Linear Algebra I
Fall 2023
(4) Rotations (in \mathbb{R}^{2})

We want to describe a counter clockwise rotation with angle $\varphi \in \mathbb{R}$.

$$
\begin{aligned}
\operatorname{rot}_{\varphi}(x) & =\cos (\varphi) x+\sin (\varphi) y \\
& =\cos (\varphi)\binom{x_{1}}{x_{2}}+\sin (\varphi)\binom{-x_{2}}{x_{1}} \\
& =\binom{\cos (\varphi) x_{1}-\sin (\varphi) x_{2}}{\cos (\varphi) x_{2}+\sin (\varphi) x_{1}} \\
& =\binom{\cos (\varphi)-\sin (\varphi)}{\frac{\sin (\varphi)}{\operatorname{sot} \varphi} \cos (\varphi)}\binom{x_{1}}{x_{2}}
\end{aligned}
$$

$\Rightarrow \quad \operatorname{rot}_{\varphi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
x \mapsto\left(\begin{array}{ll}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right) x
$$

is a linear map.
We have $\operatorname{rot}_{\varphi_{1}} \circ \operatorname{rot}_{\varphi_{2}}=\operatorname{rot}_{\varphi_{1}+\varphi_{2}}$, i.e. rote φ is invertible with inverse $\operatorname{rot}_{-} \varphi$:

$$
\operatorname{rot}_{\varphi} \operatorname{rot}_{-\varphi}=\operatorname{rot}_{0}=i d
$$

Recall: Tutorial 3: $E=\left(\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right)$.
For $\varphi=0.927 \ldots \quad\left(\approx 53^{\circ}\right)$
we have $\left[\operatorname{rot}_{\varphi}\right]=E$.
$\oint 6$ Composition of linear maps
\& Matrix multiplication
Linear maps are functions, so we can compose them

Notation we will use in the following.

Theorem 6.1 If $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $6: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ are linear, then GF is linear.

Proof: For $x, y \in \mathbb{R}^{n}$ we have

$$
\left.\begin{array}{rl}
G F(x+y) \\
\begin{array}{l}
\text { Definition } \\
\text { of GF }
\end{array} & =G(F(x+y))=G(F(x)+F(y)) \\
F_{\text {lis }}^{\text {linear }} \\
G \text { is linear }
\end{array}=G F(x)\right)+G(F(y)) .
$$

For $\lambda \in \mathbb{R}, x \in \mathbb{R}^{n}$:

$$
G F(\lambda x)=G(F(x))=G(\lambda F(x)=\lambda G(F(x))=\lambda G F(x) .
$$

■

Question: What is the matrix of GF?
Example22: We consider the following linear maps

We want to calculate the matrix of $G F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$.

$$
\begin{aligned}
& {[G F]=\left(\begin{array}{cc}
1 & 1 \\
G F\left(e_{1}\right) & G F\left(e_{2}\right) \\
1 & \mid
\end{array}\right) \cdot \quad\binom{e_{1}=(!)}{e_{2}=(i)}} \\
& F\left(e_{1}\right)=\binom{1}{0} \quad G F\left(e_{0}\right)=G\left(F\left(e_{1}\right)\right)=G\binom{1}{3}=[G]\binom{(1)}{3}=\left(\begin{array}{c}
-2 \\
\vdots \\
1
\end{array}\right) \\
& F\left(e_{2}\right)=\binom{2}{-1} \quad G F\left(e_{2}\right)=G\left(F\binom{2}{-1}\right)=[G]\binom{2}{-1}=\left(\begin{array}{c}
3 \\
-2 \\
2
\end{array}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& x \mapsto(\underbrace{\left(\begin{array}{l}
1-1 \\
1 \\
1 \\
0
\end{array}\right)}_{[6]} x
\end{aligned}
$$

Definition 6.2 Let $A \in \mathbb{R}^{l \times m}, B \in \mathbb{R}^{m \times n}$ with

Then we define the product of A and B by

Example 23:

