Linear Algebra I
$\oint 5$ Linear maps in geometry
Example la
Consider the linear map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad[\mp]$

$$
x=\binom{x_{1}}{x_{2}} \mapsto\binom{-x_{2}}{x_{1}}=\binom{\left(\begin{array}{c}
0-1 \\
1 \\
1
\end{array}\right.}{0}\binom{x_{1}}{x_{2}}
$$

We have $\left.\begin{array}{rl}\alpha & +\beta+\gamma=180^{\circ} \\ \alpha & +\beta=90^{\circ}\end{array}\right\} \Rightarrow \gamma=90^{\circ}$.
$\Rightarrow F$ rotates x by 90° counterclockwise.

- $x=\binom{x_{1}}{x_{2}}$ and $F(x)=\binom{-x_{2}}{x_{1}}$ are "orthogonal" to each other.
- How to check if $x, y \in \mathbb{R}^{2}$ are orthogonal in general ? What about $x, y \in \mathbb{R}^{n}$?

Definition 5.1 Let $u=\left(\begin{array}{c}u_{1} \\ u_{n} \\ u_{n}\end{array}\right), v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right) \in \mathbb{R}^{n}$.
i) The dot product of u and v is defined by

$$
\begin{aligned}
& u \cdot v=u_{1} v_{1}+\ldots+u_{n} v_{n} \in \mathbb{R} \\
& (\text { vector } \cdot \text { vector }=\text { number })
\end{aligned}\binom{\text { e.g. }}{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
=x_{1}-\left(-x_{2}\right)+x_{2} x_{1}
\end{array}\right) \cdot\binom{-x_{2}}{x_{1}}} .
$$

ii) u and v are called orthogonal if $u \cdot v=0$.
iii) The norm (= length) of u is defined by

$$
\|u\|:=\sqrt{u \cdot u}=\sqrt{u_{1}^{2}+\ldots+u_{n}^{2}}
$$

Remark: - The dot product (also called scalar product or imer product) allows us to speak about length and angles in \mathbb{R}^{n}. For $n=2,3$ one can show:

$$
u \cdot v=\|u\| \cdot\|v\| \cdot \cos (\alpha)
$$

For $n>3$, this gives the definition of an angle between u and r.
$T=$ "transpose"

- Write $u^{\top}=\left(\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right) \in \mathbb{R}^{1 \times n}$, then

$$
u_{\uparrow} \cdot v=u_{\uparrow}^{\top} v=\left(\begin{array}{lll}
u_{1} & u_{2} \ldots & u_{n}
\end{array}\right)\binom{v_{1}}{i_{n}}=u_{1} v_{1} \ldots+u_{n} v_{n}
$$

dot product Matrix -vector

Proposition 5.2 The dot product satisfies the following properties for $u, v, w \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$;
i) $u \cdot v=V \cdot U$
ii) $u \cdot(v+w)=u \cdot v+u \cdot w$
iii) $u \cdot(\lambda v)=\lambda(u \cdot v)$

Proof: Follows directly from the definition.

In the following we will give examples of linear maps which have a geometric interpretation.
(1) Scaling: Let $\lambda>0$ and define the lin.map

$$
\begin{aligned}
& \begin{aligned}
h_{\lambda}: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n} \\
x & \longmapsto \lambda x
\end{aligned}
\end{aligned}
$$

(2) Orthogonal projection: Let $u \in \mathbb{R}^{n}$ with $u \neq\binom{ 0}{\vdots}=0$. Want a map $P_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that sends $x \in \mathbb{R}^{n}$ to $X^{\prime \prime}$, where $x=x^{\perp}+x^{\prime \prime}$

$X^{\prime \prime}=\lambda u \quad$ for some $\lambda \in R$ we cant to find.

$$
\begin{aligned}
x^{\perp} \cdot u & =0 \\
\leadsto \quad u \cdot x & =u \cdot\left(x^{\perp}+x^{\prime \prime}\right)=\overbrace{u \cdot x^{\perp}}^{0}+u \cdot \overbrace{x^{\prime \prime}}^{\lambda u} \\
& =u \cdot(\lambda u)=\lambda u \cdot u . \\
\Rightarrow \lambda & =\frac{u \cdot x}{u \cdot u} .
\end{aligned}
$$

Definition 5.3 We define for $u \in \mathbb{R}^{n}, u \neq\left(\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right)=0$

$$
\begin{aligned}
P_{u}: & \mathbb{R}^{n} \\
x & \longrightarrow \frac{\mathbb{R}^{n}}{u \cdot x} u .
\end{aligned}
$$

We get $(\underbrace{x-P_{u}(x)}_{=x^{1}}) \cdot u=x \cdot u-\frac{u \cdot x}{u \cdot u} u \cdot u=0$.

