.\right)=\left(\begin{array}{c}
-2,1 \\
1
\end{array} \left\lvert\, \begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right.\right) \sim\left(\begin{array}{cc|c}
1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0
\end{array}\right) .\right. \\
& \Rightarrow X=\binom{0}{0}=0 \Rightarrow \operatorname{Ker}(F)=\{0\} .
\end{aligned}
$$

Image: To calculate the image of F we need to check for which $y \in \mathbb{R}$ we hare a $x \in \mathbb{R}^{2}$ with

$$
\begin{aligned}
& F(x)=y \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \sim \Theta\left(\begin{array}{cc|c}
1 & 0 & -y_{1}+y_{2} \\
0 & -1 & -2 y_{1}+y_{2} \\
0 & 0 & -2 y_{1}+y_{2}+y_{3}
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 0 & -y_{1}+y_{2} \\
0 & 1 & 2 y_{1}-y_{2} \\
0 & 0 & -2 y_{1}+y_{2}+y_{3}
\end{array}\right) \\
& \Rightarrow \quad i m(F)=\left\{\left.y_{k}\left(\begin{array}{l}
y_{1} \\
y_{3} \\
y_{3}
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, y_{3}=2 y_{1}-y_{2}\right\} \text {. }
\end{aligned}
$$

$\left(\begin{array}{rl}\text { Notice: } & \text { This calculation can also be used to } \\ & \text { calculate the Kernel by setting } y_{i}=y_{h}=y_{3}=0 .\end{array}\right)$
We can also write the image as follows:

$$
\operatorname{im}(F)=\left\{\left.\lambda_{1}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+\lambda_{2}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \right\rvert\, \lambda_{11} \lambda_{2} \in \mathbb{R}\right\}
$$

3) Consider the linear map

$$
\begin{aligned}
& G: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2} \\
& x \longmapsto\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) x
\end{aligned}
$$

Kernel: Solve $[G] x=0$

$$
\begin{aligned}
& \left([G] \left\lvert\, \begin{array}{l}
0 \\
0
\end{array}\right.\right)=\underset{L}{\Theta-1}\left(\begin{array}{llll|l}
1 & 2 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) \widetilde{\Theta}\left(\overrightarrow{2}\left(\begin{array}{llll|l}
1 & 2 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0
\end{array}\right)\right. \\
& \sim\left(\begin{array}{cccc|c}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & -1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Solution: $\quad x_{1}=-2 t_{1}-t_{2}$

$$
\begin{aligned}
& x_{2}=t_{1} \\
& \text { free e } \\
& \text { var. }
\end{aligned} \begin{aligned}
& x_{3}=t_{1} \\
& x_{4}
\end{aligned}=t_{2} .
$$

Another way of writing:

$$
x=t_{1}\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right)+t_{2}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right) \text {. }
$$

Therefore:

$$
\operatorname{Ker}(G)=\left\{\left.t_{1}\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)+t_{2}\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \right\rvert\, t_{1}, t_{2} \in \mathbb{R}\right\} .
$$

Check yourself: in $(\sigma)=\mathbb{R}^{2}$

Definition 8.4 i) A linear combination of vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$ is a vector of the form

$$
u=\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}
$$

for $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$.
ii) The span of $v_{11, \ldots, v_{n}} \in \mathbb{R}^{m}$ is the set of all linear combinations:

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}=\left\{\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n} \in \mathbb{R}^{m} \mid \lambda_{1 \ldots, \lambda_{n}} \in \mathbb{R}\right\} .
$$

Example 31 1) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is a lin. comb. of $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\binom{1}{3}$
since $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=2\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)$.

$$
\Rightarrow\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \in \operatorname{span}\left\{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right)\right\}
$$

2) Any $x=\binom{x_{1}}{\dot{x}_{n}}$ is a lin. comb. of $e_{11} \ldots, e_{n}$:

$$
\begin{equation*}
x=x_{1} e_{1}+\ldots+x_{n} e_{n} \tag{array}
\end{equation*}
$$

and therefore $\mathbb{R}^{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.
3) In Example 16 we have

$$
\begin{aligned}
& \operatorname{im}(F)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)\right\} \\
& \operatorname{ker}(G)=\operatorname{span}\left\{\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)\right\} .
\end{aligned}
$$

Notice: If $\begin{aligned} & F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\ & x \longmapsto A x\end{aligned}$ with $A=\left(\begin{array}{cc}1 & 1 \\ v_{1} & \ldots \\ 1 & v_{n}\end{array}\right)$
then

$$
\operatorname{im}(F)=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} .
$$

Proposition 8.5 For $v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$ we have
i) $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ is a subspace of \mathbb{R}^{m}.
ii) If $U \subset \mathbb{R}^{m}$ is a subspace and $V_{1, \ldots, V_{n}} \in U$, then $\operatorname{span}\left\{V_{1}, \ldots, V_{n}\right\} \subset U$.

Proof: Do yourself.

Recall: A linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective if $\operatorname{im}(F)=\mathbb{R}^{m}$.

A similar statement exists for injective:
Proposition 8.6 A linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is injective if and only if $\operatorname{Ker}(F)=\{0\}$.
Proof: This is what you showed in Home work 3, Ex. 3 . D
We also saw that F is injective if each column of $\operatorname{rref}([\mp)$ contains a pivot element, i.e. $r k(F)=n$.
Similarly we saw F is surjective if each row contains a pivot element, i.e. $r k(F)=m$.
Summarizing every thing we get the following:

Theorem 8.7 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
i) The following statements are equivalent F is injective $\Leftrightarrow \operatorname{Kipr}(\mp)=\{0\} \Leftrightarrow r k(\mp)=n$. mu (ff)
ii) The following statements are equivalent F is surjective $\Leftrightarrow \operatorname{in}(\not))=\mathbb{R}^{m} \Leftrightarrow \operatorname{rk}(F)=m$.
iii) If $m=n$ then the following statements are equivalent F is bijective $\Leftrightarrow F$ is injedive $\Leftrightarrow F$ is surjective.