1) $A=\left(\begin{array}{ccc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right), B=\left(\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right)$ then

$$
A \cdot B=\left(A^{\prime}(0) A\left(\begin{array}{cc}
(2-1) \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & 3 \\
3 & -1 \\
1 & 2
\end{array}\right)\right.
$$

Compare this with Example 10, where [6$]=A$, $[F]=B$ and $[G F]=A \cdot B$.
2) $\left(\begin{array}{ccc}0 & 3 & 0 \\ 1 & -1 & 1 \\ 1 & 2 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}3 & 3 \\ 1 & 1 \\ 3 & 2\end{array}\right)$.
3) $\quad\left(\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right)\left(\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right)=\frac{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) .}{\text { Next Lecture: } B \text { is the }}$ inverse of $A, B=A^{-1}$.
Theorem 6.3 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $G: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ be linear maps. Then

$$
[G O F]=[G F]=[G] \cdot[F]
$$

Matrix of the composition of the maps f and G.

Product of the matrices of G and F.

Proof: We have $[F]=\left(\begin{array}{ccc}F\left(e_{1}\right) & \ldots & F^{\prime}\left(e_{n}\right) \\ 1 & 1\end{array}\right)$

$$
\begin{aligned}
& \text { and Pef.6.2 } \begin{array}{c}
1 \\
{[G] \cdot[F] \stackrel{1}{=}\left(\begin{array}{cc}
1 \\
{[G]\left(e_{1}\right)} & \ldots \\
1 & {[G] F\left(e_{n}\right)}
\end{array}\right)} \\
\\
=\left(\begin{array}{ccc}
1 & \mid \\
G\left(F\left(e_{1}\right)\right) \ldots & G\left(F\left(e_{n}\right)\right) \\
1 & & 1
\end{array}\right)=[G F] .
\end{array}
\end{aligned}
$$

$$
G(x)=[G] x
$$

Example 24:

1) $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{array}{ll}
\mathbb{R}^{2} & \mapsto \mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} \longmapsto\binom{2 x_{1}-x_{2}}{x_{1}+3 x_{2}}
\end{array} \quad[F]=\left(\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right)
$$

What is the matrix of $F_{0} F$?
By hand:

$$
\begin{aligned}
F(F(x)) & =F\binom{2 x_{1}-x_{2}}{x_{1}+3 x_{2}}=\binom{2\left(2 x_{1}-x_{2}\right)-\left(x_{1}+3 x_{1}\right)}{\left(2 x_{1}-x_{2}\right)+3\left(x_{1}+3 x_{2}\right.} \\
& =\binom{3 x_{1}-5 x_{2}}{5 x_{1}+8 x_{2}} \Rightarrow[F F]=\left(\begin{array}{cc}
3 & -5 \\
5 & 8
\end{array}\right) .
\end{aligned}
$$

Using Theorem 6.3: $[F F]=[F][F]=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)=\left(\begin{array}{cc}3 & -5 \\ 5 & 8\end{array}\right)$.
2) At the beginning: rot $: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
x \mapsto\binom{\cos (l)-\sin (t)}{\sin (t) \cos (0)} \times
$$

is the rotation by angle φ.
$\operatorname{vot}_{\varphi_{1}}{ }^{\text {rot }} \varphi_{2}$: rotation by φ_{2} and then by φ_{1}

$$
\left.\begin{array}{rl}
\Rightarrow \operatorname{rot}_{\varphi_{1}} \circ \operatorname{rot}_{\varphi_{2}} \stackrel{(*)}{=} \operatorname{rot}_{\varphi_{1}}+\varphi_{2} . \\
& {\left[\operatorname{rot} \varphi_{1}+\varphi_{2}\right]=\binom{\cos \left(\varphi_{1}+\varphi_{2}\right)-\sin \left(\varphi_{1}+\varphi_{2}\right)}{\sin \left(\varphi_{1}+\varphi_{2}\right)} \cos \left(\varphi_{1}+\varphi_{2}\right)}
\end{array}\right) .
$$

