Lineor Algebra I
Fall 2023
PRotations (in R²)
We want to describe a counter clockwise
votation with angle
$$\varphi \in \mathbb{R}$$
.

$$Y = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} = \operatorname{vot}_{\underline{T}}(x)$$

$$V = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} = \operatorname{vot}_{\underline{T}}(x)$$

$$V = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} = \operatorname{vot}_{\underline{T}}(x)$$

$$rot_{\varphi}(x) = \cos(\varphi) x + \sin(\varphi) y$$

= $\cos(\varphi) \binom{x_1}{x_2} + \sin(\varphi) \binom{-x_2}{x_1}$
= $\binom{\cos(\varphi) x_1 - \sin(\varphi) x_2}{\cos(\varphi) x_2 + \sin(\varphi) x_1}$
= $\binom{\cos(\varphi) - \sin(\varphi)}{\sin(\varphi) \cos(\varphi)} \binom{x_1}{x_2}$
Evolg

$$=) \quad \operatorname{rot}_{\varphi} : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$$

$$x \longmapsto \begin{pmatrix} \operatorname{cor}(\varphi) & -\operatorname{sin}(\varphi) \\ \operatorname{sin}(\varphi) & \operatorname{cor}(\varphi) \end{pmatrix} x$$
is a linear map.
We have $\operatorname{rot}_{\varphi} \circ \operatorname{rot}_{\varphi} = \operatorname{rot}_{\varphi, + \varphi_{2}}, i.e.$

$$\operatorname{rot}_{\varphi} \text{ is invertible with inverse } \operatorname{rot}_{-\varphi} :$$

$$\operatorname{rot}_{\varphi} \circ \operatorname{rot}_{-\varphi} = \operatorname{rot}_{0} = \operatorname{id}.$$

$$\frac{\operatorname{Recall}:}{\operatorname{Tutorial}} \operatorname{Tutorial} 3 : \operatorname{E} = \left(\begin{array}{c} \frac{3}{5} & -\frac{\varphi}{7} \\ \frac{\varphi}{5} & \frac{3}{5} \end{array} \right).$$

$$\operatorname{For} \quad \varphi = 0.927... \quad (\approx 53^{\circ})$$

$$\operatorname{We have} \quad [\operatorname{rot}_{\varphi}] = \mathrm{E}.$$

 $\frac{S \ G \ Composition \ of \ linear maps}{\underline{\& \ Matrix \ multiplication}}$ Linear maps are functions, so we can compose them $\frac{R^n \ F}{R^n \ G} \ R^k$ $\frac{G \ F}{G \ F} = \frac{G \ F}{G \ F}$ Notation we will use in the following.

 $\frac{\text{Theorem 6.1}}{\text{are linear, then GF is linear.}} = GF(x) + GF(y).$ $\frac{\text{Theorem 6.1}}{\text{are linear, then GF is linear.}} = GF(x) + GF(y).$

For
$$\lambda \in \mathbb{R}$$
, $x \in \mathbb{R}^{n}$:
 $GF(\lambda x) = G(F(\lambda x)) = G(\lambda F(\lambda)) = \lambda G(F(x)) = \lambda GF(x)$
 \Box

Example22: We consider the following linear maps $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \qquad G: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ $\chi \longmapsto \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \chi \qquad \chi \longmapsto \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \chi$ $F=1 \qquad F=1$ We want to calculate the matrix of GF: IR² -> IR³. $\begin{bmatrix} GF \end{bmatrix} = \begin{pmatrix} I & I \\ GF(e_1) & GF(e_2) \\ I & I \end{pmatrix} \cdot \begin{pmatrix} e_1 = \begin{pmatrix} I \\ O \end{pmatrix} \\ e_2 = \begin{pmatrix} O \\ I \end{pmatrix} \end{pmatrix}$ $GF(e_1) = G(F(e_1)) = G\binom{1}{3} = [G]\binom{1}{3} = \binom{-2}{3}$ $\mp(e_i) = \begin{pmatrix} i \\ 0 \end{pmatrix}$ $\mp(e_2) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ $GF(e_1) = G(F(-1)) = [G]\begin{pmatrix} 2\\-1 \end{pmatrix} = \begin{pmatrix} 3\\-1\\2 \end{pmatrix}.$

$$= \left(\begin{array}{c} | & | \\ GF(e_{i}) & GF(e_{i}) \\ | & | \end{array} \right) = \left(\begin{array}{c} | & | \\ GG(e_{i}) & GG(e_{i}) \\ | & | \end{array} \right) = \left(\begin{array}{c} -2 & 3 \\ 3 & -1 \\ | & 2 \end{array} \right) .$$