Proposition $5.4 P_{n}$ is a linear map.
Proof: For $x, y \in \mathbb{R}^{n}$ we have (using Prop 5.2)

$$
\begin{aligned}
P_{u}(x+y) & =\frac{u \cdot(x+y)}{u \cdot u} u=\frac{u \cdot x+u \cdot y}{u \cdot u} u \\
& =\frac{u \cdot x}{u \cdot u} u+\frac{u \cdot y}{u \cdot u} u=P_{u}(x)+P_{u}(y) .
\end{aligned}
$$

$\lambda \in \mathbb{R}$.

$$
P_{u}(\lambda x)=\frac{u \cdot(\lambda x)}{u \cdot u} u=\frac{\lambda u \cdot x}{u \cdot u} u=\lambda P_{u}(x) \text {. }
$$

Example 20: $n=2, u=\binom{1}{1}, \quad x=\binom{x_{1}}{x_{2}}$

$$
\begin{aligned}
u \cdot u & =1 \cdot 1+1 \cdot 1=2 \\
u \cdot x & =1 \cdot x_{1}+1 \cdot x_{2}=x_{1}+x_{2} \\
P u(x) & =\frac{u \cdot x}{u \cdot u} u=\frac{x_{1}+x_{2}}{2}\binom{1}{1} \\
& =\binom{\frac{x_{1}+x_{2}}{2}}{\frac{x_{1}+x_{2}}{2}}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\binom{x_{1}}{x_{2}} .
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { e.g. } P_{u}\binom{1}{3} & =\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)\binom{1}{3} & {\left[P_{u}\right]=\frac{1}{2}\binom{1}{1}} \\
& =\binom{2}{2} .
\end{array}
$$

In the case $n=1$ the dot product is just the multiplication of real numbers and we have

$$
\begin{aligned}
P_{u}: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \mapsto \frac{u \cdot x}{u \cdot u} u=x
\end{aligned}
$$

For $n>1 \quad P_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is not injective and not surjective and

$$
\operatorname{im}\left(P_{u}\right)=\{\lambda \cdot u \mid \lambda \in \mathbb{R}\}
$$

(3) Reflections

Now we want to reflect $x \in \mathbb{R}^{n}$ along the line spanned by u.

$$
\begin{aligned}
& P_{u}(x)=x-2 x^{\perp}=x-2\left(x-P_{u}(x)\right) \\
&=2 P_{u}(x)-x \\
& x^{\perp}=x-P_{u}(x) \\
&=2 \frac{u \cdot x}{u \cdot u} u-x
\end{aligned}
$$

Definition 5.5 We define the reflection Pu along u by

$$
\begin{aligned}
P_{u}: & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \\
& x \longmapsto 2 \frac{u \cdot x}{u \cdot u} u-x .
\end{aligned}
$$

Proposition $5.6 \rho_{u}$ is a linear map. (HW4)
Example 21: For $u=\binom{1}{1}$ the ρ_{u} is the reflection along the diagonal.
What is the matrix of ρ_{n} ?

$$
u \cdot e_{1}=u \cdot\left(l_{0}^{\prime}\right)=1
$$

We have $\left[\rho_{u}\right]=\left(\begin{array}{ll}\rho_{u}^{\prime}\left(e_{1}\right) & \rho_{u}\left(e_{1}^{\prime}\right)\end{array}\right) \quad u \cdot u=2$

$$
\begin{aligned}
& \rho_{u}\left(e_{1}\right)=\rho_{u}(1)=2 \frac{u \cdot e_{1}}{u \cdot u} u-e_{1}=u-e_{1}=\binom{0}{1} \\
& \quad \rho_{u}\left(e_{2}\right)=2 \frac{u \cdot e_{2}}{u \cdot u} u-e_{2}=u-e_{2}=\binom{1}{0} \\
& \Rightarrow \quad\left[\rho_{u}\right]=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

For any $n \geq 1$ and any $u \in \mathbb{R}^{n}$ the map ρ_{u} is bijective with ρ_{u} as its inverse. (HW 4)
(4) Rotations (in \mathbb{R}^{2})

We want to describe a counter clockwise rotation with angle $\varphi \in \mathbb{R}$.

$$
\begin{aligned}
\operatorname{rot}_{\varphi}(x) & =\cos (\varphi) x+\sin (\varphi) y \\
& =\cos (\varphi)\binom{x_{1}}{x_{2}}+\sin (\varphi)\binom{-x_{2}}{x_{1}} \\
& =\binom{\cos (\varphi) x_{1}-\sin (\varphi) x_{2}}{\cos (\varphi) x_{2}+\sin (\varphi) x_{1}} \\
& =\binom{\cos (\varphi)-\sin (\varphi)}{\frac{\sin (\varphi) \cos (\varphi)}{\sin]}}\binom{x_{1}}{x_{2}}
\end{aligned}
$$

$\Rightarrow \quad \operatorname{rot}_{\varphi}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
x \mapsto\left(\begin{array}{ll}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right) x
$$

is a linear map.
We have $\operatorname{rot}_{\varphi_{1}} \circ \operatorname{rot}_{\varphi_{2}}=\operatorname{rot}_{\varphi_{1}+\varphi_{2}}$, i.e. rote φ is invertible with inverse $\operatorname{rot}_{-} \varphi$:

$$
\operatorname{rot}_{\varphi} \operatorname{rot}_{-\varphi}=\operatorname{rot}_{0}=i d
$$

Recall: Tutorial: $E=\left(\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right)$.
For $\varphi=0.927 \ldots \quad\left(\approx 53^{\circ}\right)$
we have $\left[\operatorname{rot}_{\varphi}\right]=E$.

