Linear Algebra I
Fall 2023
Recall: $A \in \mathbb{R}^{\text {x }}$, $B=\left(\begin{array}{ll}v_{1} & v_{n} \\ 1 & v_{n} \\ 1\end{array}\right) \in \mathbb{R}^{m \times n}$

$$
A \cdot B=\left(\begin{array}{ccc}
1 & & 1 \\
A v_{1} & \cdots & A v_{n} \\
1 & & 1
\end{array}\right) \in \mathbb{R}^{l \times n}
$$

$$
I_{n}=\left(\begin{array}{cc}
1 & 0 \\
0 & \ldots
\end{array}\right) \in \mathbb{R}^{\text {nne }} \text { is the }
$$

Identity matrix.
For all $v \in \mathbb{R}^{n}$ we have $I_{n} v=v$.
$\oint 7$ The inverse of a linear map
Recall: $f: X \rightarrow Y$ is invertible if there exists
(Lecture 3) a g: $Y \rightarrow X$ with $g(f(x))=x \quad \forall x \in X$
g : The inverse of f
Notation: $g=f^{-1}$

$$
\begin{aligned}
& f(g(y))=y \quad \forall y \in Y . \\
& \left(\begin{array}{l}
\text { equivanently: } \\
g \circ f=i d x, \quad f \circ g=i d y)
\end{array}\right.
\end{aligned}
$$

We saw: f is invertible $\Leftrightarrow f$ is bijective

$$
\frac{\forall y \in Y}{\text { surjective }}, \frac{\exists!x \in X: y=f(x)}{\text { injective }}
$$

Define the Inverse by $g(y)=x$.
Questions: When is a linear map invertible?

- Is the inverse again linear?
- How to calculate the inverse?

Example 27: Consider the linear map

$$
\begin{aligned}
& F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
& X=\binom{x_{1}}{x_{2}} \longmapsto\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{aligned}
$$

Is F invertible?
Take $y=\binom{y_{1}}{y_{2}} \in R^{2}$ and check if $F(x)=y$ has a unique solution.

$$
\begin{aligned}
& \stackrel{-2}{L_{\rightarrow}}\left(\begin{array}{ll|l}
1 & 3 & y_{1} \\
2 & 4 & y_{2}
\end{array}\right) \sim-\frac{1}{2}\left(\begin{array}{cc|c}
1 & 3 & y_{1} \\
0 & -2 & y_{2}-2 y_{1}
\end{array}\right) \\
& \sim \underset{(-3)}{ }\left(\begin{array}{ll|l}
1 & 3 & y_{1} \\
0 & 1 & y_{1}-\frac{1}{2} y_{2}
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & -2 y_{1}+\frac{3}{2} y_{2} \\
0 & 1 & y_{1}-\frac{1}{2} y_{2}
\end{array}\right)
\end{aligned}
$$

We get the unique solution

$$
\begin{aligned}
& \text { the unique solution } \\
& \binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
-2 y_{1}+\frac{3}{2} y_{2} \\
y_{1}-\frac{1}{2} & y_{2}
\end{array}\right)=\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right)\binom{y_{1}}{y_{2}} \text {. }
\end{aligned}
$$

$\Rightarrow F$ is invertible.
The inverse of $F: \quad F^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ $\Rightarrow F^{-1}$ is linear.

$$
\binom{y_{1}}{y_{2}} \longmapsto \underbrace{\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right)}_{\left[F^{-1}\right]}\binom{y_{1}}{y_{2}}
$$

Theorem 7.1 A linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is invertible if and and only if $n=m=r k(F)$

$$
\rightleftharpoons \quad \text { rh (IF). }
$$

Proof: F invertible $\Leftrightarrow[F] x=y$ has a unique solution for all $y \in \mathbb{R}^{m}$

$$
\begin{aligned}
& \begin{array}{c}
\prime \prime \\
\operatorname{rref}(f(\mathrm{~F} \mid \mathrm{y})
\end{array} \quad z \in \mathbb{R}^{m} \text { can be } \\
& \text { an arbitany vector } \\
& \text { depending on } y \text {. }
\end{aligned}
$$

" \Rightarrow ": Suppose F is invertible. Want to show

$$
n=m=\operatorname{vk}(F)=\operatorname{vk}(F F)) .
$$

If $r k(F)<m:(B \mid z)=\stackrel{p}{\downarrow}\left(\begin{array}{l|l}* & 1 \\ z \\ O & 1\end{array}\right)$
\Rightarrow No solutions for some z (i.ey).

$$
\Rightarrow \quad r k(F)=m .
$$

\Rightarrow There are columns without pivot element
$\Rightarrow \quad$ No unique solution $\Rightarrow r k(F)=n$.

$$
" \Leftarrow ": \text { If } m=n=r k(F) \Rightarrow B=\left(\begin{array}{ccc}
1 & 0 \\
0 & \ddots & 1 \\
0 & 1
\end{array}\right)
$$

$\Rightarrow[F)_{x=y}$ has a unique solution for all y
$\Rightarrow F$ is invertible.

Proposition 7.2: If a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible, then F^{-1} is linear too.

