Linear Algebra I
Fall 2023
Recall: Theorem 2.10 Every matrix A is row equivalent to a unique matrix B on row-reduced echelon form.

Notation: $B=\operatorname{rref}(A)$.
\ln Example 10: $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 4\end{array}\right), b=\binom{1}{2}$

$$
(A \mid b)=\left(\begin{array}{cccc}
1 & 2 & 3 & 1 \\
1 & 1 & 4 & 2
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & 5 & 3 \\
0 & 1 & -1 & -1
\end{array}\right)=\operatorname{rref}(A \mid b)
$$

Solutions of $A x=b$ are $x_{1}=3-5 t$

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \begin{aligned}
& x_{2}=-1+t \\
& x_{3}=t
\end{aligned}
$$

Solving linear system $A x=b \leadsto$ Find ref (A $A \mid b$)
General ref of an augmented matrix

Reading off solutions for lin. system $A x=b: \begin{aligned} & A, B \in \mathbb{R}^{n \times n} \\ & b, c \in \mathbb{R}^{m}\end{aligned}$

$$
(A \mid b) \sim(B \mid C)=\operatorname{rref}(A \mid b)
$$

1) If c contains a pivot element $(\lambda=1)$: No solutions Else $(\lambda=0)$:
2) If every column of B contains a pivot element then we have the unique solution $X=C^{\prime}$.
3) Some columns of B do not contain pivot elements, Infinitely $\begin{aligned} & \text { many } \\ & \text { solution }\end{aligned}$ many solutions

Definition 2.11: The rank $\operatorname{rk}(A)$ of a matrix $A \in \mathbb{R}^{m \times n}$ is the number of pivot elements in $\operatorname{rref}(A)$.
Proposition 2.12: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{n}$. The solutions of $A x=b$ depend on $\operatorname{rk}(A \mid b), \operatorname{rk}(A)$ ar follows:
(i) $r k(A \mid b)>r k(A)$: No solutions
(ii) $\operatorname{rk}(A \mid B)=\operatorname{rk}(A)=n$: unique solution
(iii) $r k(A \mid b)=r k(A)<n$: Infinitely many

Proof: Follows from the discussion before. (see lecture notes).
Examples: 1) $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), b=\binom{1}{1}$
2) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), b=\binom{1}{1}$
3) $\quad A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), b=\binom{1}{1}$
$\oint 3$ Sets \& Functions

Set: A collection of distinct objects.
Precisely, but not necessarily explicitly, defined.
Already have seen examples of infinite sets: $\mathbb{R}_{1}, \mathbb{R}_{1} \mathbb{R}^{n n}$.
Example \| $\quad\{2,4, \pi\} \quad$ finite set
$\mathbb{N}=\{1,2,3,4, \ldots\}$ natural numbers
Q: rational numbers
$\varnothing=\{ \}$ empty set
If A is a set we write " $a \in A$ " if a is an element of A and " $a \notin A$ " if a is not an element of A.
$A \subset B: \quad A$ is a subset of B : If $a \in A$ then $a \in B$.
egg. $\phi \subset \underset{U}{\mathbb{N}} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ $\{1,2,3\}$
$\{a \in A \mid$ condition $\}$: The (sub) Set of all $a \in A$ enthat satisfy the condition. egg. $\quad\{m \in \mathbb{N} \mid m$ is even that
H : Set of all humans
$N U=\{h \in H \mid h$ is a staider at Nu $\} \subset H$ $\left\{x \in \mathbb{R}^{n} \mid A x=b\right\}$: solutions of $A x=b$

Operations on sets: $A(B$
O Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
0 Intersection: $A \cap B=\{x \mid x \in A$ and $x \in B\}$
G Difference: $A \backslash B=\{x \in A \mid x \notin B\}$
egg.

$$
\begin{aligned}
& A=\{-1,2,3\}, B=\mathbb{N} \\
& A \cup B=\{-1,1,2,3, \ldots\}, A \cap B=\{2,3\}, \\
& A \backslash B=\{-1\}
\end{aligned}
$$

Definition $3.1 \quad X, Y$: Sets
i) A function $f: X \rightarrow Y$ is a rule, assigning to each element $x \in X$ an element $f(x) \in Y$. This is also denoted by

$$
\begin{aligned}
f: x & \longrightarrow y \\
x & \longmapsto f(x) .
\end{aligned}
$$

ii) X : domain of f
y : codomain of f
Functions are also called maps.
Definition 3.2 For a function $f: x \rightarrow y$ the image of f is defined by

$$
\operatorname{im}(f)=\{y \in Y \mid \exists x \in X: y=f(x)\} \subset Y
$$

Definition 3.3
Composition of functions For two felt. $f: x \rightarrow y$ the composition oof of f and g is defined by

$$
\begin{aligned}
& g f=g \circ f: x \rightarrow Z \\
& x \mapsto(g \circ f)(x)=g(f(x)) . \\
& x \xrightarrow[g \text { of }]{f} y \xrightarrow{g} z
\end{aligned}
$$

Definition 3.4 A function $f: x \rightarrow y$ is
i) injective if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.
ii) surjective if $\operatorname{im}(f)=Y \quad(\forall y \in Y \quad \exists x \in X: y=f(x))$

$$
(\text { image }=\text { codomain }) \text {. }
$$

iii) bijective if it is injective and surjective.

