Linear Algebra I

Fall 2023

§ 8 Subspaces, Kernel & Image

In the previous lectures we considered subsets of \mathbb{R}^n , which arised when studying linear maps . For example, for a linear map $F:\mathbb{R}^n \to \mathbb{R}^n$ we calculated the image $\operatorname{in}(F) \subset \mathbb{R}^m$. In the case m=3 we saw that the image could be everything (\mathbb{R}^3) , a plane, a line or just a point $\underbrace{O \in \mathbb{R}^n}_{X\mapsto (3)}$. These sets are examples of <u>subspaces</u>, which we define in a bit more abstract way by the following:

Definition 8.1 A subset
$$U \subset \mathbb{R}^n$$
 is a subspace of \mathbb{R}^n if
i) $O \in \mathbb{R}^n$ (again: by O we mean $\binom{9}{3}\binom{1}{7}$)
ii) For all $u_1 v \in U$: $U + v \in U$ "U is closed under addition"
iii) Fo all $u \in U$ and $\lambda \in \mathbb{R}$: $\lambda u \in U$ "U is closed under
scalar multiplication"

Example 29

1)
$$U = \{0\}$$
 and $U = |\mathbb{R}^n \text{ are always}$
Subspaces of $|\mathbb{R}^n \text{ for all } n \ge 1$.
2) Subspaces of $|\mathbb{R}^n$:
 $n = 1$: $\{0\}$, \mathbb{R}
 $n = 2$: $\{0\}$, $|\mathbb{R}^n|$
 $n = 3$: $\{0\}$, $|\mathbb{R}^n|$
 $n = 3$: $\{0\}$, $|\lim_{V \neq 0} \{|X| + |X| - |X| - |X|\}$ $|\mathbb{R}^2$
 $n = 3$: $\{0\}$, $|\lim_{V \neq 0} \{|X| + |X| - |X| - |X|\}$ $|\mathbb{R}^2$
 $n = 3$: $\{0\}$, $|\lim_{V \neq 0} \{|X| + |X| - |X| - |X|\}$ $|\mathbb{R}^3$
3) $U = \{x \in |\mathbb{R}^3 \mid X_1 + |X| - |X| - |X| - |X|\}$ is not a
subspace because $0 \notin U$.
4) $U = \{|X| \in |\mathbb{R}^3| - 1| \le |X| \le 1\}$ is also not a
subspace. We have $(\frac{1}{2}) \in U$ but $2 \cdot (\frac{1}{2}) \notin U$.

A lot of subspaces come from linear maps (adually all of them). We will see that the image of a linear map is a subspace. Another important space coming from a linear map is its Kernel.

Definition 8.2 For a lin. map
$$F:\mathbb{R}^n \to \mathbb{R}^n$$
 the
Kernel of F is defined by
 $Ker(F) = \{x \in \mathbb{R}^n \mid F(x) = 0\}.$

In other words: The Kernel of a linear map is the Set of all solutions of the linear system [F]X=0.

Proposition 8.3 Let F: IR"-> IR" be a linearmap. i) The Kernel Ker(F) is a subspace of IR". ii) The image im(F) is a subspace of IR"

Proof: To show that a subset U is a sahspace
We need to check the 3 conditions
1)
$$O \in \mathbb{R}^{n}$$

1i) For all $u_{n,v \in U}$: $u_{tv \in U}$
1ii) For all $u_{n,v \in U}$: $u_{tv \in U}$
1ii) For all $u_{n,v \in U}$: $u_{tv \in U}$
1ii) We learned before that for any linear map
we have $F(0)=0$.
 $\Rightarrow O \in Ker(F)$.
1ii) Let $u_{1}v \in Kev(F)$. Then we have
 $F(u_{tv}) = F(u) + F(v) = O + O = O$
 $\Rightarrow U + v \in Kev(F)$.
1ii) Let $u \in Kev(F)$.
1iii) Let $u \in Kev(F)$.
1iii) Let $u \in Kev(F)$.
1iii) Let $u \in Kev(F)$.
 $F(\lambda u) = \lambda F(u) = \lambda O = O$
 $\Rightarrow \lambda u \in Ker(F)$.
 $\Rightarrow Ker(F)$ is a subspace of \mathbb{R}^{n} .
 $\underbrace{im(F)}$: 1) Since $F(0)=O$ we have $O \in im(F)$.
1i) Let $u_{1}v \in im(F)$, i.e. $u=F(x), v=F(y)$ for
some $x, y \in \mathbb{R}^{n}$. Then we have
 $U+v = F(x) + F(y) = F(x+y)$
 $\Rightarrow U+v \in im(F)$.