Theorem 6.3:

$$
\begin{aligned}
& {\left[\operatorname{rot}_{\varphi_{1}} 0 \operatorname{rot}_{\varphi_{2}}\right]=\left[\operatorname{rot}_{\varphi_{1}}\right] \cdot\left[\operatorname{rot} \varphi_{2}\right]} \\
& =\left(\begin{array}{cc}
\cos \left(\varphi_{1}\right) & -\sin \left(\varphi_{1}\right) \\
\sin \left(\varphi_{1}\right) & \cos \left(\varphi_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\varphi_{2}\right) & -\sin \left(\varphi_{2}\right) \\
\sin \left(\varphi_{2}\right) & \cos \left(\varphi_{2}\right)
\end{array}\right) \\
& \text { Def. } 6.2 \\
& \stackrel{\downarrow}{=}\left(\begin{array}{ll}
\cos \left(\varphi_{1}\right) \cos \left(\varphi_{2}\right)-\sin \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right) & * \\
\sin \left(\varphi_{1}\right) \cos \left(\varphi_{2}\right)+\cos \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right) & *
\end{array}\right)
\end{aligned}
$$

By $(*)$ we obtain the angle sum identities:

$$
\begin{aligned}
& \cos \left(\varphi_{1}+\varphi_{2}\right)=\cos \left(\varphi_{1}\right) \cos \left(\varphi_{2}\right)-\sin \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right) \\
& \sin \left(\varphi_{1}+\varphi_{2}\right)=\sin \left(\varphi_{1}\right) \cos \left(\varphi_{2}\right)+\cos \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right)
\end{aligned}
$$

Recall: $I_{n}=\left(\begin{array}{cc}1 & 0 \\ 1 & 0 \\ 0 & \ddots\end{array}\right) \in \mathbb{R}^{n \times n}$ is the Identity matrix.
For all $v \in \mathbb{R}^{n}$ we have $I_{n} v=v$.
Proposition 6.4. For all $A \in \mathbb{R}_{n \times m}^{l_{x}}, B_{1} D \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times p}, \lambda \in \mathbb{R}$ we have
i) $A \cdot I_{m}=I_{l} \cdot A=A$.
ii) $(A B) C=A(B C)$
iii) $A(B+D)=A B+A D$
iv) $(B+D) C=B C+D C$
v) $\lambda(A B)=(\lambda A) B=A(\lambda B)$.

Proof: Check by youreeff. Similar tolthl 2 Ex.
Remark: If $A, B \in \mathbb{R}^{n \times n}$ then in general we have $A \cdot B \neq B \cdot A$.
egg. $\underset{A}{\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{ll}0 & 0 \\ 1 & 0 \\ B\end{array}\right)}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \quad$ but $\left(\begin{array}{c}0 \\ 1 \\ 1\end{array}\right) \cdot\binom{\left(\begin{array}{l}0 \\ 0\end{array}\right.}{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.

Example 25 Recall: For $u \neq 0 \quad P_{u}$ denotes
(Not done in the lecture)
the reflection along the line spanned by u.

$$
\begin{aligned}
& {\left[\rho_{(0)}\right]=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)} \\
& {\left[\rho_{(1)}\right]=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& P_{(0)}\left(\rho_{(1)}\binom{2}{0}\right)=P_{(1)}\binom{0}{2}=\binom{0}{2} \\
& \rho_{(1)}\left(P_{(0)}\binom{2}{0}\right)=P_{(1)}\left(\binom{-2}{0}=\binom{0}{-2}\right. \\
& {\left[P_{(0)}\right) \cdot\left[\rho_{(1)}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)} \\
& {\left[\rho_{(1)}\right] \cdot\left[\rho_{(0)}\right]=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)}
\end{aligned}
$$

\Rightarrow Reflecting first along (lll 11$)$ and then $\binom{0}{1}$ is different to first reflecting along $\binom{0}{1}$ and then (1).

But also notice that sometimes (reallyrare) we have $A \cdot B=B \cdot A$.
e.g. $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{l}2 \\ 2\end{array} 01\right.$. .