Definition 6.2 Let
$$A \in \mathbb{R}^{l \times m}$$
, $B \in \mathbb{R}^{m \times n}$ with

$$B = {}_{l}^{l} \begin{pmatrix} l & l \\ v_{l} & \cdots & v_{n} \\ l & l \end{pmatrix} \qquad (v_{l_{l} \cdots l_{n}} \times_{h} \in \mathbb{R}^{m})$$

Then we define the product of A and B by

$$A \cdot B = \begin{pmatrix} 1 & 1 \\ Av_1 & \dots & Av_n \\ 1 & 1 \end{pmatrix} \in \mathbb{R}^{e \times n}$$

 $A \cdot B = \begin{pmatrix} 1 & 1 \\ Av_1 & \dots & Av_n \\ 1 & 1 \end{pmatrix}$

$$\begin{pmatrix} m & \text{Heed to be} \\ \text{Hees scame } n & n \\ l(|...|) & m(|...|) = l(|..|) \\ A & B & AB \end{pmatrix}$$

Example 23: 1) $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ then $A \cdot B = \left(A\begin{pmatrix}1\\0\\0\end{pmatrix} & A\begin{pmatrix}2\\-1\\-1\end{pmatrix}\right) = \begin{pmatrix}-2 & 3\\3 & -1\\1 & 2\end{pmatrix}$ Compare this with Example 10, where [G]=A, [F]=B and [GF)= A·B. $\begin{pmatrix} 0 & 3 & 0 \\ 1 & -1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 1 & 1 \\ 3 & 2 \end{pmatrix}.$ 2) $\begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$ 3) A·B Next Lecture: B is the inverse of A, B=A'. Theorem 6.3 Let F: IR -> R and G: IR -> IR be linear maps. Then $[G_{P}] = [G_{F}] = [G] \cdot [F]$ Matrix of the Product of the matrices composition of the of G and F. maps' F and G.

Proof: We have
$$[F] = \begin{pmatrix} F(e_1) & \dots & F(e_n) \\ 1 & \dots & 1 \end{pmatrix}$$

and Pef. 6.2
 $[G] \cdot [F] \stackrel{\downarrow}{=} \begin{pmatrix} [G]F(e_1) & \dots & [G]F(e_n) \\ 1 & \dots & 1 \end{pmatrix}$
 $= \begin{pmatrix} G(F(e_1)) & \dots & G(F(e_n)) \\ 1 & \dots & 1 \end{pmatrix} = [GF].$
 $G(x) = G[X]$

$$\frac{\text{Example 24}:}{1) \quad F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}}_{\begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}} \quad [F] = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$

$$What is the matrix of FeF?$$

$$By hand: \quad F(F(X)) = F(\begin{pmatrix} 2x_{1} - x_{2} \\ x_{1} + 3x_{2} \end{pmatrix} = \begin{pmatrix} 2(2x_{1} - x_{2}) - (x_{1} + 3x_{2}) \\ (2x_{1} - x_{2}) + 3(x_{1} + 3x_{2}) \end{pmatrix}$$

$$= \begin{pmatrix} 3x_{1} - 5x_{2} \\ 5x_{1} + 8x_{2} \end{pmatrix} \implies [FF] = \begin{pmatrix} 3 & -5 \\ 5 & 8 \end{pmatrix}.$$

$$Using Theorem 63: \quad [FF] = [F][F] = \begin{pmatrix} 2 - 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 - 1 \\ 3 \end{pmatrix} \begin{pmatrix} 2 - 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 - 5 \\ 5 & 8 \end{pmatrix}.$$

 \square

2) At the berinning:
$$\operatorname{rot}_{\varrho} : \operatorname{IR}^{2} \longrightarrow \operatorname{IR}^{2}$$

