Linear Algebra I

Example 15 (continue)

$$
\begin{aligned}
& f: \mathbb{R}^{2} \\
& \longrightarrow \mathbb{R}^{3} \\
&\binom{x_{1}}{x_{2}} \longmapsto\left(\begin{array}{c}
x_{1} \\
x_{1}+x_{2} \\
x_{2}-x_{1}
\end{array}\right)
\end{aligned}
$$

Definition 3.3 A function $f: x \rightarrow y$ is
i) injective if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1}+x_{2}$.
in other words: For $y \in \operatorname{in}(f)$ the equation $f(x)=y$ has a mither.
osilutix.
ii) subjective if $\operatorname{im}(f)=y \quad(\forall y \in Y \exists x \in X: y=f(x)$.
(image = codonain).
iii) bijective if it is injectire and surjective.
image of f ?
surjective?
injective?

We want to calculate $\operatorname{im}(f)=\left\{y \in \mathbb{R}^{3} \mid \exists x \in \mathbb{R}^{2}: f(x)=y\right\}$.
For this we first rewrite

$$
f\binom{x_{1}}{x_{2}}=\underbrace{\left(\begin{array}{rr}
1 & 0 \\
1 & 1 \\
-1 & 1
\end{array}\right)}_{A} \underbrace{\binom{x_{1}}{x_{2}}}_{x}
$$

$\Rightarrow \operatorname{im}(f)=\left\{y \in \mathbb{R}^{3} \mid A x=y\right.$ has a solution $\left.x \in \mathbb{R}^{2}\right\}$.
Therefore we want to understand the solutions of $A x=y$.

This shows that $A x=y$ has a solution inf $2 y_{1}-y_{1}+y_{3}=0$

$$
\Rightarrow \quad \operatorname{im}(f)=\left\{\left.\left(\begin{array}{l}
y_{1} \\
y_{1} \\
y_{3}
\end{array}\right) \in \mathbb{R}^{3} \right\rvert\, 2 y_{1}-y_{2}+y_{3}=\sigma\right\}
$$

Since $\operatorname{in}(f) \neq \mathbb{R}^{3} f$ is not surjective For $y \in \operatorname{im}(f)$ the system $A x=y$ has a unisne solution, i.e f is injective.
$\oint 4$ Linear maps
In this section we will be interested in a special family of functions from \mathbb{R}^{n} to \mathbb{R}^{m} which play a major role in Linear algebra.

Definition 4.1 A function $F: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map if for all $u, v \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$
i) $F(u+v)=F(u)+F(v)$
ii) $\quad F(\lambda u)=\lambda F(u)$
(We will define linear maps more generally in Linear Algebra 2, as)
maps $F: u \rightarrow v$, where u and v are vector spaces
Example 16 1) For any $A \in \mathbb{R}^{m \times n}$ the function

$$
\begin{aligned}
F: & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
& x \longmapsto A x
\end{aligned}
$$

is a linear map.
This follows from Proposition 2.4 (HW2, Ex I):
i) $F(u+v)=A(u+v) \cong A u+A v=F(u)+F(v)$
ii) $F(\lambda u)=A(\lambda u)=\lambda A u=\lambda F(u)$.

In particular the function at the beginning is a linear map.
Special case: $n=m: F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, A=\left(\begin{array}{cc}1 & 0 \\ 9 & 0 \\ 0 & 1\end{array}\right)$.
In this case $F(x)=x \quad \forall x \in \mathbb{R}$. $\quad \frac{\|}{I_{n}}$
\rightarrow Identity map $\operatorname{id}_{\mathbb{R}^{n}}=F$ identity matrix.
2) The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is not linear. $\binom{x_{1}}{x_{2}} \mapsto\binom{x_{1} \cdot x_{2}}{x_{1}} \quad$ (a linear map).

$$
\begin{aligned}
& \lambda=2, u=\binom{1}{1} \\
& f(\lambda \cdot u)=f\left(2 \cdot\binom{1}{1}\right)=f\binom{2}{2}=\binom{2 \cdot 2}{2}=\binom{4}{2} \\
& \lambda \cdot f(u)=2 \cdot f\binom{1}{1}=2 \cdot\binom{1 \cdot 1}{1}=\binom{2}{2} \not x
\end{aligned}
$$

Therefore $f(\lambda u) \neq \lambda f(u)$.

In fact, we will see now that any linear map is given by a function like in Example 161).

Theorem 4.2 Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map, then there exists a unique matrix $[\overline{7}] \in \mathbb{R}^{m \times n}$, such that

$$
\frac{F(x)}{?}=\frac{[F] x}{T} \text { for all } x \in \mathbb{R}^{n}
$$

Evaluation of the function F at X

Multiplication of the matrix [f] with the vector x.

Proof: For $1 \leq j \leq n$ we write $e_{j}=\left(\begin{array}{l}0 \\ \dot{j} \\ \vdots \\ j\end{array}\right) \in j \in \mathbb{R}^{n}$.
Every $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ \dot{x}_{n}\end{array}\right) \in \mathbb{R}^{n}$ can be (unignely) written as

$$
\begin{aligned}
& x=\frac{x_{i} e_{1}}{11}+\frac{x_{2}^{\prime} e_{2}}{11}+\ldots+x_{n} e_{n} . \\
& \left(\begin{array}{c}
x_{1} \\
0 \\
i \\
0
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
0_{0} \\
0 \\
\vdots
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
\vdots \\
\dot{i} \\
x_{n}
\end{array}\right) \\
& x=\left(\begin{array}{c}
n=3 \\
-3 \\
4
\end{array}\right) \\
& x=3 \cdot e_{1}-1 \cdot e_{2}+4 e_{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{3}{2}\right)+\binom{0}{0}+\binom{\text { a }}{4}
\end{aligned}
$$

