Linear Algebra I
Fall 2023
Reall:
$$A \in \mathbb{R}^{k \times m}$$
, $B = (1, ..., 1) \in \mathbb{R}^{m \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in \mathbb{R}^{k \times n}$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in (A_{v_1} \dots A_{v_n}) \in (A_{v_1} \dots A_{v_n})$
 $A \cdot B = (A_{v_1} \dots A_{v_n}) \in (A_{v_1}$

Example 27: Consider the linear map $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $\chi = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} \longmapsto \begin{pmatrix} \iota & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}$ 1s 7 invertible ? Take $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$ and check if F(x) = y has a unique solution. $\sim \underbrace{\begin{array}{c} P^{2} \left(\begin{array}{c} 1 & 3 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} Y_{1} \\ Y_{1} - \frac{1}{2} \end{array} \right) \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} -2Y_{1} + \frac{3}{2} Y_{2} \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} Y_{1} - \frac{1}{2} Y_{2} \end{array} \right) \left(\begin{array}{c} 0 & 1 \end{array} \right) \left(\begin{array}{c} Y_{1} - \frac{1}{2} Y_{2} \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} Y_{1} - \frac{1}{2} Y_{2} \end{array} \right) \left(\begin{array}{c} 0 & 1 \end{array} \right) \left(\begin{array}{c} Y_{1} - \frac{1}{2} Y_{2} \end{array} \right) \left(\begin{array}{c} Y_{1} - \frac{1}{2} Y_{2} \end{array} \right) \left(\begin{array}{c} 0 & 1 \end{array} \right) \left(\begin{array}{c} Y_{1} - \frac{1}{2} Y_{2} \end{array} \right) \left(\begin{array}{c}$ We get the unique solution $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} -2\gamma_1 + \frac{3}{2}\gamma_2 \\ \gamma_1 - \frac{1}{2}\gamma_2 \end{pmatrix} = \begin{pmatrix} -2, \frac{3}{2} \\ 1 - \frac{1}{2} \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}.$ =) I is invertible. $\overline{F}':\mathbb{R}^2\longrightarrow\mathbb{R}^2$ The inverse of F: $\begin{pmatrix} Y_{1} \\ Y_{2} \end{pmatrix} \longmapsto \begin{pmatrix} -2, \frac{3}{2} \\ 1, -\frac{1}{2} \end{pmatrix} \begin{pmatrix} Y_{1} \\ Y_{2} \end{pmatrix}$ =) F' is linear.

$$\frac{\text{Theorem 7.1}}{\text{Invertible if and and only if } n = m = rk(F)} = rk(F)$$

$$\frac{1}{m} = rk(F)$$

$$= \operatorname{No} \operatorname{unique solution} = \operatorname{rk}(F) = n.$$

$$= \operatorname{I}_{\mathsf{C}} (F) = \operatorname{I}_{\mathsf{C}} (F) = \operatorname{I}_{\mathsf{C}} (F) = n.$$

$$= \operatorname{I}_{\mathsf{C}} (F) = \operatorname{I}_$$

Since F' is linear, there exists a matrix [F'] EIR"

Definition 7.3 If
$$A \in \mathbb{R}^{n \times n}$$
 is the matrix
of an invertible linear map F (i.e (F)=A),
then we define the inverse of A by
 $\overline{A}^{'} := [\overline{F}^{'}]$.

Theorem 7.4 The inverse of A exists
if and only if
$$rref(A) = I_n = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$
.
We say A is invertible in this case.
Proof: Follows from the proof of Thm. 7.1.
Proposition 7.5 If $A_1 B \in IR^{nxn}$ are invertible we have
i) $A \overline{A'} = \overline{A'}A = I_n$
ii) $(BA)^{T} = A \cdot A^{T} = A_{1}$
Proof: i) $[\overline{F} \cdot \overline{F'}] = A \cdot A^{T} = \overline{A'} \cdot A \quad G: X \mapsto BX$
(Lincold $I = In = (\overline{F'} \circ \overline{F})$

ii)
$$BA = [G \circ F]$$
 and $(G \circ F) = F \circ G'$, therefore
 $(BA)' = [(G \circ F)'] = (F' \cdot G') = A'B'$.

How to determine A¹²?

In Example 27 we determined the inverse of $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ by solving the linear system Ax = Y.

In general: If we want to determine the
inverse of
$$A \in \mathbb{R}^{n}$$
, we can
try to bring the augmented matrix
 $(A \mid In) = (A \mid \stackrel{1}{}_{0}, \stackrel{\circ}{}_{0}) \in \mathbb{R}^{2n \times 2n}$
to rref.
If A is invertible we will get
 $(A \mid In) \sim \dots \sim (In \mid A^{l})$.
rref(AIIn)
Example 28: Determine the inverse of $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

$$\begin{pmatrix} A \mid L_{2} \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \sim -\frac{1}{2} \begin{pmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -2 \end{pmatrix}$$

$$\sim \begin{pmatrix} -2 \\ -2 \\ -2 \\ -2 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & -2 \\ -2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & -2 \\ -2 & -2 \\ -2 & -2 \end{pmatrix} = (I_{2}(A))$$

Check:
$$A \cdot \overline{A}^{l} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} -2 & \frac{3}{2} \\ 1 & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Compare this with Example 27.

Definition 7.7 For $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ and $1 \leq i, j \leq n$ we define the **elementary matrices** $R_i^{\lambda,j}, R_i^{\lambda}, R_{i,j} \in \mathbb{R}^{n \times n}$ by

$$R_{i}^{\lambda,j} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & \lambda & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}, \quad R_{i}^{\lambda} = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}, \quad R_{i,j} = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & \ddots & & \\ & & 1 & 0 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

Here the λ in $R_i^{\lambda,j}$ is in the *i*-th row and *j*-th column, in R_i^{λ} it is in the *i*-th row, and in $R_{i,j}$ the 0 are on the diagonal in the *i*-th row and *j*-th column.

Multiplying with an elementary matrix from the left corresponds to the elementary row operations (Definition 2.6)

- (R1) Multiplying with $R_i^{\lambda,j}$: Add λ -times row j to row i.
- (R2) Multiplying with R_i^{λ} : Multiply row j by λ . ($\lambda \neq 0$)
- (R3) Multiplying with $R_{i,j}$: Change row *i* and *j*.

Theorem 7.8 Every invertible matrix is a product of elementary matrices.