Proof: let $u, v \in \mathbb{R}^{n}$. Set $x=F^{-1}(u)$ i.e. $F(x)=u$
$\sim^{\text {id }} \quad F$ lin. $\quad y=F^{-1}(v)$ ie. $F(y)=v$.
Then $\overbrace{F^{-1}} F(x+y) \stackrel{\downarrow}{=} \bar{F}^{-1}(F(x)+F(y))$
11
$\lambda \in \mathbb{R}$

$$
\cdot \lambda F^{-1}(u)=\lambda x=F^{-1} F(\lambda x)=F^{-1}(\lambda F(x))=F^{-1}(\lambda u) .
$$

Since F^{-1} is linear, there exists a matrix $\left[\bar{F}^{-1}\right] \in \mathbb{R}^{n \times n}$

Definition 7.3 If $A \in \mathbb{R}^{n \times n}$ is the matrix of an invertible linear map F (ie $(7)=A$), then we define the inverse of A by

$$
A^{-1}:=\left[F^{-1}\right]
$$

Theorem 7.4 The inverse of A exists if and only if $\operatorname{rref}(A)=I_{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

We say A is invertible in this case.
Proof: Follows from the proof of The. 7.1.
Proposition 7.5 If $A, B \in \mathbb{R}^{\text {xn }}$ are invertible we have

$$
\text { i) } A A^{-1}=A^{-1} A=I_{n}
$$

$$
\text { ii) }(B A)^{-1}=A^{-1} B^{-1}
$$

Proof: (Check
gowrist)

$$
\begin{aligned}
\text { i) } \begin{array}{rlrl}
{\left[F \cdot F^{-1}\right]} & =A \cdot A^{-1}=A^{-1} \cdot A & F: x \mapsto A x \\
& & G: x \mapsto B x \\
{\left[i d d \mathbb{R}^{n}\right]} & =I_{n}=\left[F^{-1 \prime} \circ f\right] &
\end{array}
\end{aligned}
$$

ii) $B A=[G \circ F]$ and $(G \circ F)^{-1}=\bar{F}^{-1} \circ G^{-1}$, therefore $(B A]^{-1}=\left[\left(G \circ+F^{\prime}\right)=\left(F^{-1} \cdot G^{-1}\right)=A^{-1} B^{-1}\right.$.

How to determine A^{-1} ?
\ln Example 27 we determined the inverse of $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$ by solving the linear system $A x=y$.

In general: If we want to determine the inverse of $A \in \mathbb{R}^{n \times n}$, we can try to bring the augmented matrix

$$
\left(A \mid I_{n}\right)=\left(A \left\lvert\, \begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right.\right) \in \mathbb{R}^{2 n \times 2 n}
$$ to ref.

If A is invertible we will get

$$
\begin{array}{r}
\left(A \mid I_{n}\right) \sim \ldots \sim\left(\left.I_{n}\right|_{\prime \prime} A^{-1}\right)^{\prime} . \\
\operatorname{rref}\left(A \mid I_{n}\right)
\end{array}
$$

Example 28: Determine the inverse of $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$.

$$
\begin{aligned}
& \left(A \mid I_{2}\right)=L_{1}^{(-2)}\left(\begin{array}{ll|ll}
1 & 3 & 1 & 0 \\
2 & 4 & 0 & 1
\end{array}\right) \sim-\frac{-1}{2}\left(\begin{array}{cc|cc}
1 & 3 & 1 & 0 \\
0 & -2 & -2 & 1
\end{array}\right) \\
& \sim \Gamma_{-3}^{-3}\left(\begin{array}{ll|ll}
1 & 3 & 1 & 0 \\
0 & 1 & 1 & -\frac{1}{2}
\end{array}\right) \sim\left(\begin{array}{ll|ll}
1 & 0 & \left|\begin{array}{cc}
-2 & \frac{3}{2} \\
0 & 1
\end{array}\right| & -\frac{1}{2}
\end{array}\right)=\left(I_{2}\left(A^{-1}\right)\right.
\end{aligned}
$$

Check: $A \cdot A^{-1}=\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right) \cdot\left(\begin{array}{cc}-2 & \frac{3}{2} \\ 1 & -\frac{1}{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. $A^{-1} A$
Compare this with Example 27.

Remark: 1) Row operations can also be described by multiplying with "elementary matrices". For each row operation $(R 1),\left(R_{2}\right),(R 3)$ there exist a corresponding elementary matrix. (See Def. 7.7 in lecture notes)

Definition 7.7 For $\lambda \in \mathbb{R}$ with $\lambda \neq 0$ and $1 \leq i, j \leq n$ we define the elementary matrices

Here the λ in $R_{i}^{\lambda, j}$ is in the i-th row and j-th column, in R_{i}^{λ} it is in the i-th row, and in $R_{i, j}$ the
0 are on the diagonal in the i-th row and j-th column. 0 are on the diagonal in the i-th row and j-th column.

Multiplying with an elementary matrix from the left corresponds to the elementary row operations inion 2.6)
(R1) Multiplying with $R_{i}^{\lambda, j}:$ Add λ-times row j to row i
(R2) Multiplying with R_{i}^{λ} : Multiply row j by λ. $(\lambda \neq 0)$
(R3) Multiplying with $R_{i, j}$: Change row i and j.

We get

$$
\begin{aligned}
& \overbrace{E_{3} \cdot E_{2} \cdot E_{1}}^{A^{-1}} \cdot A=I_{2}
\end{aligned}
$$

$$
\begin{aligned}
& A^{-1}=\left(\begin{array}{cc}
-2 & \frac{3}{2} \\
1 & -\frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Theorem 7.8 Every invertible matrix is a product of elementary matrices.
2) There are explicit formulas for the inverse of a matrix. (Cramer's rule)
For example for $n=2$ we have for $A=\left(\begin{array}{ll}a & b \\ c & a\end{array}\right)$

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

Notice: This formula just makes sense for $a d-b c \neq 0$. Compare this to HW2 Ex 3 ii).
The determinant of A.

Cramer's rule gives a formula for all n, but it is not practical for real life applications. ("numerically expensive")