Example 30 1) Let
$$u \in \mathbb{R}^{n}, u \neq 0$$
.
ovthosonal proj: $P_{u}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$
The Kernel of P_{u} is given
by all vectors $v \in \mathbb{R}^{n}$ with
 $u \cdot v = 0$, because
 $P_{u}(v) = \frac{u \cdot v}{u \cdot u} u = 0$.
 $N = 2: Ker(P_{u}) = line$, $N = 3: Ker(P_{u}) = plane$

2) Consider the linear map

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

 $\chi \longmapsto \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \chi$

<u>Kernel:</u>

$$\frac{\text{Image:}}{\text{Check for which } Y \in \text{IR we have a } X \in \mathbb{R}^{2} \text{ with}}_{F(x) = Y}.$$

$$\left([F] \begin{vmatrix} Y_{1} \\ Y_{2} \end{vmatrix} = \frac{G}{2} \begin{pmatrix} i & | & Y_{1} \\ 2 & | & Y_{2} \\ 0 & | & Y_{3} \end{pmatrix} \sim \begin{pmatrix} 1 & | & Y_{1} \\ 0 & | & Y_{2} - 2Y_{1} \\ 0 & | & Y_{2} - 2Y_{1} \end{pmatrix} \sim \begin{pmatrix} 0 & | & 1 & | & Y_{1} \\ 0 & -1 & | & Y_{2} - 2Y_{1} \\ 0 & | & Y_{3} + Y_{2} - 2Y_{1} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & -Y_{1} + Y_{2} \\ 0 & | & Y_{3} + Y_{2} - 2Y_{1} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & -Y_{1} + Y_{2} \\ 0 & | & 2Y_{1} - Y_{2} \\ 0 & | & -2Y_{1} + Y_{2} \\ -2Y_{1} + Y_{2} + Y_{3} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & -Y_{1} + Y_{2} \\ 0 & | & 2Y_{1} - Y_{2} \\ 0 & | & -2Y_{1} + Y_{2} + Y_{3} \end{pmatrix}$$

$$=) \quad \text{im} (F) = \begin{cases} Y_{1} \begin{pmatrix} Y_{1} \\ Y_{2} \end{pmatrix} \in \mathbb{R}^{3} \\ Y_{3} \in \mathbb{R}^{3} \end{cases} \quad Y_{3} = 2Y_{1} - Y_{2} \end{cases}.$$

(Notice: This calculation can also be used to
calculate the kernel by setting
$$Y_{1}=Y_{1}=Y_{2}=0$$
)
We can also write the image as follows:
 $im(F) = \{\lambda_{1} \begin{pmatrix} 0\\ 2 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 0\\ -1 \end{pmatrix} \mid \lambda_{11}\lambda_{2} \in \mathbb{R}\}$
3) Consider the linear map
 $G: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$
 $X \longmapsto \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} X$
 $\underbrace{Vernel}: Solve [G] X = O$
 $(G] \begin{pmatrix} 0\\ 0 \end{pmatrix} = \underbrace{G} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{P} \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 \end{pmatrix}$
 $\sim \begin{pmatrix} 1 & 0 & 2 & 1 & 0 \\ 0 & 1 - 1 & 0 & 0 \end{pmatrix}$
Solution: $X_{1} = -2t_{1} - t_{2}$
 $X_{4} = t_{2}$

Another way of writing:

$$X = t_{1} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + t_{2} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Therefore: $Ver(G) = \{ t_1(-2) + t_2(-2) \} \ t_1, t_2 \in \mathbb{R}^2 \}.$

Check yourself: $im(G) = \mathbb{R}^2$

span
$$\{V_1, \dots, V_n\} = \{\lambda_1, V_1 + \dots + \lambda_n, V_n \in \mathbb{R}^n \mid \lambda_1, \dots, \lambda_n \in \mathbb{R}\}$$
.

Example 31
Since
$$\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} = 2 \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} + \begin{pmatrix} 1\\ 3\\ 3 \end{pmatrix}$$
.
 $\Rightarrow \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} \in \text{Span} \left\{ \begin{pmatrix} 0\\ 0\\ 2 \end{pmatrix} + \begin{pmatrix} 1\\ 3\\ 3 \end{pmatrix} \right\}$.
2) Any $x = \begin{pmatrix} x_1\\ 3x_1 \end{pmatrix}$ is a lin. comb. of $e_{11..., e_n}$:
 $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} = x_1 e_1 + \dots + x_n e_n$
and therefore $\mathbb{R}^n = \text{Span} \left\{ e_{11..., e_n} \right\}$.
3) In Example 16 we have
 $\inf(\mathbb{F}) = \text{Span} \left\{ \begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ -1\\ 1 \end{pmatrix} \right\}$.
 $\text{Notice}: \quad \text{If } \mathbb{F}: \mathbb{R}^n \rightarrow \mathbb{R}^n \text{ with } A = \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix} \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$
then $\inf(\mathbb{F}) = \text{Span} \left\{ v_{1, \dots, 1} v_n \right\}$.