If f is bijective: For every $y \in Y$ there exists a $(f: x \rightarrow y) \quad$ unique $x \in X$ with $f(x)=y$.
Then define $g: y \rightarrow x$ by $g(y)=x$ for $f(x)=y$.
Then $(g \circ f)(x)=g(f(x))=g(y)=x \quad \forall x \in X \Rightarrow g \circ f=$ id x

$$
(f \circ g)(y)=f(g(y))=f(x)=y \quad \forall y \in Y \Rightarrow f \circ g=i d y
$$

That is, f is invertible, and g is the inverse of f. Notation: $g=f^{-1}$.

Example 15

1) H : set of all humans
$N U=\{h \in H \mid h$ is a student at Nu $\}$

$$
f_{1}: N U \longrightarrow \mathbb{N}
$$

$S \longmapsto$ Student ID of student S.

- f_{1} is injective. (There are not two students)
- f_{1} is not surjective. ($\left.\begin{array}{l}\text { Not every number is the } \\ \text { student ID of a student. }\end{array}\right)$

2)

$$
\begin{aligned}
& \\
& f_{2}: \begin{array}{l}
x \\
\mathbb{R}
\end{array}>\mathbb{R} \\
& x \longrightarrow \sin (x)
\end{aligned}
$$

$$
\cdot \operatorname{im}\left(f_{2}\right)=[-1,1]=\{x \in \mathbb{R} \mid-1 \leq x \leq 1\}
$$

- f_{2} is not surjective. $\left(2 \in Y=\mathbb{R}\right.$ but $\left.2 \notin \operatorname{im}\left(f_{2}\right)\right)$

3) $f_{3}:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow[-1,1]$

$$
x \longmapsto \sin (x)
$$

$$
\cdot \operatorname{im}\left(f_{3}\right)=[-1,1]=y
$$

$\Rightarrow f_{3}$ is surjective

- f_{3} is also injective: For each $y \in[-1,1]=Y$ there is exactly one $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with $f_{3}(x)=y$.
$\Rightarrow f_{3}$ is bijective with inverse $f_{3}^{-1}=\arcsin$.

4) $f_{4}: \mathbb{R} \longrightarrow \mathbb{R}$

$$
\operatorname{im}\left(f_{4}\right)=\{x \in \mathbb{R} \mid x \geq 1\}
$$

- not injective and not surjective.

5)

$$
\begin{aligned}
f_{5}: & \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
& \binom{x_{1}}{x_{2}} \longmapsto\binom{x_{1}+2 x_{2}}{2 x_{1}+4 x_{2}}=\underbrace{(11}_{A x} \begin{array}{c}
11 \\
1^{\prime} \\
2
\end{array})\binom{x_{1}}{x_{2}}
\end{aligned}
$$

To calculate the image of f_{5} we need to find all $b=\binom{b_{1}}{b_{2}} \in \mathbb{R}^{2}$ such that there exists a $x=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$ with $A x=b$.

$$
\begin{gathered}
(f(x)=b) \\
(A \mid b)=\begin{array}{ll|l}
-2 \\
L
\end{array}\left(\begin{array}{ll|l}
1 & 2 & b_{1} \\
2 & 4 & b_{2}
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 2 & b_{1} \\
0 & 0 & b_{2}-2 b_{1}
\end{array}\right)
\end{gathered}
$$

\Rightarrow Just have a solution for

$$
\begin{gathered}
b_{2}=2 b_{1} \\
\Rightarrow \quad \operatorname{im}\left(f_{5}\right)=\left\{\left.\binom{b_{1}}{b_{2}} \in \mathbb{R}^{2} \right\rvert\, b_{2}=2 b_{1}\right\}
\end{gathered}
$$

If $b_{2}=2 b_{1}$ we have the solution $x_{1}=b_{1}-2 t$

$$
x_{2}=t
$$

$$
\begin{aligned}
& b_{1}=1: \\
& x_{1}=1-2 t \\
& x_{2}=t
\end{aligned} \quad \text { and } \quad f_{5}\binom{1-2 t}{t}=\binom{1}{2} \quad \forall t \in \mathbb{R}
$$

$\Rightarrow f_{5}$ is not injective since $f_{5}\binom{1}{0}=f\binom{-1}{1}=\binom{1}{2}$

$$
\text { but }\binom{1}{0} \neq\binom{-1}{1}
$$

6

$$
\begin{aligned}
& \left.f_{6}: \begin{array}{l}
\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} \longmapsto\binom{x_{1}+2 x_{2}}{3 x_{1}+4 x_{2}}=\underbrace{\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)}_{A} \underbrace{\binom{x_{1}}{x_{2}}}_{x} \\
\text { for your self: }
\end{array} .=\begin{array}{ll}
x
\end{array}\right)
\end{aligned}
$$

check for yourself:

- $\operatorname{im}\left(f_{6}\right)=\mathbb{R}^{2}$
- f_{6} is bijective

$$
\text { - } f_{6}^{-1}\binom{x_{1}}{x_{2}}=\binom{-2 x_{1}+x_{2}}{\frac{3}{2} x_{1}-\frac{1}{2} x_{2}}=\underbrace{\left(\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right)\binom{x_{1}}{x_{2}}}_{A^{-1} \text { : inverse of } A .}
$$ Will discuss later in this course!