 $\times \operatorname{I} \longrightarrow \begin{pmatrix} \operatorname{cos}(\varrho) - \operatorname{sin}(\varrho) \\ \operatorname{sin}(\varrho) & \operatorname{cos}(\varrho) \end{pmatrix} \times$
is the rotation by angle φ .
 $\operatorname{vot}_{\varrho_{1}} \circ \operatorname{rot}_{\varrho_{2}} : \operatorname{rotation} \operatorname{by}_{\varrho_{2}} \operatorname{and}_{\varrho_{1}} \operatorname{then}_{\varrho_{2}} \operatorname{p}_{\varrho_{1}} + \varrho_{2}$.
 $= \operatorname{rot}_{\varrho_{1}} \circ \operatorname{rot}_{\varrho_{2}} = \operatorname{rot}_{\varrho_{1}+\varrho_{2}} \cdot \left(\operatorname{cos}(\varrho_{1}+\varrho_{1}) - \operatorname{cin}(\varrho_{1}+\varrho_{2}) \right) \right)$
Theorem 6.3:
 $\operatorname{Frot}_{\varrho_{1}} \circ \operatorname{rot}_{\varrho_{2}} = \left(\operatorname{rot}_{\varrho_{1}} \right) \cdot \left[\operatorname{rot}_{\varrho_{2}} \right) = \left(\operatorname{cos}(\varrho_{1}) - \operatorname{cos}(\varrho_{1}) - \operatorname{cos}(\varrho_{2}) - \operatorname{sin}(\varrho_{2}) \right) \right)$
 $= \left(\operatorname{cos}(\varrho_{1}) - \operatorname{sin}(\varrho_{1}) \right) \left(\operatorname{cos}(\varrho_{2}) - \operatorname{sin}(\varrho_{2}) \right) \\= \left(\operatorname{cos}(\varrho_{1}) - \operatorname{cos}(\varrho_{1}) - \operatorname{sin}(\varrho_{1}) \right) \left(\operatorname{cos}(\varrho_{2}) - \operatorname{sin}(\varrho_{2}) \right) \\= \left(\operatorname{cos}(\varrho_{1}) - \operatorname{cos}(\varrho_{2}) - \operatorname{sin}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) - \operatorname{sin}(\varrho_{2}) \right) \\\operatorname{By}(\varphi) \quad \text{ue obtain the angle sum identities:} \\\operatorname{cas}(\varrho_{1} + \varrho_{2}) = \operatorname{cos}(\varrho_{1}) \operatorname{cos}(\varrho_{2}) - \operatorname{sin}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{1}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) - \operatorname{sin}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{cas}(\varrho_{1} + \varrho_{2}) = \operatorname{cos}(\varrho_{1}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{1}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) - \operatorname{sin}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{1}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{1}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{1}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{2}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{2}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{2}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{2}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{2}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{2}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{2}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{2}) \operatorname{cos}(\varrho_{2}) + \operatorname{cas}(\varrho_{2}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{2}) \operatorname{sin}(\varrho_{2}) \\= \operatorname{sin}(\varrho_{$

Recall:
$$I_n = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \in \mathbb{R}^{n \times n}$$
 is the
Identity matrix.
For all $V \in \mathbb{R}^n$ we have $I_n V = V$.

Proposition 6.4. For all
$$A \in \mathbb{R}^{l \times m}$$
, $B_{i} D \in \mathbb{R}^{m \times n}$,
 $C \in \mathbb{R}^{n \times p}$, $\lambda \in \mathbb{R}$ we have
i) $A \cdot I_{m} = I_{e} \cdot A = A$.
ii) $(A B) C = A(BC)$
iii) $A (B+D) = AB + AD$
iv) $(B+D)C = BC + DC$
v) $\lambda (AB) = (\lambda A) B = A(\lambda B)$.

Proof: Check by yourself. Similar to HW2 Ex1.

$$\begin{aligned} & \underset{(Not done in \\ +ke \ lecture)}{\text{(Not done in } \\ +ke \ lecture)} & \underset{(Not done in \\ +ke \ lecture)}{\text{(P}(q)} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} & \underset{(Not done in \\ +ke \ lecture)}{\text{(P}(q)} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \\ +ke \ reflection \ along \ the \ line \\ & \underset{(Not done in \ the \ reflection \ along \ the \ line \\ & \underset{(Not done in \ the \ reflection \ along \ the \ reflection \ along \ the \ line \\ & \underset{(Not \ reflection \ along \ the \ reflection$$

But also notice that sometimes (really rare) we have $A \cdot B = B \cdot A$. $\begin{array}{c} \varrho \cdot \varrho \cdot \varrho \cdot \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 1 \end{array} \right) \left(\begin{array}{c} 1 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) = \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) = \left(\begin{array}{c} 1 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2 & \mathcal{O} \\ \mathcal{O} & 2 \end{array} \right) \left(\begin{array}{c} 2$