Since F is linear, we have

$$
\begin{aligned}
& F(x)=F\left(x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}\right) \underset{x_{1} F\left(e_{1}\right)}{\stackrel{\text { i) }}{=} F\left(x_{1} e_{1}\right)+F\left(x_{2} e_{2}+\ldots+x_{n} e_{n}\right)=\ldots=\widetilde{F\left(x_{1} e_{1}\right)+\ldots+F\left(x_{n} e_{n}\right)}} \begin{array}{l}
\text { ii) } x_{1} F\left(e_{1}\right)+\ldots+x_{n} F\left(e_{n}\right) .
\end{array} l=\text {.... }
\end{aligned}
$$

Now set $[\mathscr{F}]=\left(\begin{array}{ccc}1 & 1 & \\ F\left(e_{1}\right) & F\left(e_{e}\right) & \ldots \\ 1 & 1 & \left(e_{n}\right) \\ 1 & 1 & 1\end{array}\right) \in \mathbb{R}^{\text {man }}$.
With this we have

$$
\begin{aligned}
& {[F] x=[F]\left[\begin{array}{l}
x_{1} \\
\dot{x}_{n}
\end{array}\right)=x_{1} F\left(e_{1}\right)+x_{2} F\left(l_{2}\right)+\ldots+x_{n} F\left(e_{n}\right] .} \\
& \left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1} a+x_{2} b}{x_{1} c+x_{1} d}=x_{1}\binom{a}{c}+x_{2}\binom{b}{d}\right) \\
& \text { conumor of } A
\end{aligned}
$$

And therefore $F(x)=[F] x$.
Definition 4.3: The matrix [F] in The. 4.2 is Called the matrix of F.

Notice: If F is a linear map and we know the values $F\left(e_{j}\right)$, then we know the value of $F(x)$ ($1 \leq j \leq n$) for any x !

Example 7

1) If $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear map with $F\binom{1}{0}=\binom{1}{2}$ and $F\binom{0}{1}=\binom{3}{4}$, then

$$
\begin{aligned}
& F\binom{-1}{3}=F\left(-1 \cdot\binom{1}{0}+3\binom{0}{1}\right)=-F\binom{1}{0}+3 F\binom{0}{1} \\
&\left(\ln \text { general! } F\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}\right)=-\binom{1}{2}+3\binom{3}{4}=\binom{8}{10}
\end{aligned}
$$

2) This works in more general. Assume that $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ is a linear map with

$$
F\binom{1}{0}=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right), \quad F(1)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \text {. }
$$

What is $\mp\binom{x_{1}}{x_{2}}$ for any x_{1}, x_{2} ?
Nowt get this: Vat arab

We have $\binom{x_{1}}{x_{2}}=x_{2}\binom{1}{1}+\left(x_{1}-x_{2}\right)\binom{1}{0}$

$$
\begin{aligned}
\Rightarrow & F\binom{x_{1}}{x_{2}}=F\left(x_{2}\binom{1}{1}+\left(x_{1}-x_{2}\right)\binom{1}{0}\right) \\
& =x_{2} F\binom{1}{1}+\left(x_{1}-x_{2}\right) F\binom{1}{0} \\
& =x_{2}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)+\left(x_{1}-x_{2}\right)\binom{1}{-1}
\end{aligned}
$$

$$
=\binom{x_{1}-x_{2}}{-x_{1}+3 x_{2}}=\underbrace{\left(\begin{array}{rr}
1 & -1 \\
1 & 0 \\
-1 & 3
\end{array}\right)}_{[F]}\binom{x_{1}}{x_{2}} .
$$

We see: To know the value of a linear map \bar{F} at x it suffices to know the value $F\left(v_{1}\right)_{1,1} F\left(v_{n}\right)$ where $v_{1,1,} v_{n}$ are vectors, such that we can write x as

$$
X=\alpha_{1} V_{1}+\ldots+\alpha_{n} V_{n}
$$

for some $\alpha_{1, \ldots,} \alpha_{n} \in \mathbb{R}$.

How to check if a given function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear or not?

- To show that F is linear one can either show that there exist a matrix $A \in \mathbb{R}^{\operatorname{man}}$ with $F(x)=A x$. OR one needs to show that FOR $A L L \quad u, v \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ that $F(u+v)=F(u)+F(v)$ and $F(\lambda u)=\lambda F(u)$.
- To show that F is not linear, it suffices to give ONE example of $u, v \in \mathbb{R}^{n}$ with $F(u+v) \neq F(u)+F(v)$ OV ONE example of $u \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ with $F(\lambda u) \neq \lambda F(u)$.

For example the function $\begin{aligned} f: \mathbb{R} & \rightarrow \mathbb{R} \\ x & \mapsto e^{x}\end{aligned}$

$$
x \mapsto e^{x}
$$

is not linear, because the one explicit example $u=v=0$ gives:

$$
\begin{aligned}
& f(u+v)=f(0+0)=f(0)=e^{0}=1 \\
& f(u)+f(v)=f(0)+f(0)=e^{0}+e^{0}=2
\end{aligned}
$$

and therefore $f(u+v) \neq f(u)+f(v)$.
What you should not do:
Say "It is $e^{u+v} \neq e^{u}+e^{v}$ and therefore f is not linear."

Even though $e^{a+v} \neq e^{u}+e^{v}$ is true for almost all $u_{1} v \in \mathbb{R}$, there are cases where it is not true. e.g. for $u=1$ and $v \approx 0.4586 \ldots$

$$
4.3 \approx e^{u+v}=e^{u}+e^{v} \approx 4.3
$$

